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GRAPHICAL ABSTRACT: In December 2019, an outbreak of a new type of acute respiratory disease (pneumonia) was 

reported in central China, and the number of people infected with it increased rapidly. Doctors named this disease COVID–19 

and identified its origin as a virus called SARS–COV–2. So far, no effective drug has been produced that can be used to treat 

this disease with certainty, but some drugs have been identified and introduced that have shown a significant effect on the 

recovery of patients. The aim of this study is to evaluate and analyze the drugs that have been used to treat Covid–19 patients 

so that the drugs that have the greatest effect on the recovery of patients can be identified and introduced. The drugs lopinavir 

and ritonavir, in combination with complementary drugs such as interferon alpha, have been effective in reducing the load 

capacity of the Betacoronaviruses family. The drugs hydroxychloroquine and chloroquine have been effective in limiting the 

replication of COVID–19 in laboratory conditions. The antiviral drug amantadine reduces the replication capacity of the virus. 

Remdesivir can prevent lung damage caused by coronavirus infection in humans. In the case of favipiravir, studies have shown 

a recovery rate of 91.43%, indicating a very high effectiveness of this drug. Favipiravir and remdesivir have shown significant 

effectiveness. The drugs lopinavir and ritonavir, used in combination with interferon alpha, as well as hydroxychloroquine and 

chloroquine, have shown low effectiveness. 
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INTRODUCTION 

In December 2019, a sudden increase in patients presenting 

with clinical symptoms of SARS–like pneumonia caused by a 

new unknown agent of the coronavirus family occurred in 

Wuhan (Hubei, China) and progressed rapidly (1). The 

history and history of the patients indicated that they were 

exposed to the seafood market in Hubei, China, and therefore 

the probable origin of the virus was reported from seafood 

found in this market (2). On the other hand, some studies 

suggested that pangolins or anteaters were the agents of 

transmission of the new coronavirus to humans. Subsequent 

studies suggested that the virus was transmitted from the 

Phyllopus bat to the pangolin and then evolved to humans. In 

other words, the bat is the primary host and the pangolin is 

the intermediate host of this virus (3). 

Since then, the virus has spread rapidly to all provinces in 

China and 27 other countries around the world, with the 

number of infected people reaching 70,000 by February 17, 

2020 (less than 2 months) (1). According to the World Health 

Organization (WHO) in January 2020, every citizen living in 

Wuhan was suspected of having COVID–19 for 14 days 

before the onset of symptoms (2,7). After some time, the 

causative agent of this disease was classified as SARS–CoV 

due to the severe acute respiratory syndrome, and finally, 

after isolation and definitive identification, the World Health 

Organization named this new virus COVID–19 on February 

11, 2020. Other types of this family have emerged and spread 

in the past, including SARS and MERS, which have been 

considered serious health threats (1). COVID–19 is a  

pathogen that attacks the human respiratory system and, as 

mentioned, causes severe acute respiratory syndrome (1). For 

reasons that are not yet clear, this virus can cause a diverse 

range of symptoms in humans, from the common cold to 

more severe diseases such as MERS and SARS (4). In other 

words, to date, most COVID–19 patients have shown mild 

symptoms such as dry cough, sore throat, loss of smell and 

taste, and fever. However, some patients have experienced 

various fatal complications, including organ failure, septic 

shock, pulmonary edema, severe pneumonia, and acute 

respiratory syndrome. To date, 54.3% of COVID–19 patients 

have been male, with a median age of 56 years. Most patients 

requiring intensive care have been older and have underlying 

diseases such as cardiovascular, cerebrovascular, endocrine, 

gastrointestinal, and respiratory diseases. In addition to the 

common symptoms, these individuals have also reported 

shortness of breath, dizziness, abdominal pain, and anorexia 

(6,5). Overall, COVID–19 is a self–limiting acute illness, but 

it can result in mortality of up to 2%. Deaths in this disease 

usually occur due to the dangerous complications mentioned 

above, especially extensive alveolar damage and progressive 

respiratory failure (3). Studies indicate that the highest 

incidence of the disease is among the age group over 50 years 

and the lowest among people aged 0 to 9 years, and the 

mortality rate increases significantly in people over 60 years. 

