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ABSTRACT:  This study aims to examine ridge regression based on robust estimators S, M, MM when data contain full 

multicollinearity and various numbers of outliers. Simulation data with p= 10; n = 25, 50, 100;  𝛽0 = 0 and 1 otherwise contain full 
multicollinearity (ρ=0.99 ) and various numbers of outliers (10%, 15%, 20%) was used and repeated 100 times.   The existence of 
multicollinearity evaluated using VIF values.  The empirical evidence shows that robust ridge regression based on MM-estimator 
(RMM) solves the problem of  multicollinearity and various number of outliers very well  compare to robust ridge regression based on 
M-estimator (RM) and S-estimator (RS).  RMM provides the best estimator of regression coefficients and is more efficient because  it has 
the smallest mean square error than RM and RS in any samples sizes and number of outliers. 
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1. INTRODUCTION 
The existence of multicollinearity may have a negative 

impact, which will cause the estimated parameter variance 

to be greater than it should be, thus the precision of the 

estimate will decrease. Another consequence is the low 

ability to reject the null hypothesis (power of test). The 

cause of multicollinearity is data collection and small 

sample sizes or if the range of x is small [1,2].  Research on 

handling  multicollinearity in multiple regression models 

has been done by many researchers using various methods.  

One of recommended method is ridge regression. This 
method has been proven outperformed to ordinary least 

square method in handling multicollinearity [3, 4, 5, 6, 7, 

8].    

 

In addition, the presence of outliers may also lead to other 

assumptions such as assumption of normality and 

uniformity of homogeneity. The presence of outliers may 

influence the estimation and results of inference tests in 

least square method.  Least square is extremely sensitive to 

regression outliers, that is, observations that do not obey 

the linear pattern formed by the majority of the data [9]. 

Methods to overcome data containing outliers in a 
commonly used regression model are robust regression 

[10]. There are several types of robust regression methods. 

[11] introduced S-estimator that minimizes the dispersion 

of the residuals. [12] suggests. MM-estimation is a 

combination of high breakdown value estimation and 

efficient estimation and [13] introduced  M-estimator that is 

nearly as efficient as OLS.   

 

However, in the situation where multicollinearity and 

outliers are exist together in a data set, ridge regression or 

robust estimator cannot be used separately.  The two 

methods has to be combined to handle the problems 

altogether.  This combining methods is known as robust 

ridge regression estimator.  Although several studies of 

handling multicollinearity and outliers has been done by 

some researchers [14, 15, 16, 17,18],  the study of handling 

multicollinearity and various numbers of outliers which 

presence altogether in the multiple regression models has 

not been done thoroughly. Therefore, in this research will 
be discussed the performance of ridge regression method 

based on robust regression of S, M, and MM on data 

containing multicollinearity and various number of outliers. 

 

2. ROBUST RIDGE REGRESSION  

In the presence of multicollinearity, robust ridge regression 

methods provide an alternative to least squares regression 

by requiring less restrictive assumptions. This methods 

introduced by Hoerl (1962) attempt to dampen the 

influence of outlying cases in order to provide a better fit to 

the majority of the data. This method was introduced by [3] 

and developed by [4].  The estimator of the ridge 

regression coefficient is  𝛽̂𝑅𝑖𝑑𝑔𝑒 = (𝑋
𝑇𝑋 +  𝑘𝐼)−1𝑋𝑇𝑦 with 

I = matrix identity 𝑝 𝑥 𝑝, k = bias constant 0 ≤ 𝑘 ≤ 1.   

Augmented robust estimators as a way of combining biased 
and robust regression techniques is suggested by [16]. The 

combined procedure is based on the fact that robust 

estimates can be combined using a weighted least squares 

procedure. When, both outliers and multicollinearity occur 

in a data set, it seems preferable to combine methods to 

deal with these problems simultaneously. According to 

[14],  robust ridge-robust regression is a combination of 

ridge regression and robust regression methods to 

overcome the problem of multicollinearity and outliers.  

