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ABSTRACT: A graph G =(V,E) is an ordered pair where V is a non-empty set whose elements are called vertices, and E is
a set of 2-element subsets of V called edges. Let p be a positive integer. A p-dominating set of G is a subset D of G such that
INg(x) N D| = p for all x € V\D. The p-domination number of G, denoted byy, (), is the minimum cardinality among the p-
dominating sets of G. The p-reinforcement number of G, denoted byr,(G), is the smallest number of edges of G “that have to be
added to G in order to reducey, (G). This study presented bounds and exact values on the p-domination number of sun and
sunlet graphs. The concepts 7, — set and p-private neighbourhood used by Lu et al. [11] were also utilized in proving some
of the p-reinforcement number of sun and sunlet graphs. This study can be a guide in the creation of new results and will be

helpful in our transportation, security, and networking.
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1. INTRODUCTION

Let C, = [uq, uy, ..., u,] be a cycle of order n. The sun
graph S,, of order 2n obtained by adding a vertex w; joined
by edges to vertices u; and Uy q(moan) fOr every i=
1,2,...,n. The sunlet graph L, of order 2n is the graph ob-
tained from C, by attaching pendant edges u;w; for each
i =1,2,...,n. The neighborhood of x is the set N(x) consist-
ing of all vertices y which are adjacent to x, that is, N(x) =
{y e V:xy € E}. The elements y € N(x) are called neigh-
bors of x. The closed neighborhood of S in G is the set
Ng[S] = SUN;(S). Let G = (V, E) be a graph and p a posi-
tive integer. A p-dominating set of G is a subset D of G such
that |No(x) nD| =p for all x € V\D. The p-domination
number y,(G) is the minimum cardinality among the p-
dominating sets of G. The p-reinforcement number 7,(G) of
a graph G is the smallest number of edges of G¢ that have to
be added to G in order to reduce y,(G), that is, 1,(G) =
min{|B|: B € E(G°) withy,(G + B) < y,(G)}.

Moreover, Lu et al. [11] introduced the following con-
cepts and notations. For a subset X € V(G),

Mp(S,X,G) = Yresnp(x,X,G) for S S V(G),

Np(G) = min{n,(V(G), X, G): |X] <yp(G)}

A subset X € V(G) is called an n, —set of G if
n,(G) =n,(V(G),X,G). Clearly, for any two subsets S’,
S € V(G) and two subsets X', X € V(G),

1,(5,X,G) <1,(5,X,6),S' <SS

1,(5,X,G) <1,(S5, X, 6),1X'| < IXI.
Let X S V(G) and x € X. A vertex y € X is called a p-
private neighbor of x with respect to X if xy € E(G) and
[N;(y) N X| = p. The private neighborhood of x with re-
spect to X is defined as
PN,(x,X,G) =
{y:y is a private neighbor of x with respect to X}.
Hence, consider the following concepts:

Up(x,X,G) = |PNp(x,X,G)| + max{0,p — |N;(x) N X|}
Up(X,G) = min{u,(x,X,G): x € X}
Up(G) = min{u,(X,G): X is ay, — set of G}.

2. p-DOMINATION NUMBER OF SUN AND SUNLET
GRAPHS

In this section, we presented the exact values of the p-
domination number of the sun and sunlet graphs. Moreover,
the authors also gave their observations.
Theorem 2.1. Let S,,(n = 3) be a sun graph of order 2n. For
p =270 =n

Proof: Let p > 2 be a positive integer and S, (n = 3)
be a sun graph of order 2n. Note that S,, consists of C, =
[uy, Uy, ..., u,] and w; joined by edges adjacent to vertices u;
and Uy q(moany for every i =1,2,...,n. Clearly, every u; is
adjacent to Wi_q andw;. Then consider
D = {w;,wy, ws, ..., w,, } U X {u;}. Now, let v = u; such that
u; € D. Then [N(v) n D| = |{w;, w;;1}|. This shows that D
is a p-dominating set in S,. Hence, y,(S,)=[D|=
|= {wy, wy, w3, ..., w, }| = n. Therefore, y,,(S,) = n. QED
Theorem 2.2. Let S,, be a sun graph of order 2n with n > 3.
Theny,(S,) =n
Proof: Let p = 2 and S,,(n = 3) be sun graph of order 2n.
By theorem 2.1 y,,(S,) = n. Suppose that y,(S,) = n. Then
we let D = {uy,u,,us, ...,u,} € S,. Note that for every
v €V(S)\D,IN(v) nD| =2. Then D is the minimum 2-
dominating set in S,,. Therefore, y,(S,,) = n. QED
Observation 2.3 Let C, be a cycle of order n. Then
¥, (C,) <v5(C), that is, if D is a minimum 2-dominating
set, then it cannot be a 3-dominating set.
Theorem 2.4. D is a minimum 3-dominating set in S,(n =
3) ifand only if S U {w;, w,, ws, ..., w,, } where