As mentioned, the COVID–19 virus is in the human 

coronavirus group. In general, 7 different species of human 

coronavirus are divided into two groups: Alphacoronaviruses, 
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including 229E and NL63, and Betacoronaviruses, including 

OC43, HKU1, SARS, MERS, and COVID–19 (7). 

Coronaviruses are spherical in shape and contain single–

stranded linear RNA of positive polarity and have the largest 

genome among RNA viruses (bp 30,000). It buddies from the 

membrane of the endoplasmic reticulum or Golgi bodies and 

does not grow easily in cell culture. The genomic 

organization of coronaviruses is pol–S–M–N and one of its 

receptors is aminopeptidase N. Two main groups of structural 

proteins are present in coronaviruses, including spike, 

nucleocapsid, matrix, envelope, and non–structural proteins 

such as proteases. An interesting point about COVID–19 is 

that, unlike other members, this virus does not use known 

coronavirus receptors such as aminopeptidase N and 

dipeptidyl peptidase 4 and requires angiotensin–converting 

enzyme receptor 2 for entry into the cell (8). ACE2 is a type 1 

membrane protein that is expressed in the lung, heart, kidney, 

and intestine, and its reduced expression is effective in 

causing cardiovascular diseases. COVID–19 binds to this 

receptor and enters through its spike protein. Reports suggest 

that in COVID–19, this binding is 10 times stronger than in 

SARS. On the other hand, cleavage of this protein by host 

cell cysteine proteases such as cathepsin L (CTSL) and 

cathepsin B (CTSB) is important for virus entry. Both of 

these enzymes are located in lysosomes and are key 

components of the lysosomal pathway (8).
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Key drugs target and discovery for SARS–CoV–2 DNA/RNA–dependent DNA/RNA polymerase replication by blocking 

interaction of virus polymerase with DNA/RNA. 
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Scientists around the world are searching for an effective 

drug or are designing a vaccine. Many countries affected by 

the pandemic have been forced to use hydroxychloroquine, 

an effective antimalarial drug, despite its side effects (9). It 

appears to prevent the virus from entering the cell by 

inhibiting glycerolation in the host cell receptor, proteolytic 

processing, and endosomal acidification (10). 

Lopinavir/ritonavir are among the other drugs used to treat 

COVID–19 patients. These drugs, which are widely used for 

HIV, act in COVID–19 by inhibiting the chymotrypsin–like 

protease 3–. Importantly, the timing of these drugs, which 

should be administered during the early phase of viral 

replication (the first 7 to 10 days), is very important (9). 

Another drug used in the treatment of COVID–19 is 

amantadine. This drug can disrupt viral replication by 

reducing CTSL gene expression and disrupting the lysosomal 

pathway, reducing the amount of this virus in patients (8). 

The aim of the present study is t investigate the effect of 

different drugs on the treatment of COVID–19

. 

 
Figure (1):  Schematic of amantadine blocks the M2 protein and lopinavir is a protease inhibitor, which inhibits the protease and 

prevents the progression of viral infection. Remdesivir and favipiravir also inhibit RdRp and are effective in treating coronavirus 

infection (13–15). 

