p-REINFORCEMENT NUMBER OF SUN AND SUNLET GRAPHS

${ }^{1}$ Glaisa T. Catalan, ${ }^{2 \boldsymbol{*}}$ Earl Jude Francis T. Awing, ${ }^{\mathbf{3}}$ Anna Lisa A. Mugar

${ }^{1}$ College of Teacher Education, Negros Oriental State University-Siaton Campus, Brgy. 3, Siaton Negros Oriental, Philippines
Email: glaisa.catalan@ norsu.edu.ph
${ }^{2 *}$ Negros Oriental State University - Bayawan-Sta. Catalina Campus, Bayawan City, Negros Oriental, Philippines
${ }^{3}$ College of Arts and Sciences, Negros Oriental State University-Siaton Campus, Brgy. 3, Siaton Negros Oriental, Philippines

Abstract

A graph $G=(V, E)$ is an ordered pair where V is a non-empty set whose elements are called vertices, and E is a set of 2-element subsets of V called edges. Let p be a positive integer. A p-dominating set of G is a subset D of G such that $\left|N_{G}(x) \cap D\right| \geq p$ for all $x \in V \backslash D$. The p-domination number of G, denoted by $p_{p}(G)$, is the minimum cardinality among the p dominating sets of G. The p-reinforcement number of G, denoted byr $r_{p}(G)$, is the smallest number of edges of G^{c} that have to be added to G in order to reduce $\gamma_{p}(G)$. This study presented bounds and exact values on the p-domination number of sun and sunlet graphs. The concepts $\eta_{p}-$ set and p-private neighbourhood used by Lu et al. [11] were also utilized in proving some of the p-reinforcement number of sun and sunlet graphs. This study can be a guide in the creation of new results and will be helpful in our transportation, security, and networking.

Keywords: p-domination number, p-reinforcement number, sun graph, sunlet graph

1. INTRODUCTION

Let $C_{n}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ be a cycle of order n. The sun graph S_{n} of order $2 n$ obtained by adding a vertex w_{i} joined by edges to vertices u_{i} and $u_{i+1(\operatorname{modn})}$ for every $i=$ $1,2, \ldots, n$. The sunlet graph L_{n} of order $2 n$ is the graph obtained from C_{n} by attaching pendant edges $u_{i} w_{i}$ for each $i=1,2, \ldots, n$. The neighborhood of x is the set $N(x)$ consisting of all vertices y which are adjacent to x, that is, $N(x)=$ $\{y \in V: x y \in E\}$. The elements $y \in N(x)$ are called neighbors of x. The closed neighborhood of S in G is the set $N_{G}[S]=S \cup N_{G}(S)$. Let $G=(V, E)$ be a graph and p a positive integer. A p-dominating set of G is a subset D of G such that $\left|N_{G}(x) \cap D\right| \geq p$ for all $x \in V \backslash D$. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality among the p dominating sets of G. The p-reinforcement number $r_{p}(G)$ of a graph G is the smallest number of edges of G^{c} that have to be added to G in order to reduce $\gamma_{p}(G)$, that is, $r_{p}(G)=$ $\min \left\{|B|: B \subseteq E\left(G^{c}\right)\right.$ with $\left.\gamma_{p}(G+B)<\gamma_{p}(G)\right\}$.

Moreover, Lu et al. [11] introduced the following concepts and notations. For a subset $X \subseteq V(G)$,

$$
\begin{gathered}
\eta_{p}(x, X, G)=\left\{\begin{array}{c}
p-\left|N_{G}(x) \cap X\right| \text { if } x \in X^{*} \\
0 \text { if otherwise } \quad \text { for } x \in V(G), \\
\eta_{p}(S, X, G)=\sum_{x \in S} \eta_{p}(x, X, G) \text { for } S \subseteq V(G) \\
\eta_{p}(G)=\min \left\{\eta_{p}(V(G), X, G):|X|<\gamma_{p}(G)\right\}
\end{array} . .\right.
\end{gathered}
$$