U, Uy, Uy, e, Up_3,Un/Up_q  if n = 1(mod3)

S =<{U, Uy Upy e, Up_gy Up_1/Un_y if n = 2(mMod3) .

Ug, Uy, Uy, eee, Up—s, Up_p if n=0(mod3)

Proof: Let D =SU{w;,w,,..,w,} be a minimum 3-
dominating set in S,(n =3) and D # S U {wy,w,,...,w,}
where
Uq, Ugy U7, ooy Up—3, Up [Up—q  if n = 1(mod3)
S ={Ug, Uy, Up, e, Up_g, Up_1/Up_> if n = 2(Mod3)
{ul,u4, Uy, ey Up—s) Up—2 if n = 0(mod3)
Then there exists a subgraph

pP= (ui'ui+1(modn)'ui+2(modn)) or (un—l'un) or (un) of
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(uq, Uy, .., uy) such that V(P)ND =@. Let v =u;,, Or
Up_q OF u,. Thus, [IN(v) N D| = 2. This is a contradiction.
Conversely, suppose that D; = S U {w;,w,, ..., w,} where
Uy, Uy, Uz, e, Up_3,Up/Up_1 if n = 1(mod3)
S =1Uqp, Uy, Uy, e, Up_g, Un_1/Un_p If n = 2(mod3)
{ul,u4, Uz, ooy Ups, Up—p if n = 0(mod3)
and D; is not a minimum 3-dominating set in S,(n = 3).
Clearly, D, is a 3-dominating set. Let D be a minimum 3-
dominating set. Then |[D| < |D;|. Consider the following

cases:
Casel:w; €D
If w; €D, then D\w; is not a dominating set of

(uq,uy, ..., u,). Hence, there exists v € {uy,u,, ..., u,} such
that N(v) = w;, w;,q. Thus, [N(v) n D| = 2. This is a con-
tradiction.
Case2:w; € D
If w; € D, then we note that .Sis a minimum dominating
set of (uy,u,, ..., u,). Hence, by Observation 2.3 .S cannot
be a 3-dominating set of (uq, u,, ..., u,), and so is D. Since
w; € D, D cannot be a 3-dominating set of S,,. This is a
contradiction. QED
Corollary 2.5 Let S,, be a sun graph of order 2n with n > 3.
Then y5(S,) = [g] +n.
Observation 2.6 Let C, be a cycle of order n. Then
¥3(C) < v4(Cy) that is, if D is a minimum 3-dominating set,
then it cannot be a 4-dominating set.
Theorem 2.7 D is a minimum 4-dominating set in S,,(n = 3)
ifand only if D = S U {w;, w,, ..., w,, } where
Ug, U3, Us oo, Up—2, Uy /Up—1  if N = 1(Mod2)
{ U, U3, Us o, Up—_3,Up—q if 1 = 0(mMmod2)
Proof: Let D =SU{w;,w,,..,w,} be a minimum 4-
dominating set in S,(n>=3) and D # S U {w;,w,, ..., w,}
where

¢ = {U1,U3,US vy Up—2, U /Uy If n = 1(mod2)

U, U3, Us o, Up_3,Up—q if 1 = 0(mMmod2)

Then there exists a subgraph P = (U, Ui+ 1(modn)) OF (U,) SUCh
that V(P)ND =0@. If P=(u,Ut10modn)), then we let
v =u;. While, if P = (u,), then we let v =u,. Thus,
[N(v) n D| = 2. This is a contradiction.
Conversely, suppose that D; = S U {w;, w,, ..., w, } where

¢ = {U1,U3,US vy Up—2, U fUp—q  If n = 1(mod2)

