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ABSTRACT- In this paper, we price European Call three different option pricing models, where the volatility is dynamically
changing i.e. non-constant. In stochastic volatility (SV) models for option pricing a closed form approximation technique is
used, indicating that these models are computationally efficient and have the same level of performance as existing ones. We
show that the calibration of SV models, such as Heston model and the High Order Moment based Stochastic Volatility (MSV)
is often faster and easier. On 15 different datasets of index options, we show that models which incorporates stochastic
volatility achieves accuracy comparable with the existing models. Further, we compare the In Sample and Out Sample
pricing errors of each model on each date. Lastly, the pricing of models is compared among three different market to check

model performance in different markets.
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1. INTRODUCTION
The latest summary publication from the world's largest
options market, CBOE, reveals a cumulative dollar volume
exceeding half a trillion dollars for options in 2014, with
over $101 billion traded in equities and more than 477
million transactions recorded (CBOE, 2014). Index options
markets have garnered significant attention due to their
interaction with stock markets, particularly concerning
direction and volume as by Murara (1) and Chance et al.
(2).
While American-style exercise prevails in index options,
the constant volatility assumption in the standard Black-
Scholes model has been empirically challenged. The
literature on stochastic volatility, emphasizing aspects like
forecast accuracy and option pricing, is extensive and
continually expanding as stated by Christoffersen et al. (3).
This study aims to model volatility using the MSV model,
comparing its accuracy and calibration ease with the
Heston model. We categorize volatility models into
constant and stochastic, with the latter providing more
flexibility in modeling volatility surface as stated by
Dumas et al (4), Dupire (5) and Alexander (6).
Our research introduces a new method to model implied
volatility, and we focus on establishing its accuracy and
ease of calibration, comparing it to existing models. We
present heuristic procedures to simplify calibration, with a
specific focus on index option pricing. The rest of the paper
outlines the two main stochastic volatility models, presents
the literature review, empirical methodology, results, and
conclusions.

2. LITERATURE REVIEW
To address these issues, several studies have proposed
extensions to the Black & Scholes model. Two main
approaches emerged: deterministic volatility models, which
link volatility to observable market variables, and stochastic
volatility models, where volatility itself is treated as a

stochastic process. This thesis aims to fill two gaps. Firstly,
we explore improvements over Black & Scholes by
considering both deterministic and stochastic volatility
models for pricing OMXS30 index options. The study
compares various option pricing models, including
Practitioner Black-Scholes, Gram-Charlier, Heston, and
Heston Nandi GARCH, using Excel VBA and SAS
Enterprise. The dataset consists of call options on OMXS30
from 1st June 2011 to 31st May 2012, focusing on a smaller
market like the Swedish Stock Exchange that has received
less attention in the existing literature.

Secondly, while there are studies comparing the incremental
contribution of stochastic volatility models or more
sophisticated models like jump diffusion models, there is a
lack of research that systematically compares alternative
groups of option pricing models. This thesis contributes as an
empirical study that fills this gap by comparing and
evaluating various alternative option pricing models sourced
by Stein & Stein (7) ; Romo (8) and Schofield (10).

3. EMPIRICAL METHODOLOGY

In all the three valuation models, we assume that volatility is a
stochastic function of underlying strike price and time to
maturity.

3.1. Black-Scholes Model

For the price of a non-dividend paying European call option,
the Black-Scholes equation is described as Black & Scholes
(10) and Cohen (11);

C(S,t) = SN(d,) — Ke "T-YN(d,) @D

Where c(s,v) is the call option price, S is the stock price at time
t, N(@) are the value of cumulative normal distribution, K is the
strike price, r is the interest rate,t is the time to maturity, (r - o
is the option duration to get expiry and the o2 is the volatility.
Under BS framework the discounted expected value is given

by
(%) + (r + "72) T-v @
o (T —1¢)

d, =

July-August


mailto:Natasha.latif@outlook.com
mailto:sshad@montevallo.edu
mailto:chandan@iastate.edu
mailto:motiibb@montevallo.edu
mailto:mrahman@montevallo.edu
mailto:drkhuramshafi@ciitwah.edu.pk
mailto:zahra.idrees.butt@gmail.com

3.2.