A subset $X \subseteq V(G)$ is called an $\eta_{p}-s e t$ of G if $\eta_{p}(G)=\eta_{p}(V(G), X, G)$. Clearly, for any two subsets S^{\prime}, $S \subseteq V(G)$ and two subsets $X^{\prime}, X \subseteq V(G)$,

$$
\begin{gathered}
\eta_{p}\left(S^{\prime}, X, G\right) \leq \eta_{p}(S, X, G), S^{\prime} \subseteq S \\
\eta_{p}(S, X, G) \leq \eta_{p}\left(S, X^{\prime}, G\right),\left|X^{\prime}\right| \leq|X|
\end{gathered}
$$

Let $X \subseteq V(G)$ and $x \in X$. A vertex $y \in \bar{X}$ is called a p private neighbor of x with respect to X if $x y \in E(G)$ and $\left|N_{G}(y) \cap X\right|=p$. The private neighborhood of x with respect to X is defined as $P N_{p}(x, X, G)=$
$\{y: y$ is a private neighbor of x with respect to $X\}$.
Hence, consider the following concepts:

$$
\begin{gathered}
\mu_{p}(x, X, G)=\left|P N_{p}(x, X, G)\right|+\max \left\{0, p-\left|N_{G}(x) \cap X\right|\right\} \\
\mu_{p}(X, G)=\min \left\{\mu_{p}(x, X, G): x \in X\right\} \\
\mu_{p}(G)=\min \left\{\mu_{p}(X, G): X \text { is a } \gamma_{p}-\operatorname{set} \text { of } G\right\}
\end{gathered}
$$

2. p-DOMINATION NUMBER OF SUN AND SUNLET GRAPHS

In this section, we presented the exact values of the pdomination number of the sun and sunlet graphs. Moreover, the authors also gave their observations.
Theorem 2.1. Let $S_{n}(n \geq 3)$ be a sun graph of order $2 n$. For $p \geq 2, \gamma_{p}\left(S_{n}\right) \geq n$.

Proof: Let $p \geq 2$ be a positive integer and $S_{n}(n \geq 3)$ be a sun graph of order $2 n$. Note that S_{n} consists of $C_{n}=$ $\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ and w_{i} joined by edges adjacent to vertices u_{i} and $u_{i+1(\bmod n)}$ for every $i=1,2, \ldots, n$. Clearly, every u_{i} is adjacent to w_{i-1} and w_{i}. Then consider $D=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\} \cup \sum\left\{u_{i}\right\}$. Now, let $v=u_{i}$ such that $u_{i} \notin D$. Then $|N(v) \cap D| \geq\left|\left\{w_{i}, w_{i+1}\right\}\right|$. This shows that D is a p-dominating set in S_{n}. Hence, $\gamma_{p}\left(S_{n}\right)=|D| \geq$ $\left|=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}\right|=n$. Therefore, $\gamma_{p}\left(S_{n}\right) \geq n . Q E D$
Theorem 2.2. Let S_{n} be a sun graph of order $2 n$ with $n \geq 3$. Then $\gamma_{2}\left(S_{n}\right)=n$
Proof: Let $p=2$ and $S_{n}(n \geq 3)$ be sun graph of order $2 n$. By theorem $2.1 \gamma_{p}\left(S_{n}\right) \geq n$. Suppose that $\gamma_{2}\left(S_{n}\right)=n$. Then we let $D=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \subseteq S_{n}$. Note that for every $v \in V\left(S_{n}\right) \backslash D,|N(v) \cap D|=2$. Then D is the minimum 2dominating set in S_{n}. Therefore, $\gamma_{2}\left(S_{n}\right)=n$. $Q E D$
Observation 2.3 Let C_{n} be a cycle of order n. Then $\gamma_{2}\left(C_{n}\right)<\gamma_{3}\left(C_{n}\right)$, that is, if D is a minimum 2-dominating set, then it cannot be a 3-dominating set.
Theorem 2.4. D is a minimum 3-dominating set in $S_{n}(n \geq$ 3) if and only if $S \cup\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$ where
$S=\left\{\begin{array}{ll}u_{1}, u_{4}, u_{7}, \ldots, u_{n-3}, u_{n} / u_{n-1} & \text { if } n \equiv 1(\bmod 3) \\ u_{1}, u_{4}, u_{7}, \ldots, u_{n-4}, u_{n-1} / u_{n-2} & \text { if } n \equiv 2(\bmod 3) \\ u_{1}, u_{4}, u_{7}, \ldots, u_{n-5}, u_{n-2} & \text { if } n \equiv 0(\bmod 3)\end{array}\right.$.
Proof: Let $D=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a minimum 3dominating set in $S_{n}(n \geq 3)$ and $D \neq S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ where