Ug, U3, Us oo, Up_3,Up—q if 1 = 0(mMmod2)

and D, is not a minimum 4-dominating set in S, (n = 3). Clearly,
D, is a 4-dominating set. Let D be a minimum 4-dominating
set. Then |D| < |D,].
Consider the following cases:
Casel:w; €ED
If w; €D, then D\w; is not a 2-dominating set of
(uq, u, ..., uy). Hence, there exists v € {uy,u,, ..., u,} such
that N(v) = u;, w;, wijq. Thus, IN(v) n D| = 3. This is a
contradiction.
Case2:w; € D
If w; € D, then we note that Sis a minimum 2-dominating
set of (uy,u,, ..., u,). Hence, by Observation 2.6 S cannot
be a 4-dominating set of (uq, u, ..., u,), and so is D. Since
w; € D, D cannot be a 3-dominating set of S,,. This is a
contradiction. QED
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Corollary 2.8 Let S,, be a sun graph of order 2n with n > 3.
Then y,(S,) = E] +n.

Corollary 2.9 For every w; in G such that |deg;(w;)| =
8(G) < p, theny, — set D contains the vertex w;.

Corollary 2.10 Forevery x e Dandy € D in S, IN(y)| =
|u; N D)| + 8(S5).

The following are the results of Theorems 2.4, 2.7 and Cor-
ollaries 2.9, 2.10.

Corollary 2.11 Let L, = C,, ° K; be a sunlet graph of order

2n. Theny,(Ly,) = E] +n.
Corollary 2.12 Let L, = C,, ° K; be a sunlet graph of order
2n. Then y; (Ly) = [5] + 7.

3. p-REINFORCEMENT NUMBER OF SUN AND
SUNLET GRAPHS

In this section, we used concepts and some results from
Lu et al. (2015) in proving of the exact values and bounds of
p-reinforcement number of sun and sunlet graphs.
Lemma 3.1. y(C,) = [g] and y,(C,) = [g]
Lemma 3.2. Let p = 1 be an integer and G be a graph with
Yp(G) > p. IfA(G) < p, thenr,(G) =p — A(G).
Lemma 3.3. If X is an 7, —set of a graph G, then |X| =
yp(G) —-1.
Lemma 3.4. For any graph G and positive integer p,
7,(G) = 1,(G) if 1,(G) =p.
Remark 3.5. If y,(C,) > p, then

2if nisodd

72(Cn) = {4 if niseven’
Observation 3.6. Let S,, be a sun graph of order 2n. For
D *= D\v, N(v) = max{y: yeD}.
Theorem 3.7. Let p=2,3,4 and G = S,, be a sun graph of
order 2n. Then 7,(S,) <p if [N;(v)nD|<p for all
v e V(S )\D.
Proof: Let p < 4 be a positive integer and G be a graph of
order n. Let D be a p-dominating set in G. This implies that
D'=V(G)\D. Let |D*|=v,(G)—|v|=|D|—1. Then
v € V(G)\D* = D". Hence, we construct G’ from G for each
y € D', by adding n,,(y, D", G) edges of G to G joining y to
np(y,D*, G) vertices in S. Clearly, D" is a p-dominating set of
G, that is, y,(G) < |D*|. By Lemma 3.2.4 1,,(G) = n,(G).
Then

R(6) = 1,(6) = 1Bl = ) (@~ INs() N D'])
yEeD"
Note that (p — |[N;(y) nD*| =0) if y is not a p-private
neighborhood of v. Then

G = ) (= INsG) N D'])
yeD"
=@®—INe(y)ND*N)+ (@ —IN(2) N D7) + -
+( — IN¢n-1) N D) + (p — IN¢(y) N D7
=@ —INg(y1) ND*) + (p — INc(y2) N D7) +
0+--+0+(—[Ne(y) N D)
Observe that |N;(y,) N D*| = 2 and for any p-private neigh-
borhood of y,, (p —[Ng(y;) N D*|) = 1. Hence, p—2 >
p—3=p—A(G) =0.We have
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7,(G) = (p — IN¢(y1) N D*[) + (p — INg(y2) N D*|) +
0+--+0+ (- [Nc(yn) N D7
<(p-2)+1+1
<p
Therefore, 1,,(G) < p. QED

Corollary 3.8. For p = 2,3,4and |N;(v) n D*| = p for all
v € V\S,\D. Then 1,(S,) = p.