526

d,=d, —a/(T—t) 3
When the Black-Scholes equation was published, it assumes
that during the option life no dividend are paid with no taxes
and transaction cost. Also, the risk-free rate is same for all
maturities and the interest rate is constant as well as the short
selling and trading in continuous time is possible. And the
most important of all assumptions is that the volatility of the
stock return volatility is constant. Later on this constant
volatility framework was modified by Heston by including
the stochastic volatility in pricing options.
Heston Stochastic Volatility Model
Heston model assumes that the process S; follows a log
normal distribution, and the process V; follows a Cox, Cox et
al.[12]. For Heston model, the asset price dynamic is assumed
to be governed by

dS; = pS,dt + \JV.S,dw,(t) 4)
dV, = x[6 — v(t)]dt + o /v(t)dW,(t) &)
AW, ()dW,(t) = pdt (6)

Where p is the rate of the return of the asset (drift coefficient),
dW, and dZ; are the standard wiener process with a give
correlation coefficients W, (t)and W,(t) = p , and the
p,0,0,% St and V; are the known constants. The price of the
European call option with strike price K is given by
Ceyr(Se, Vi, t,T) = S,P, — Ke7T-9p, 7
Where the first term is the present value of the spot asset upon
optimal exercise and second term is the present value of the
strike payment. S; is the spot price at time t, T is the
expiration time and P, and P, are the pseudo probabilities.
Both P1 and P2 ought to satisfy the PDE.

[ .
e—L(plnI(fj(x‘ T, (P)

1 1
Plvne) =5+ [ Rel do, j

0
=12
HGI'C, 7T=T—1t and ;= (0,7, x) = exp[C;(z, )7 + D; (7, x)v¢] is the
characteristic function, which assumes the characteristic
function solution as,
1-ge¥”
1-g; ]}

®)

a
Ci(t 9;) = np;t + ?{(bj — pog;i+d;)T — 2in

b —popii+d;[ 1—e%4"
D.(1: _J j j
1(5:9) by = pog; — d; [1—91‘9‘1’1]
And
_ bj - pO'(p]l +d
gj - bj —pO'(pji —-d
. 2
dj = \/(P"‘l’jl = by)" — 0?0 — 9f)
1
u1=z, u2=—z, a=xe
by =x+ 21— po, b, =x+ 1

3.3. High Order Moments based Stochastic Volatility
(MSV)

In MSV model, volatility has a term structure modified by a

scalar random variable. And one of the simplest framework to

introduced a stochastic component in the volatility is to

consider the Hull-White type model of the asset price process

by Hull et al. [13].
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dS; = rS.dt + /v ScdW}! 9)
AV, = fi(t, v)dt + f,(t, v,) dWS (10)

Where, wiandwg are the uncorrelated Wiener Process and f,.f,
are smooth functions bounded by liner growth. Let VV be the
mean variance over some time interval [o,7] defined by

Z:%for(ﬂ(t)dt (11)

Whereas the price of European call option at time 0 , for a
time to maturity T can be derived as expectation of Black
Scholes price with respect to the variance rate:

1 T
Cgyr = E[Css;f vtdt] (12)
0

Where ¢ denotes Black-Scholes price evaluated at
variance x. the above formula is independent of the exact
process followed by v, (under normal assumption about t-
continuity and uniqueness). Denoting the Variance rate
[y wdt by7, and assuming that the moments in question exist.
And by expanding the right hand side of the above equation
around k() in Tylor series as