$$
S= \begin{cases}u_{1}, u_{4}, u_{7}, \ldots, u_{n-3}, u_{n} / u_{n-1} & \text { if } n \equiv 1(\bmod 3) \\ u_{1}, u_{4}, u_{7}, \ldots, u_{n-4}, u_{n-1} / u_{n-2} & \text { if } n \equiv 2(\bmod 3) \\ u_{1}, u_{4}, u_{7}, \ldots, u_{n-5}, u_{n-2} & \text { if } n \equiv 0(\bmod 3)\end{cases}
$$

Then there exists a subgraph $P=\left(u_{i}, u_{i+1(\bmod n)}, u_{i+2(\bmod n)}\right)$ or $\left(u_{n-1}, u_{n}\right)$ or $\left(u_{n}\right)$ of
$\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ such that $V(P) \cap D=\emptyset$. Let $v=u_{i+1}$ or u_{n-1} or u_{n}. Thus, $|N(v) \cap D|=2$. This is a contradiction.
Conversely, suppose that $D_{1}=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ where
$S= \begin{cases}u_{1}, u_{4}, u_{7}, \ldots, u_{n-3}, u_{n} / u_{n-1} & \text { if } n \equiv 1(\bmod 3) \\ u_{1}, u_{4}, u_{7}, \ldots, u_{n-4}, u_{n-1} / u_{n-2} & \text { if } n \equiv 2(\bmod 3) \\ u_{1}, u_{4}, u_{7}, \ldots, u_{n-5}, u_{n-2} & \text { if } n \equiv 0(\bmod 3)\end{cases}$
and D_{1} is not a minimum 3-dominating set in $S_{n}(n \geq 3)$. Clearly, D_{1} is a 3 -dominating set. Let D be a minimum 3dominating set. Then $|D|<\left|D_{1}\right|$. Consider the following cases:
Case 1: $w_{i} \in D$
If $w_{i} \in D$, then $D \backslash w_{i}$ is not a dominating set of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Hence, there exists $v \in\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ such that $N(v)=w_{i}, w_{i+1}$. Thus, $|N(v) \cap D|=2$. This is a contradiction.
Case 2: $w_{i} \notin D$
If $w_{i} \notin D$, then we note that S is a minimum dominating set of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Hence, by Observation 2.3 S cannot be a 3 -dominating set of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, and so is D. Since $w_{i} \notin D, \mathrm{D}$ cannot be a 3 -dominating set of S_{n}. This is a contradiction. $Q E D$
Corollary 2.5 Let S_{n} be a sun graph of order $2 n$ with $n \geq 3$. Then $\gamma_{3}\left(S_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+n$.
Observation 2.6 Let C_{n} be a cycle of order n. Then $\gamma_{3}\left(C_{n}\right)<\gamma_{4}\left(C_{n}\right)$ that is, if D is a minimum 3-dominating set, then it cannot be a 4-dominating set.
Theorem 2.7 D is a minimum 4-dominating set in $S_{n}(n \geq 3)$ if and only if $D=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ where

$$
S=\left\{\begin{array}{c}
u_{1}, u_{3}, u_{5} \ldots, u_{n-2}, u_{n} / u_{n-1} \text { if } n \equiv 1(\bmod 2) \\
u_{1}, u_{3}, u_{5} \ldots, u_{n-3}, u_{n-1} \text { if } n \equiv 0(\bmod 2)
\end{array}\right.
$$