The resulting ridge robust regression estimator will be 

stable and resistant to outliers. Parameter estimation 

formula ridge robust regression is  𝛽̂𝑅𝑅 = (𝑋
𝑇𝑋 +

 𝐶∗ 𝐼)−1𝑋𝑇𝑋𝛽̂𝑅𝑜𝑏𝑢𝑠𝑡
 with  𝐶∗ =

𝑝(𝜎𝑅𝑜𝑏𝑢𝑠𝑡 
2 )

𝛽𝑅𝑜𝑏𝑢𝑠𝑡  
𝑇 𝛽𝑅𝑜𝑏𝑢𝑠𝑡

  and  p = the 

number of independent variables. 

 

S-Estimator  

Let ρ be a symmetric, continuously differentiable function 

such that ρ(0)=0 and is strictly increasing on [0,c].  Let 𝑘 =
∫ ρ(𝑋)𝖽Φ(X), where Φ is the standard normal distribution.  

Introducedby [11],  S-estimator is derived from a scale 

statistics corresponding to s(𝛽).  Let (𝑥1, 𝑦1),… , (𝑥𝑛 , 𝑦𝑛)  
be a sample of regression data with  

p-dimensional 𝑥𝑖 .  For each vector β, we obtain residuals 

𝑠(𝑒1(𝛽), … , 𝑒𝑛(𝛽)).  The S-estimator 𝛽̂ is defined by 𝛽̂𝑠 =

min
𝛽
 𝑠(𝑒1(𝛽), … , 𝑒𝑛(𝛽)) with final scale estimator 𝜎̂𝑠 =

𝑠(𝑒1(𝛽), … , 𝑒𝑛(𝛽)).   The objective function is  by solving 

the equation of scale  
1

𝑛
∑ 𝜌

𝑒𝑖

𝜎̂𝑠

𝑛
𝑖=1 = 𝑘 where k is a constant 

defined as 𝐸𝛷[𝜌(𝑒)]  and Φ is the standard normal 
distribution.  ρ is taken Tukey’s biweight function and 

hyperbolic tangent estimator given by 

 

𝜌(𝑥) =

{
 

 
𝑥2

2
−
𝑥4

2𝑐2
+
𝑥6

6𝑐4
            𝑓𝑜𝑟 |х| ≤ 𝑐 

𝑐2

6
                                     𝑓𝑜𝑟|х| > 𝑐   

 

 

The parameter c is the tuning constant.  This tuning 

parameter appears to be a very important part for 

mailto:netti.herawati@fmipa.unila.ac.id


202 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(2),201-204,2019 

March-April 

asymptotic and breakdown properties of S-estimator for 

regression. [19] suggests c=1,548 and k=0,1995 for 50% 

breakdown and about 28% asymptotic efficiency.  

 

M-Estimator 
M-estimator  was introduced by [13].  M-estimator is given 

by 𝛽̂𝑀 = arg min
𝛽

∑ 𝜌|𝑒𝑖(𝛽)|.  
𝑛
𝑖=1 The  M stands for 

maximum likelihood since ρ(.) is related to the likelihood 

function for a suitable assumed residual distribution.   This 

estimator attemp to minimize the sum of a chosen function 

𝜌(𝑒𝑖)which is the residuals [1].  To obtain 𝛽̂𝑀  we have to 

solve min
𝛽
∑ 𝜌(𝑢𝑖)
𝑛
𝑖=1 = min

𝛽
∑ 𝜌 (

𝑒𝑖

𝜎
)𝑛

𝑖=1  with 𝜎̂ =  
𝑀𝐴𝐷

0.6745
=

 
𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|

0.6745
. 𝜌 function is Tukey’s bisquare 

objective function: 