N 0" Cas E(F, — E())'
Crur~Cps(V2) + Zz a—V—;f
Where the partial derivatives can be calculated ate(z). Than
they construct a process for v, which make the right hand side
of the above equation easy to evaluate. Then they assume
that v, in equation 10 is governed by the following specific
stochastic process
dv, = (pedt + v dW)v, (14)
Where, 1, is the positive deterministic and integral function,
Y¢ is the positive deterministic function which is piecewise
continues with y, = 0,¢ > ¢, and w2 is a standard Wiener process
uncorrelated with W2 . Using Ito’s lemma, it is
straightforward to show

t
Ve = €xp (f .usds> $e
[

Where &, is a log normal process with unit mean and a
constant variance for t > t,. In particular

to
Var(§,) = (eXp U y}ds} - 1,>t >ty
0

Than they will henceforth assume that t > t;, holds. Let
k= /Var(¢,y then the third and fourth centered moments of
&, my and m, respectively can be expressed as:

ms = k*(3 + k?) (15)

ma = k{1 4+ k?)* 4+ 2(1 + k%)% 4+ 3(1 + k?)? (16)

-3}
They will parameterize the standard deviation k of the
lognormal random variable &, directly, with no referencw
to y, ort, . Finally they parametrize exp(f, u,ds) as

t
exp <J usds> = ole M + g2Ate™ + o}
0

Where, &7, a7,6;, A are scalar parameter, this gives our
variance model parameterization as
v, = Et(z}ze_m + ofAte ™ + l}-zi), (17)
& ~LN(1,k?),t

>t
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This is the MSV model, based on the use of high order
moments of the aforementioned random variable (Date &
Islyaev, 2015)

4. DATA SPECIFICTAION

The sample comprises closing option prices on three stock
indices (S&P 500, Volatility Index, and Russell 2000) traded
on the Chicago Board Option Exchange (CBOE) across five
different days (01 Nov 2012, 26 Nov 2012, 25 Jul 2013, 26
Jul 2013, 29 Jul 2013). Each index has 100 European style
options with maturities ranging from 30 days to 1 year and
various strike prices. Implied risk-free rates are proxied using
the 3-month London Interbank Offered Rate-Overnight Index
Swaps (LIBOR-OIS Rates) for each maturity. The calibration
and validation of models were performed using option price
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data obtained from CBOE Live Lol Data shop, resulting in 15
data sets with 100 prices in each set.

5. COMPARISION RESULTS

The application of BS and the two stochastic model to the
real market data is now discussed. Three different sets of
results are used for comparison purpose. For each in-
sample and out-of-sample data set after calibration (30 data
sets in all with each of 15 data sets split into in-sample and
out-of-sample subsets), for comparison we consider two
commonly used error metrics, which is Mean Relative
Absolute Error (MRAE) and Root Mean Square Error
(RMSE).

Table 1: Optimization Techniques results(MRAE & RMSE)

Table I: Optimization Techniques Results (MRAE & RMSE)