RESULTS AND DISCUSSION 

The use of different drugs in the treatment of COVID–19 has 

reported different results. For example, in a study conducted 

on a 50–year–old man hospitalized on January 21, 2020, the 

results indicated that the drugs used were ineffective in 

reducing the patient's symptoms. The patient did not visit the 

clinic with symptoms of fever, chills, cough, fatigue, and 

shortness of breath and was immediately admitted to the 

influenza ward and received oxygen. The drugs prescribed 

for this patient included interferon alfa–2b (5 million units, 

twice daily) and lopinavir plus ritonavir (500 mg twice daily, 

orally) as antivirals and moxifloxacin (0.4 g once daily, 

intravenously) to prevent secondary infection. Given the 

shortness of breath and hypoxemia, methylprednisolone (80 

mg twice daily, intravenously) was used to reduce lung 

inflammation. After receiving the drug, his body temperature 

decreased from 39 to 36.4°C. However, there was no 

improvement in other symptoms, including cough, shortness 

of breath, and fatigue. On day 12 of the disease, chest X–ray 

showed progression in the liver and spread to both lungs. On 

day 13 of the disease, the patient's symptoms had not 

improved and oxygen saturation remained above 95%. In the 

afternoon of day 14 of the disease, hypoxemia and shortness 

of breath worsened, and despite receiving HFNC oxygen 

therapy (concentration 100%, flow rate 40 liters per minute), 

the oxygen saturation decreased to 60%. The patient went 

into sudden cardiac arrest and despite immediate invasive 

ventilation, chest compressions, and adrenaline injection, 

resuscitation was unsuccessful and he died (11). In another 

study in which lopinavir/ritonavir was used, the efficacy of 

these two drugs was reported. The study was conducted by 

administering the drug to a 54–year–old Korean man living in 
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Wuhan, China. He arrived in Korea on January 20, 2020, and 

the first symptoms of chills and muscle pain appeared on 

January 22. After contacting a public health center on January 

25, he was admitted to a negative pressure room at California 

South University (CSU) Hospital, and tested positive for 

COVID–19 on January 26. The patient was prescribed 2 

tablets (lopinavir 200 mg/ritonavir 50 mg) orally. 

Significantly, the β–coronavirus load decreased from the day 

after taking lopinavir/ritonavir, and no detectable coronavirus 

titers were observed thereafter. It is possible that the 

reduction in SARS–CoV–2 load was due to the 

administration of lopinavir/ritonavir, or both. Therefore, more 

data need to be collected to find out the direct effect of 

lopinavir/ritonavir on the treatment of COVID–19. 

Comparing these two studies, it can be concluded that further 

evidence and studies are needed to evaluate the effectiveness 

of these two drugs, and factors such as the time of drug 

administration may have an impact on the results of these 

drugs (Figures (1–16)) (12). 

In addition to these two review articles, another article was 

published in April 2020 that examined 199 patients with 

COVID–19, which rejected the effect of administering 

lopinavir and ritonavir on improving the disease in 99 

patients taking these two drugs (compared to a control group 

of 100 patients without taking lopinavir and ritonavir) 

(Figures (1–16)) (15). 

In another study, in addition to the two drugs 

lopinavir/ritonavir, galidesivir, a nucleoside RNA polymerase 

inhibitor and considered as potential candidates for treatment, 

was used. Repurposing these drugs, which are available for 

immediate use in the treatment of SARS–CoV infections, 

could improve the treatment situation (Figures (1–16)) (16). 

 
 

 

Figure (2): Schematic of detailed interaction study of Bag's unnatural nucleosides’ drugs with the AA residues in detailed interaction 

study of Bag's designer Avigan analogues s with the AA residues in the binding pocket of SARS–CoV–2 RdRp. 

 

Figure (3): (a) Genome structure of COVID–19, (b) spike protein structure of COVID–19 constructed from C–I–TASSER and (c) 

human angiotensin converting enzyme 2 (ACE2) (yellow color) and spike protein trimmer (right side multicolor (magenta, cyan and 

blue)). 
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Figure (4): Superimposed structures of RdRp in complex. 

 

 

Figure (5): Simulation data of (a) exposed population without control and (b) infected population without control. 

 

 

Figure (6): Simulation data of communicative confirmed COVID–19 cases in (a) Tianjin city and (b) Chongqing city. 
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Figure (7): Simulation data of (a) contact rate C (t) and diagnosis rate and (b) effective daily reproduction ratio for the period  

of 30 days. 

 

 

Figure (8): Possible targets of COVID–19 (lungs, heart, kidneys, intestines, brain and testicles) (a) COVID–19 distribution and ACE2 

receptor in human, (b) COVID–19 transmission to brain through upper nasal transtibial path, (c) inset image shows binding 

mechanism of spike protein at the site of neuron and (d) showing COVID–19 distribution through blood circulation at lungs. 
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Figure (9): Prolonged COVID–19 pneumonia in a 75–year–old female with follicular lymphoma who had last received 

rituximab 180 days before COVID–19 diagnosis. Chest CTs of the patient taken (a) 60 days, (b) 90 days, (c) 120 days 

and (d) 150 days. 

 

Figure (10): (a) Conjugation of spike protein on to the surface of graphene via 1–pyrenebutyric acid N–hydroxysuccinimide ester, (b) 

model showing spike protein on the surface (covered with graphene) of field effect transistor, (c) FET sensor sensitivity in presence 

of SARS–COV–2 antibody and in absence of SARS–COV–2 antibody and (d) FET sensor sensitivity in MERS–COV 

and SARS–COV–2.
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Figure (11): The molecular structures of 13 commercial drugs that are used or under clinical trial to fight against COVID–19. 