𝜌(𝑢𝑖) =

{
 

 
𝑢𝑖
2

2
−
𝑢𝑖
4

2𝑐2
+
𝑢𝑖
6

6𝑐4
    , |𝑢𝑖| ≤ 𝑐

𝑐2

6
                             , |𝑢𝑖| > 𝑐

 

To minimize 𝛽̂𝑀  is by taking partial derivatives with 

respect to β and setting them equal to 0, yielding 

∑ 𝑥𝑖𝑗𝜓(
𝑦𝑖−∑ 𝑥𝑖𝑗𝛽𝑗

𝑘
𝑗=0

𝜎̂
)𝑛

𝑖=1 = 0, 𝑗 = 0,1,… , 𝑝  where 𝜓 = 𝜌′;  

𝑥𝑖𝑗 is  ith observation of jth independent variable and 𝑥𝑖0 =

1.  𝜓 function is selected with respect to the weight of 

assign outliers. A solution for 𝜓 function by defining a 

weighted function 𝑤(𝑒𝑖) =
𝜓(𝑒𝑖)

𝑒𝑖
 and let 𝑤𝑖 = 𝑤(𝑒𝑖).  

Because 𝑢𝑖 =
𝑒𝑖

𝜎̂
, so that  

𝑤𝑖 = 𝑤(𝑢𝑖) =
𝜓(𝑢𝑖)

(𝑢𝑖)
 =

{
 

 𝑢𝑖 (1 − (
𝑢𝑖

𝑐
)
2
)
2

𝑢𝑖
, |𝑢𝑖| ≤ 𝑐

0, |𝑢𝑖| > 𝑐

 

𝑤𝑖 = {
[1 − (

𝑢𝑖
𝑐
)
2

]
2

                      , |𝑢𝑖| ≤ 𝑐 

0                                            , |𝑢𝑖| > 𝑐

 

 

For Tukey‘s bisquare, take c=4,685, we get   

∑ 𝑥𝑖𝑗𝑤𝑖 (
𝑒𝑖

𝜎̂
)𝑛

𝑖=1 = 0 , 𝑗 = 0,1,… , 𝑝 .  This equation can be 

solved by iteratively reweighted least squares (IRLS) 

method [20].   
 

MM-Estimator  

MM-estimator is a combination of high breakdown value 

estimation and efficient estimation which was introduced 

by [12].  This procedure estimates regression parameter 

using S-estimator which minimize the scale of the residual 

from M-estimator and then proceed with –estimator [21, 

22].  The first stage is calculating an S-estimate with 

influence function 𝜌(𝑥) = 3(
𝑥

𝑐
)
2

− 3(
𝑥

𝑐
)
4

+ (
𝑥

𝑐
)
6

 𝑖𝑓|𝑥| ≤

𝑐, otherwise 𝜌(𝑥) = 1.  The value of tuning constant 

c=1.548.  Then calculates the MM parameters which has 

minimum value of  ∑ 𝜌 (
𝑒𝑖

𝜎̂
)𝑛

𝑖=1  where 𝜌(𝑥) is the influence 

function used in the first stage with c=4.687 and 𝜎̂ is the 

estimate of scale form the first step (standard deviation of 

the residuals. The final step computes the MM estimate of 

scale as the solution to  
1

𝑛−𝑝
∑ 𝜌 (

𝑒𝑖

𝑠̂
)𝑛

𝑖=1 = 0.5. 

 

 

 
3. METHODS 
We simulate a set of data with sample size n=25, 50, 100 

contain full multicollinearity (ρ=0.99) among all 

independent variables (p=10) and contain various number 
of outliers (10%, 15%, 20%) of the data using true model   