SPX VIX RUT
Dates Error Matrix BS Hesron MSA BS Hesvan MW BS Hesoon MEW
MRAE-I* 16.18 0.94 4.65 049 038 020 Z4.85 15.63 0.51
~ REMSE-1* 27534 652,53 B.54% e8.32 .59 0.33 4.08 .22 11.00
?_: Time Nil 21.09 [19=3: ] Ml 37.2 0.42 MNil 23.12 0.22
=
~ MRAE-D=* 5.10 o077 4.73 a3.7s 032 OL0E 7.14 13.96 0.51
RMEE-O** 14484 &0.97 11.40 BUSZ 251 027 2229 356 B.T4
MERAE-I 13032 5.75 4.71 4532 BE6 +.52 441 .25 +.354
- RMSE-1 59.57 3.50 299 9.30 z3.58 2.35 19.50 Z28.49 18.35
'\:‘ Time Mil 29.20 117 Ml 66725 0.85 il 134.27 0.98
=
- MRAE-O 127.38 G011 529 2417 F.T0 5.74 4.11 447 ‘B8.03
RMSE-O 59.33 .20 230 B.Z4 1453 10.73 19.49 1944 18.75
MRAE-1 20.91 16.46 3.85 26.25 B.HG 4.52 705 4.31 +.24
- RMSE-1 5.29 297 3.05 12.38 23.58 9.35 2532 34.34 17.55
=
% Time Mil z22.80 1.7 mil 590.72 .77 Mil 28669 019
‘2- MRAE-O 20.71 13.20 028 13.90 770 5.74 1355 4.19 B.O1
RMSE-O 5.25 3.43 2.43 1732 14.35 10.73 001 22.75 18.17
MRAE-1 2558 4.76 397 4T.E4 034 010 18.10 16.11 4.51
e~ RMSE-1 .74 3.26 311 .78 290 055 1087 22.26 0.78
=
-'E Time Mil 252.93 432 Mil .68 6.8 Mil 25.51 z.80
:3 MRAE-O 5.15 6520 0.35 2257 031 0.05 4. 34 10.84 5.27
RMSE-O 3.74 1431 z2.34 B.53 Z.86 [CR b 216 14.31 11.11
MERAE-I 22647 38.95 012 0.43 0.32 010 Z38.02 12696 0.15
5 RMSE-1 190.09 Z02.01 346.62 15.82 373 0.58 160.66 107.39 &67.07
£
E Time Nil 3411 038 Nil 289 0.43 Nil 4502 0.34
= MRAE-O Z14.21 Z8.45 0.01 035 0.z8 0.03 23756 105.03 0.14
RMSE-O 189.66 19882 10.96 15.73 346 001 160.49 92.75 67.07

“mMean Relative Absolute Error (MRAEL: I=in, O=0ut

**"Root Mean Squared Error (RMSEL: I=In .O=0ut

This table demonstrate the three different meoasures of performance in Somple, Out Sample & the computational speed of stochastic velatility models. Overall, M5V
performance is feally gogd as compared to other two benchmark models. BS model performance is not good most of it values are worst. In all the three index SPX, VIX & RUT

M5V computation speed is very minimum as compared to Heston model. Whereas Heston take much time in colculation because of the complex integrals.

Further, the computational speed is one of the main selling
points of any method, we will also compare the stochastic
models computational speed it takes for calibrating models
parameters. All of the data sets are represented here in Error!
Reference source not found., which display the result of In
and Out sample in two different error matrices. Row 1 & 2
represents the in sample and row 4 & 5 represents the out
sample in both RMSE and MRAE error matrices. Further,

row no 3 represents the computational speed of our stochastic
volatility model.

The bold face number in each column indicate the worst value
of the error matrices. We have total of 180 error value to
compare and identified that the Black Scholes model is the
one whose overall performance is bad, overall 43 values
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perform worst in BS model. Than in Heston model total 13
values both in and out sample whose performance is worst
and lastly we have total of 2 values in MSV model which tell
us that the performance of the MSV model is the best because
its computational speed is very low as compare to other
stochastic volatility model.

Table 1: Total number of worst values

ISSN 1013-5316; CODEN:
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Models In Sample Out Sample
BS 22 21
Heston 5 8
MSV 1 1

Comparison with Black-Scholes equation

There are number of measures to check the accuracy of option
pricing models. Another measure we used is the pricing error,
which is also called the average relative percentage method.
The results of price comparison is shown from table 5.3 to
5.5, first four columns in each table represents the real
options price, BS price, Heston Price and the MSV price.
Then we calculate the error matrices for each model option
price. BS price is taken as a benchmark and then we calculate
the error between them. After that we apply the dummy on it
in which (0 means that stochastic model is better and 1 means
that stochastic model is worse). After analyzing all error
matrices we come to the conclusion that the stochastic models
pricing error matrices perform better in all index. And the
stochastic models perform very well as compare to BS model.
In the last column, 0 means Stochastic Volatility error is less
than BS error, meaning that stochastic model errors is better
than BS. And if it shows 1, than it means that BS is superior
as compare to stochastic volatility models. There is no doubt
that BS error is beaten by heston error in all the three index.
But when we compare BS error with MSV error we find
different results. In SPX index MSV error is lower than BS
error indicating that in SPX index MSV performance is very
well but in VIX index we can see that on 30th December and
on 23rd January MSV error is beaten by BS error. While in
RUT index we can see that only on 7th march MSV error is
beaten by BS error but overall we conclude that the Valuation
of the MSV model is more accurate. But Heston model also
provide accurate results. So we can conclude that if we use
stochastic volatility model as a benchmark it may provide us
more accurate results because of disturbance parameter
included in it and it get adjusted over the time.