Theorem 3.9. Let S,, be a sun graph of order 2n. If n > 3,
then

lifn=3s+1
13(Sp) =42 if n=3s+2
3ifn=3s

Proof: By corollary 3.1.5, r5(S,) = E] +n. Then we let,

D = S U {Wl' Wz, seay Wn} Where S = U?il{u3i_2} and
n+2 n+l n

m=-—,—,7, respectively. Then consider the following

cases:
Casel:n=3r+1
Let v=u, ;€D or v=u, €D. By definition of p-
reinforcement, let D* = D\{u,,_;} or D* = D\{u,}. Without
laws of generality, let D* = D\{u,}, then we have
N3(V(Sp), D%, Sn) = N3(ty-1, D", Sy) = 1. S0

13(Sn) = n3(V(Sn), D, Sp)

< 7173(V(Sn)'D*' Sn)

Since D* is a minimum 3-dominating set in S,, + wyu,_;.
Hence, r3(S,) = 1.
Case2:n=3r+2
Without laws of generality, let v=u,_; € Dand D*
D\{u,_1}. Then it is easy to find that n;(V(S,),D",S,)
N3(Un—2), D%, 8$p) +N3(Un-1), D", Sp) = (p = 2) + (p —

2) = 2. S0,
13(Sn) = n3(V(Sn), D, Sn)
=13 (V(Sn)'D*t Sn)
= 2.
Suppose that 7,(S,) =1. Partition V(S,) as A=
{w,wy,...,w,} and B = {uy,u,,...,uss4,}. Note that the

observation 3.2.6, A € D*. Since S is not a 3-dominating set
in C,, then there must be two adjacent vertices, denoted by
u; and u;,, of C, not in S. This means that n;(u;, D, C,) =
1 and n3(u;41, D%, C,) = 1. S0

73(Sn) = n13(V(Sn), D7, Sn)

= gu'i' D*' Cn) + ns (ui+1l D*' Cn)

This shows that 5 (S,,) = 2.
Case3:n =3r
Let D' = V(S,,)\D. Note that for all y € D', |N;(y) n D*| =
p. Hence, by corollary 3.2.8, r3(S,,) = 3. QED
Theorem 3.10. Let S,(n=>3) be a sun graph. Then
7(Sp) = 12(Cp).
Proof: Let S, be a sun graph of order 2n with n > 3. Note
that S,, consists of C, = [uy,u,,...,u,] and w; joined by
edges to vertices w; and u;,q(moan) for every i =1,2,...,n.
By theorem 3.1.7. D is a minimum 4-dominating set in S,, if
and only if D = S U {w;,w,,...,w,} where
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5= {ul,u3,us,...,un_z,un/un_1 ifn=2r+1
U, Uz, Us,.eny Up_g, Up_q Lf N =21

Without laws of generality, let v = u,,_; € D and consider
the following cases: If n is odd, then D* = D\u,,_, is a 4-
dominating set in S, + B where B = {w u,, wyl,_1}-
While, if n is even, then D* = D\u,,_, is a 4-dominating set
in S, +B where B = {w,u,_1, WiUp_1, Wplly_z, Wily,}.
Hence, by remark 3.2.5, r,(S,) < n(C,). Suppose that
14(Sp) < 1p(C,) for n>=3. Then D\u,_, must be a 4-
dominating set in S,, U B’ such that |B’| < |B|. This is a con-
tradiction. Thus, 7,(S,) = »(C,). QED
Theorem 3.11. Let L,, be a sunlet graph of order 2n with
n=3.Thenr,(L,) =p — 1.
Proof: Let 2 <p <A(L,) and L, =C, oK, be a sunlet
graph of order 2n. Note that L, consists of C, =
[ug, uy, ..., uy,] and isolated vertices w; attached to each u;.
By corollaries 3.2.11, 3.2.12, and lemma 3.1.1, |D| =
Yp(Ly) = ¥p-1(Cy) + n. Without laws of generality, let
D* =D\w;. Notethat 0 =p —A(L,) <p—-2<p—-1<p.
By lemma 3.2.4, we have

TP(Ln) < |B|
= > @-ING) DD
yeD*
=@—INe()ND)+0+0+--
=p-—1

Since D* is not a p-dominating set in L,,. Then there exists
INw)nD*|=1, that is, N(w;)€D*. Hence,
np(Wi:Xt L,)=p—-1. So, rp(Ln) = np(V(Ln):D*'Ln) 2
np(w;, D%, Ly,) = p — 1. Thus, ,(L,) = p — 1. QED
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