𝐘 = 𝐗𝛃 + 𝛆. R package is used with 100 iterations. The 

independent variables are generated by xij = (1 −

ρ2)1/2uij + ρuij,   i = 1,2,… , n    j = 1,2,… , p, where 

𝑢𝑖𝑗  are independent standard normal pseudo-random 

numbers and ρ is specified so that the theoretical 

correlation between any two explanatory variables is given 

by ρ2. Dependent variable (𝒀) for each 𝑝 independent 

variables is from 𝒀 = 𝑿𝜷+ 𝜺 with β parameters vectors are 

chosen arbitrarily (β0=0, and β=1 otherwise) for p= 10 and 
ε~N (0, 1).  We considered contamination proportion in 

data 10%, 15%, 20%. To measure the amount of   

multicollinearity in the data set,  variance inflation factor 

(VIF) is examined.  The behaviour of RM, RMM and RS in 

estimating the regression coefficient is evaluated by 

standard error and  mean square error (MSE) of the 

parameter estimates.   

 

4. RESULTS AND DISCUSSION 
Independent variables are designed to have full 

multicollinearity.  To ensure that the condition occur as 

designed, it is examined using VIF values of the variables.  
As can be seen in Table 1,  the initial VIF of the variables 

are greater than 10, it indicates the presence of full 

multicollinearity among all the independent variables being 

studied. 
Tabel 1.  VIF of Independent  Variables 

Variables VIF 

x1 47.1756 

x2 54.9222 

x3 38.7089 

x4 43.8664 

x5 49.1229 

x6 53.3555 

x7 30.625 

x8 46.7618 

x9 44.4623 

x10 38.8778 

 

After the  ridge regression is applied to the data, the VIF is 

reexamined to see if the multicollinearity problem is 

resolved. The result shows that after applying ridge 

regression the VIF values reduce significantly to be close to 

one. It indicates that multicollinearity is handled very well 

by ridge regression.  Further, RM, RMM and RS are used 
to handle the the presence of outliers in the data.  The 

behavior of the RM, RMM and RS in estimating the 

regression coefficients is evaluated by standard error and 

mean square error (MSE) of the parameter estimates.  

RMM, RM and RS have small standard errors of parameter 

estimates for each sample size and number of outliers.  The 

smallest standard errors of parameter estimates is produced  

by RMM.  This shows that RMM gives better coefficient 

regression estimator than other methods being studied. 
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To see the best behavior of the robust ridge regression in 

the study, mean square error of each method is evaluated.  

The result is shown in Table 2  and Figure 1-3.   
 

Tabel 2. MSE of RMM, Rm, RS for different sample 

sizes and number of outliers 

 

 Number of 
Outliers 

Method 
MSE 

n=25 n=50 n=100 

10% 

RMM 2158.6 2375.6 15766.1 

RM 
3162.6 2406.7 15785.7 

RS 
8184.7 7945.4 35726.5 

15% 

RMM 
1836.1 2107.8 13620.5 

RM 
2349.3 2136.2 13639.5 

RS 
6819.8 7839.7 28889.5 

20% 

RMM 
1689.5 2488.7 13107.3 

RM 
2189.3 2516.5 13120.5 

RS 
3605.2 6780.7 25587.4 

 
 

 
 
Fig.1.   MSE of RMM, RM, RS for different sample sizes and 

10% outliers 

 

 
 
Fig.2. MSE of RMM, RM, RS for different sample sizes and 

15% outliers 

 
 
Fig.3. MSE of RMM, RM, RS for different sample sizes and 

20% outliers 

 

 

Table 2 and Fig. 1-3 show that RMM produces the smallest 

MSE value followed by RM  and RS for each sample size 

and number of outliers.  It  denotes that RMM handles 

multicollinearity and number of outliers significantly 

compared to RM and RS in any number of sample sizes 

and number of outliers.  This results are correspond to 
research by [18]  who studied some robust ridge regression 

for handling multicollinearity  and outliers for data the 

capital commodities and imported raw materials, in Iraq in 

the period from 1960 to 1990 shows that  MSE of RMM is 

smaller than RM and RS.  

 

5. CONCLUSION 
Based on the results and discussion, it can be concluded 

that RMM is a better method in handling multicollinearity 

and outliers than RM and RS for small and large sample 

sizes.  
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