July-August

Table 3: Empirical Results of Experiments
Standard & Poor’s Index (SPX)
Real Heston  MSV BS  Heston BS  MSV
Price PP price  Price | | Eor  Emor  CO"P%®| | Brror  pror  COWPE®
236600 236280 236332 236345 00014 0.0011 0 0.0014 0.0011 0
~ | 236600 236099 236103 236317 | | 0.0021 00021 0 00021 00012 0
S| 236535 2360.70 2357.86 236212 00020 0.0032 0 0.0020 0.0014 0
236535 235982 236173 236255 | | 0.0023 0.0015 0 00023 00012 0
236535 236183 236277 236368 | | 0.0015 00011 0 00015 00007 0
236535 235987 236075 236201 | | 0.0023 00019 0 00023 00014 0
™| 236535 236001 236186 236208 | | 00023 00015 0 00023 00014 0
236620 227771 230611 230697 | | 0.0374 00254 0 00374 00250 0
236620 230639 230667 230683 | | 0.0253 00252 0 00253 00251 0
236620 236455 236472 236488 | | 0.0007 0.0006 0 0000700006 0
238256 237718 238169 238217 | [00023 0.0004 0 00023 00002 0
238256 237833 238081 238254 00018 0.0007 0 0.0018 0.0000 0
o~ | 238256 237729 238182 238203 00022 0.0003 0 0.0022 0.0002 0
S| 238170 231509 232849 233210 | | 00280 00223 0 00280 00208 0
238170 2365.11 236565 2367.81 00070 0.0067 0 0.0070 0.0058 0
g 2381.80 235875 236490 236639 00097 0.0071 0 0.0097 0.0065 0
238180 2360.75 236248 237867 00088 0.0081 0 0.0088 0.0013 0
“ 238180 237346 237845 237938 00035 0.0014 0 0.0035 0.0010 0
238180 237638 237841 238135 00023 0.0014 0 0.0023  0.0002 0
238220 237805 2379.19 238116 | | 0.0017 00013 0 0001700004 0
| 234775 230851 232807 233858 | [00084 00167 0 00084 00039 0
o | 234775 230386 232952 233833 | | 00187 00078 0 00187 00040 0
S| 234775 230374 232831 234117 | | 00187 0.0083 0 00187 00028 0
234775 230427 232798 233332 00185 0.0084 0 0.0185 0.0061 0
§ 234775 2301.64 232443 233690 00196 0.0099 0 0.0196 0.0046 0
a 234951 230455 233193 234053 00191 0.0075 0 0.0191 0.0038 0
W | 234951 230121 233424 233625 00206 0.0065 0 0.0206 0.0056 0
[ J 234951 232596 233281 234209 00100 0.0071 0 0.0100 0.0032 0
m 234993 232961 2334.71 2340,59‘ ‘o.ooas 0.0065 0 | ‘u.ooas 0.0039 0
234993 232064 233362 233983 | | 0.0086  0.0069 0 0.0086 _0.0043 0
226195 224649 224933 224983 | [0.0068 0.0056 0 0.0068 0.0054 0
~ | 226195 225900 225971 226036 | | 0.0013 00010 0 00013 0.0007 0
o | 226195 223247 224192 226157 | | 0.0130 00089 0 00130 0.0002 0
S | 226195 223302 224522 224984 | | 0.0128 00074 0 00128 0.0054 0
226210 224916 221946 223752 | | 0.0057 0.0188 0 0.0057 0.0109 0