Proof: Let $D=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a minimum 4dominating set in $S_{n}(n \geq 3)$ and $D \neq S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ where

$$
S=\left\{\begin{array}{c}
u_{1}, u_{3}, u_{5} \ldots, u_{n-2}, u_{n} / u_{n-1} \text { if } n \equiv 1(\bmod 2) \\
u_{1}, u_{3}, u_{5} \ldots, u_{n-3}, u_{n-1} \text { if } n \equiv 0(\bmod 2)
\end{array}\right.
$$

Then there exists a subgraph $P=\left(u_{i}, u_{i+1(\text { modn })}\right)$ or $\left(u_{n}\right)$ such that $V(P) \cap D=\emptyset$. If $P=\left(u_{i}, u_{i+1(\operatorname{modn})}\right)$, then we let $v=u_{i}$. While, if $P=\left(u_{n}\right)$, then we let $v=u_{n}$. Thus, $|N(v) \cap D|=2$. This is a contradiction.
Conversely, suppose that $D_{1}=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ where

$$
S=\left\{\begin{array}{c}
u_{1}, u_{3}, u_{5} \ldots, u_{n-2}, u_{n} / u_{n-1} \text { if } n \equiv 1(\bmod 2) \\
u_{1}, u_{3}, u_{5} \ldots, u_{n-3}, u_{n-1} \text { if } n \equiv 0(\bmod 2)
\end{array}\right.
$$

and D_{1} is not a minimum 4-dominating set in $S_{n}(n \geq 3)$. Clearly, D_{1} is a 4-dominating set. Let D be a minimum 4-dominating set. Then $|D|<\left|D_{1}\right|$.
Consider the following cases:
Case 1: $w_{i} \in D$
If $w_{i} \in D$, then $D \backslash w_{i}$ is not a 2-dominating set of $\left(u_{1}, u, \ldots, u_{n}\right)$. Hence, there exists $v \in\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ such that $N(v)=u_{i}, w_{i}, w_{i+1}$. Thus, $|N(v) \cap D|=3$. This is a contradiction.
Case 2: $w_{i} \notin D$
If $w_{i} \notin D$, then we note that S is a minimum 2-dominating set of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Hence, by Observation 2.6 S cannot be a 4 -dominating set of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, and so is D. Since $w_{i} \notin D, \quad D$ cannot be a 3-dominating set of S_{n}. This is a contradiction. $Q E D$

Corollary 2.8 Let S_{n} be a sun graph of order $2 n$ with $n \geq 3$. Then $\gamma_{4}\left(S_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+n$.
Corollary 2.9 For every w_{i} in G such that $\left|\operatorname{deg}_{G}\left(w_{i}\right)\right|=$ $\delta(G)<p$, then $\gamma_{p}-$ set D contains the vertex w_{i}.
Corollary 2.10 For every $x \in D$ and $y \notin D$ in $S_{n},|N(y)|=$ $\left.\mid u_{i} \cap D\right) \mid+\delta\left(S_{n}\right)$.
The following are the results of Theorems 2.4, 2.7 and Corollaries 2.9, 2.10.
Corollary 2.11 Let $L_{n}=C_{n} \circ K_{1}$ be a sunlet graph of order $2 n$. Then $\gamma_{2}\left(L_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+n$.
Corollary 2.12 Let $L_{n}=C_{n} \circ K_{1}$ be a sunlet graph of order $2 n$. Then $\gamma_{3}\left(L_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+n$.