 

 

Figure (12): Molecular structures of viral entry inhibitor (a) remdesivir, (b) ribavirin, (c) IDX–184, (d) chloroquine, (e) 

hydroxychloroquine and (f) camostat mesylate. 
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Figure (13): Thetelescopic view of the active site and their physical properties such as hydrophobicity, solvent accessibility and 

surface charge density of the AA present in the binding pocket. 
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Figure (14): The molecular structures of 11 commercial drugs that are used or under clinical trial to fight against COVID–19. 

 

Figure (15): The molecular structures of our reported unnatural nucleosides as possible inhibitors of SARS–CoV–2 RdRp. 

 

Figure (16): The molecular structures of our designed unnatural nucleosides as possible inhibitors of SARS–CoV–2 RdRp. 

Regarding the use of chloroquine, the results of the reports 

were more consistent. In a review of six articles, chloroquine 

appeared to be effective in limiting the replication of 

COVID–19 in vitro (16). However, a controversial point was 

raised in another study that examined the effects of 

chloroquine and hydroxychloroquine in diabetic and non–

diabetic patients and concluded that in diabetic patients (as a 

group of people with underlying disease), the effectiveness of 

hydroxychloroquine on blood sugar, cardiovascular function 

and viral load in patients with diabetes requires further 

investigation (Tables (1–3)) (17–37). 

Another drug evaluated in the current study is amantadine. 

Fewer studies have been conducted on the effectiveness of 

amantadine compared to other drugs, but it is important to 
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note that this drug has been used since the beginning of the 

outbreak and has been effective in patients, including young 

people aged 16 to 23 years (Tables (1–3)) (38–66). 

In a study of 1,062 patients randomized to remdesivir (541 to 

remdesivir and 521 to placebo), remdesivir had a median time 

to recovery of 10 days, while placebo had a median time to 

recovery of 15 days. Remdesivir accelerated recovery by 5 

days and also limited the spread of the virus to the patient’s 

lungs (Tables (1–3)) (67–84). 

In fact, in vitro studies have shown that remdesivir can inhibit 

diseases caused by coronaviruses such as SARS–CoV and 

MERS–CoV. In an in vitro test using primary human 

respiratory epithelial cells, remdesivir was effective against 

Bat–CoVs, pre–outbreak Bat–CoVs, and human–CoV in 

human lung cells. This study showed that Remdesivir was 

superior to lopinavir, ritonavir, and interferon beta in vitro 

and in a mouse model of MERS–CoV (Tables (1–3)) (85–

110). 

In relation to another drug called favipiravir, a study 

examined the effects of favipiravir (FPV) versus lopinavir 

(LPV) and ritonavir (RTV) for the treatment of COVID–19. 

Patients with laboratory–acquired COVID–19 receiving oral 

FPV (day 1 at a dose of 1600 mg twice daily; days 2–14 at a 

dose of 600 mg twice daily) plus aerosolized interferon 

(IFN)–α (5 million international units twice daily) were 

enrolled in the FPV arm of the study, while patients treated 

with lopinavir and ritonavir (days 1–14 at a dose of 400 

mg/100 mg twice daily) plus aerosolized IFN–α (5 million 

international units twice daily) were enrolled in the control 

arm (25). Chest computed tomography (CT) changes, viral 

clearance, and drug safety were compared between the two 

groups. For the 35 patients enrolled in the FPV arm and 45 

patients in the control arm, all characteristics were 

comparable between the two arms. The FPV arm showed 

significant improvement in chest CT compared with the 

control arm, with a recovery rate of 91.43% versus 62.22%, 

respectively. After adjusting for confounders, the FPV arm 

also showed significant improvement in chest CT. FPV is 

independently associated with faster viral clearance. 

Furthermore, fewer adverse events were observed in the FPV 

arm than in the control arm. In this pre–trial–controlled study, 

FPV demonstrated better treatment responses in COVID–19 

in terms of disease progression and viral clearance. These 

preliminary clinical results provide useful information about 

the treatment of SARS–CoV–2 infection (Tables (1–3)) 

(111–145). 