3. \boldsymbol{p}-REINFORCEMENT NUMBER OF SUN AND

SUNLET GRAPHS

In this section, we used concepts and some results from Lu et al. (2015) in proving of the exact values and bounds of p-reinforcement number of sun and sunlet graphs.
Lemma 3.1. $\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ and $\gamma_{2}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Lemma 3.2. Let $p \geq 1$ be an integer and G be a graph with $\gamma_{p}(G)>p$. If $\Delta(G)<p$, then $r_{p}(G)=p-\Delta(G)$.
Lemma 3.3. If X is an η_{p}-set of a graph G, then $|X|=$ $\gamma_{p}(G)-1$.
Lemma 3.4. For any graph G and positive integer p, $r_{p}(G)=\eta_{p}(G)$ if $r_{p}(G)=p$.
Remark 3.5. If $\gamma_{p}\left(C_{n}\right)>p$, then
$r_{2}\left(C_{n}\right)=\left\{\begin{array}{l}2 \text { if } n \text { is odd } \\ 4 \text { if } n \text { is even } .\end{array}\right.$
Observation 3.6. Let S_{n} be a sun graph of order 2n. For $D *=D \backslash v, N(v)=\max \{y: y \epsilon D\}$.
Theorem 3.7. Let $p=2,3,4$ and $G=S_{n}$ be a sun graph of order $2 n$. Then $r_{p}\left(S_{n}\right) \leq p$ if $\left|N_{G}(v) \cap D\right| \leq p$ for all $v \in V\left(S_{n}\right) \backslash D$.
Proof: Let $p \leq 4$ be a positive integer and G be a graph of order n. Let D be a p-dominating set in G. This implies that $D^{\prime}=V(G) \backslash D$. Let $\quad\left|D^{*}\right|=\gamma_{p}(G)-|v|=|D|-1$. Then $v \in V(G) \backslash D^{*}=D^{\prime}$. Hence, we construct G^{\prime} from G for each $y \in D^{\prime}$, by adding $\eta_{p}\left(y, D^{*}, G\right)$ edges of G^{c} to G joining y to $\eta_{p}\left(y, D^{*}, G\right)$ vertices in S. Clearly, D^{*} is a p-dominating set of G, that is, $\gamma_{p}(G) \leq\left|D^{*}\right|$. By Lemma 3.2.4 $r_{p}(G)=\eta_{p}(G)$. Then

$$
r_{p}(G)=\eta_{p}(G)=|B|=\sum_{y \in D^{\prime \prime}}\left(p-\left|N_{G}(y) \cap D^{*}\right|\right)
$$

Note that $\left(p-\left|N_{G}(y) \cap D^{*}\right|=0\right)$ if y is not a p-private neighborhood of v. Then

$$
\begin{aligned}
r_{p}(G)= & \sum_{y \in D^{\prime \prime}}\left(p-\left|N_{G}(y) \cap D^{*}\right|\right) \\
= & \left(p-\left|N_{G}\left(y_{1}\right) \cap D^{*}\right|\right)+\left(p-\left|N_{G}\left(y_{2}\right) \cap D^{*}\right|\right)+\cdots \\
& +\left(p-\left|N_{G}\left(y_{n-1}\right) \cap D^{*}\right|\right)+\left(p-\left|N_{G}\left(y_{n}\right) \cap D^{*}\right|\right. \\
= & \left(p-\left|N_{G}\left(y_{1}\right) \cap D^{*}\right|\right)+\left(p-\left|N_{G}\left(y_{2}\right) \cap D^{*}\right|\right)+ \\
& 0+\cdots+0+\left(p-\left|N_{G}\left(y_{n}\right) \cap D^{*}\right|\right)
\end{aligned}
$$

Observe that $\left|N_{G}\left(y_{1}\right) \cap D^{*}\right| \geq 2$ and for any p-private neighborhood of $y_{n},\left(p-\left|N_{G}\left(y_{1}\right) \cap D^{*}\right|\right)=1$. Hence, $p-2 \geq$ $p-3 \geq p-\Delta(G)=0$. We have

Sci.Int.(Lahore),35(6),701-704,2023

$$
\begin{aligned}
& r_{p}(G)=\left(p-\left|N_{G}\left(y_{1}\right) \cap D^{*}\right|\right)+\left(p-\left|N_{G}\left(y_{2}\right) \cap D^{*}\right|\right)+ \\
& 0+\cdots+0+\left(p-\left|N_{G}\left(y_{n}\right) \cap D^{*}\right|\right. \\
& \leq(p-2)+1+1 \\
& \quad \leq p
\end{aligned}
$$

Therefore, $r_{p}(G) \leq p$. QED
Corollary 3.8. For $p=2,3,4$ and $\left|N_{G}(v) \cap D^{*}\right|=p$ for all $v \in V \backslash S_{n} \backslash D$. Then $r_{p}\left(S_{n}\right)=p$.

Theorem 3.9. Let S_{n} be a sun graph of order $2 n$. If $n \geq 3$, then

$$
r_{3}\left(S_{n}\right)=\left\{\begin{array}{l}
1 \text { if } n=3 s+1 \\
2 \text { if } n=3 s+2 \\
3 \text { if } n=3 s
\end{array}\right.
$$

Proof: By corollary 3.1.5, $r_{3}\left(S_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+n$. Then we let, $D=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \quad$ where $\quad S=\bigcup_{i=1}^{m}\left\{u_{3 i-2}\right\} \quad$ and $m=\frac{n+2}{3}, \frac{n+1}{3}, \frac{n}{3}$, respectively. Then consider the following cases:
Case 1: $n=3 r+1$
Let $v=u_{n-1} \in D$ or $v=u_{n} \in D$. By definition of p reinforcement, let $D^{*}=D \backslash\left\{u_{n-1}\right\}$ or $D^{*}=D \backslash\left\{u_{n}\right\}$. Without laws of generality, let $D^{*}=D \backslash\left\{u_{n}\right\}$, then we have $\eta_{3}\left(V\left(S_{n}\right), D^{*}, S_{n}\right)=\eta_{3}\left(u_{n-1}, D^{*}, S_{n}\right)=1$. So

$$
\begin{aligned}
r_{3}\left(S_{n}\right) & =\eta_{3}\left(V\left(S_{n}\right), D, S_{n}\right) \\
& \leq \eta_{3}\left(V\left(S_{n}\right), D^{*}, S_{n}\right) \\
& =1
\end{aligned}
$$

Since D^{*} is a minimum 3 -dominating set in $S_{n}+w_{1} u_{n-1}$. Hence, $r_{3}\left(S_{n}\right)=1$.
Case 2: $n=3 r+2$
Without laws of generality, let $v=u_{n-1} \in D$ and $D^{*}=$ $D \backslash\left\{u_{n-1}\right\}$. Then it is easy to find that $\eta_{3}\left(V\left(S_{n}\right), D^{*}, S_{n}\right)=$ $\left.\left.\eta_{3}\left(u_{n-2}\right), D^{*}, S_{n}\right)+\eta_{3}\left(u_{n-1}\right), D^{*}, S_{n}\right)=(p-2)+(p-$ 2) $=2$. So,

$$
\begin{aligned}
r_{3}\left(S_{n}\right) & =\eta_{3}\left(V\left(S_{n}\right), D, S_{n}\right) \\
& \leq \eta_{3}\left(V\left(S_{n}\right), D^{*}, S_{n}\right) \\
& =2 .
\end{aligned}
$$

Suppose that $r_{p}\left(S_{n}\right)=1$. Partition $V\left(S_{n}\right)$ as $A=$ $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and $B=\left\{u_{1}, u_{2}, \ldots, u_{3 s+2}\right\}$. Note that the observation 3.2.6, $A \subseteq D^{*}$. Since S is not a 3-dominating set in C_{n}, then there must be two adjacent vertices, denoted by u_{i} and u_{i+1} of C_{n} not in S. This means that $\eta_{3}\left(u_{i}, D^{*}, C_{n}\right) \geq$ 1 and $\eta_{3}\left(u_{i+1}, D^{*}, C_{n}\right) \geq 1$. So

$$
\begin{aligned}
r_{3}\left(S_{n}\right) & =\eta_{3}\left(V\left(S_{n}\right), D^{*}, S_{n}\right) \\
& \geq\left(u_{i}, D^{*}, C_{n}\right)+\eta_{3}\left(u_{i+1}, D^{*}, C_{n}\right) \\
& =2
\end{aligned}
$$