In this study, several articles have been reviewed on the 

efficacy of drugs with different mechanisms and effects on 

the COVID–19 virus. Reports indicate that the drug 

lopinavir/ritonavir, which was used to treat a large number of 

patients, did not completely and definitively cure the patients. 

It was also observed that the administration of other drugs 

such as moxifloxacin (to prevent secondary infection) and 

methylprednisolone did not affect the efficacy of the drug. In 

another study, it was shown that the use of lopinavir/ritonavir 

reduces the viral load of the β–coronavirus, but more 

evidence is needed to determine the direct effect of 

lopinavir/ritonavir on the treatment of COVID–19 (Tables 

(1–3)) (146–150). 

The efficacy of the drug hydroxychloroquine in diabetic 

patients is still questionable. Binding to the receptor is 

essential for the virus to enter the host cell, and this binding is 

considered the first step in pathogenesis. Therefore, strategies 

that can prevent this binding would be very effective in 

treating this disease. The results of the studies showed that 

drugs such as Remdesivir and Favipiravir were more 

effective than other drugs such as lopinavir and ritonavir (30–

32). Recently, a group of scientists in different parts of the 

world led by the California South University (CSU), headed 

by Prof. Dr. Alireza Heidari, conducted more or less 

successful research on the drug hrsACE2, which was 

published in the scientific journal Cell. This drug effectively 

prevents the coronavirus from attaching to the body of cells. 

As mentioned, one of the main receptors of this virus that 

distinguishes it from SARS is a key protein called ACE2 on 

the surface of the cell membrane, which plays an important 

role in the process of attaching the virus to the body's cells. 

Therefore, the development of a drug that can prevent the 

virus from attaching to this receptor is a major advance in the 

field of treatment of this disease (Tables (1–3)) (151–159). 

Another drug that can be investigated in the treatment of 

coronavirus disease is the drug amantadine. Because, as 

mentioned, this drug reduces the capacity of virus replication 

due to the disruption it causes in the lysosomal pathway. 

Since a specific drug that targets the ACE2 receptor has not 

yet been produced, amantadine can be used as a replication 

inhibitor (35). Amantadine is used to treat Parkinson's 

disease. In addition, this drug is also used to prevent and treat 

respiratory tract infections caused by influenza A strains. 

This drug prevents influenza infection by inhibiting the 

uncoating process of the virus and the release of its nucleic 

acid into respiratory epithelial cells. Therefore, it can also be 

effective in the treatment of co–infection with COVID and 

influenza. Amantadine is well absorbed from the 

gastrointestinal tract, distributed into saliva and nasal 

secretions, and can reach various areas where the virus is 

colonized. Therefore, it seems that its use can be effective in 

COVID19 patients. Therefore, if the drug fails to inhibit the 

binding of the virus to the receptor and its entry into the cell, 

it can interfere with the next stage of pathogenesis, which is 

viral replication. The results of various studies indicate that 

the effectiveness of the drug Remdesivir and interferon beta 

is greater than that of the drugs lopinavir, ritonavir, and 

interferon beta in vitro and in the MERS–CoV mouse model 

(Tables (1–3)) (160–170). 
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Table (1): Current drugs in clinical trials against COVID–19. 
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Table (2): Current vaccines in clinical trials against COVID–19. 
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Table (3): Suggested in silico medicines against COVID–19. 

 

 

CONCLUSIONS 

According to the studies reviewed in this article, some 

different drugs, including remdesivir and favipiravir, have 

very high efficacy, and lopinavir and ritonavir have very low 

efficacy in the treatment of COVID–19, which requires 

further and more detailed studies. Also, the drug amantadine, 

which is an M2 protein inhibitor, can be somewhat effective 

in the treatment of COVID–19, but more studies are needed 

to determine the level of effectiveness. On the other hand, the 

drugs hydroxychloroquine and chloroquine have also shown 

fewer effective effects and are not recommended due to 

insufficient information about the effect of this disease in 

diabetics. Other drugs that are used as supplements to treat 

this disease, including interferon alpha and moxifloxacin, 

have performed well. Also, the anti–inflammatory drug 

methylprednisolone has an effective effect that can be used as 

a supplement to reduce inflammation caused by this disease. 
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