This shows that $r_{3}\left(S_{n}\right)=2$.
Case 3: $n=3 r$
Let $D^{\prime}=V\left(S_{n}\right) \backslash D$. Note that for all $y \in D^{\prime},\left|N_{G}(y) \cap D^{*}\right|=$ p. Hence, by corollary $3.2 .8, r_{3}\left(S_{n}\right)=3$. QED
Theorem 3.10. Let $S_{n}(n \geq 3)$ be a sun graph. Then $r_{4}\left(S_{n}\right)=r_{2}\left(C_{n}\right)$.
Proof: Let S_{n} be a sun graph of order $2 n$ with $n \geq 3$. Note that S_{n} consists of $C_{n}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ and w_{i} joined by edges to vertices u_{i} and $u_{i+1(\operatorname{modn})}$ for every $i=1,2, \ldots, n$. By theorem 3.1.7. D is a minimum 4-dominating set in S_{n} if and only if $D=S \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ where

$$
S=\left\{\begin{array}{c}
u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, u_{n} / u_{n-1} \text { if } n=2 r+1 \\
u_{1}, u_{3}, u_{5}, \ldots, u_{n-3}, u_{n-1} \text { if } n=2 r
\end{array}\right.
$$

Without laws of generality, let $v=u_{n-1} \in D$ and consider the following cases: If n is odd, then $D^{*}=D \backslash u_{n-1}$ is a 4dominating set in $S_{n}+B$ where $B=\left\{w_{1} u_{n}, w_{n} u_{n-1}\right\}$. While, if n is even, then $D^{*}=D \backslash u_{n-1}$ is a 4-dominating set in $S_{n}+B$ where $B=\left\{w_{n} u_{n-1}, w_{1} u_{n-1}, w_{n} u_{n-2}, w_{1} u_{n}\right\}$. Hence, by remark 3.2.5, $r_{4}\left(S_{n}\right) \leq r_{2}\left(C_{n}\right)$. Suppose that $r_{4}\left(S_{n}\right)<r_{2}\left(C_{n}\right)$ for $n \geq 3$. Then $D \backslash u_{n-1}$ must be a 4dominating set in $S_{n} \cup B^{\prime}$ such that $\left|B^{\prime}\right|<|B|$. This is a contradiction. Thus, $r_{4}\left(S_{n}\right)=r_{2}\left(C_{n}\right)$. QED
Theorem 3.11. Let L_{n} be a sunlet graph of order $2 n$ with $n \geq 3$. Then $r_{p}\left(L_{n}\right)=p-1$.
Proof: Let $2 \leq p \leq \Delta\left(L_{n}\right)$ and $L_{n}=C_{n} \circ K_{1}$ be a sunlet graph of order $2 n$. Note that L_{n} consists of $C_{n}=$ $\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ and isolated vertices w_{1} attached to each u_{i}. By corollaries 3.2.11, 3.2.12, and lemma 3.1.1, $|D|=$ $\gamma_{p}\left(L_{n}\right)=\gamma_{p-1}\left(C_{n}\right)+n$. Without laws of generality, let $D^{*}=D \backslash w_{i}$. Note that $0=p-\Delta\left(L_{n}\right)<p-2<p-1<p$. By lemma 3.2.4, we have

$$
\begin{aligned}
r_{p}\left(L_{n}\right) & \leq|B| \\
& =\sum_{y \in D^{*}}\left(p-\left|N_{G}(y) \cap D\right|\right) \\
& =\left(p-\left|N_{G}(y) \cap D\right|\right)+0+0+\cdots \\
& =p-1
\end{aligned}
$$

Since D^{*} is not a p-dominating set in L_{n}. Then there exists $\left|N\left(w_{i}\right) \cap D^{*}\right|=1$, that is, $N\left(w_{i}\right) \in D^{*}$. Hence, $\eta_{p}\left(w_{i}, X, L_{n}\right)=p-1$. So, $\quad r_{p}\left(L_{n}\right)=\eta_{p}\left(V\left(L_{n}\right), D^{*}, L_{n}\right) \geq$ $\eta_{p}\left(w_{i}, D^{*}, L_{n}\right)=p-1$. Thus, $r_{p}\left(L_{n}\right)=p-1$. QED

4. ACKNOWLEDGMENT

The authors would like to thank the Rural Engineering and Technology Center of Negros Oriental State University for partially supporting this research.

REFERENCES:

[1] E. Awing, M. Baldado, J. Adanza, On the p-Domination Number and p-Reinforcement Number of the Join of Some Graphs. International Journal of Mathematical Archive, 10(6) (2019) 4-9.
[2] D. Bakhshesh, M. Farchi, M. R. Hooshmandasl, 2Domination Number of Generalized Petersen Graphs. Proc. Indian Acad. Sci. (math.Sci.), 128:17 (2018) 1-12.
[3] M. Blidia, M. Chellali, L. Volkmann, Some Bounds on the p-Domination Number in Trees. Discrete Mathematics 306 (2006) 2031-2037.
[4] Y. Caro, Y. Roditty, A note on the k-Domination Number of a Graph. International Journal of Mathematics and Mathematical Sciences vol. 13 no. 1 (1990), 205-206.
[5] E. De La Viña, W. Goddard, M. A. Henning, R. Pepper, E. R. Vaughan, Bounds on the k-Domination Number of a Graph. Applied Mathematics Letters 24 (2011) 996998.
[6] J. Fink, M. S. Jacobson, n-Domination in Graphs: Graph Theory with Applications to Algorithms and Computer

Science. New York: John Wiley and Sons (1985).
[7] J. Fujisawa, A. Hansberg, T. Kubo, A. Saito, M. Sugita, L. Volkmann, Independence and 2-Domination in Bipartite Graphs. Australasian Journal of Combinatorics 40 (2008) 265-268.
[8] J. Kok and C.M. Mynhardt, Reinforcement in Graphs. Congr. Numer. 79 (1990) 225-231.
[9] J.L. Gross, J. Yellen, Handbook of Graph Theory. Corporate Blvd, Boca Raton, Florida: CRC Press LLC, N.W. (2000).
[10] Y. Lu, J. M. Xu, The p-Domination Number of Complete Multipartite Graphs. Fundamental Research Fund of NPU (2000).
[11] Y. Lu, F. Hu, J. Xu, On the p-Reinforcement and the Complexity. Journal of Combinatorial Optimization 29:2 (2012) 389-405.
[12] Y. Lu, J. Xu, Trees with Maximum p-Reinforcement Number. Discrete Applied Mathematics 175 (2014) 4354.
[13] Y. Lu, W. Song, H. Yang, Trees with 2Reinforcement Number Three. Bulletin of the Malaysian Mathematical Sciences Society 39:2 (2016) 821-838.
[14] J. Mohan, I. Kelkar, Restrained 2-Domination Number of Complete Grid Graphs. International Journal of Applied Mathematics and Computation 4(4) (2012) 352358.
[15]D. Rautenbach, L. Volkmann, New Bounds on the kDomination Number and the k-tuple Domination Number. Applied Mathematics Letters 20 (2007) 98-102.
[16] D. K. Thakkar, D. D. Pandya, 2-Domination Number and 2-Bondage Number of Complete Grid Graph. International Journal of Advanced Engineering Research and Studies 1:1 (2011) 24-29.