226210 224300 224757 225009 | | 0.0084 0.0064 0 0.0084 0.0053 0
B | 226335 223009 223144 223802 | | 00147 00141 0 00147 00112 0
g:; 226335 223775 2240.06 225286 0.0113 0.0103 0 00113 0.0046 0
226668 223868 225501 226173 | | 0.0124 0.0051 0 00124 0.0022 0
226662 225782 2260.80 226091 | | 0.0039 0.0026 0 0.0039 _0.0025 0
223555 221259 222261 223566 | | 0.0103 00058 0 0.0103 0.0000 0
~ 223555  2209.68 2216.62 2224.65 0.0116 0.0085 0 00116 0.0049 0
o | 223555 222275 222774 223876 | | 0.0057 0.0035 0 0.0057 0.0014 0
S| 223585 221923 221974 223042 | | 0.0074 00072 0 0.0074 0.0026 0
.§ 223585 221992 222346 222665 | | 0.0071 00055 0 00071 0.0041 0
223585 222029 2221.76 223329 0.0070 0.0063 0 0.0070 0.0011 0
g 223585 222002 222201 222621 | | 0.0071 0.0062 0 00071 0.0043 0
S| 223585 221312 221441 222371 | | 00102 0.009% 0 00102 0.0054 0
223160 221459 222283 222461 | | 0.0076 0.0039 0 0.0076  0.0031 0
223160 222010 222487 222492 | | 0.0052 0.0030 0 0.0052__0.0030 0
olatility Index (VIX)
Real BS  Heston MSV BS  Heston MsV
Price(s) _Price  Price _Price Bror  Brror  °™P® | | pror  Error WP
15.35 15.03 15.19 15.34 0.0205 00101 0 0.0205 0.0003 0
~ | 1535 1507 1518 1524 0.0181  0.0108 ] 00181  0.0074 0
S| 1535 1518 1528 1535 0.0109  0.0045 0 00109  0.0000 0
1438 1408 1427 1433 0.0208  0.0076 0 00208 0.0037 0
14.38 14.10 14.27 14.37 0.0194  0.0078 0 0.0194 0.0005 0
1438 1420 1435 1432 0.0126  0.0022 0 00126  0.0042 0
™| 1438 1419 1434 1435 00131 0.0029 0 00131 0.0018 0
1438 1412 1418 1431 00182 0.0142 0 00182 0.0049 0
12.48 14.10 1417 14.30 0.1295  0.1351 0 01295 0.1456 0
1248 1420 1423 1437 01379 0.1403 ] 01379 0.1514 0
1563 1526 1552 1557 0.0239  0.0070 0 00239 0.0036 0
14.73 14.39 14.56 14.58 0.0230 00115 0 0.0230 0.0105 0
o[ 1473 1447 1451 1461 00173 0.0146 ] 00173  0.0081 0
-} 1477 14 /4 14 A8 147 A2 nnn3e n NONR2 - NAN13 n
1473 1458 1463 1470 00103 0.0071 ] 00103  0.0023 0
1282 1230 1245 1247 0.0408  0.0291 0 00408  0.0065 0
1282 1250 1263 1276 0.0253  0.0150 0 00253 0.0047 0
1282 1256 1266 1270 00035  0.0121 0 00035  0.0095 0
1282 1250 1254 1262 00248  0.0220 0 00248 0.0159 0
1282 1273 1277 1288 0.0068 _0.0038 0 00068 0.0046 0
1413 1369 1384 1413 00204  0.0311 [ 00204 0.0003 0
5| 1413 1401 1428 1438 0.0087  0.0107 0 00087 0.0175 0
v?i 1413 13.76 14.01 14.02 0.0265  0.0084 0 0.0265 0.0075 0
14.13 14.02 14.08 1431 0.0077  0.0034 0 0.0077 0.0128 0
; 1282 1385 1385 1404 0.0801  0.0806 0 00801 0.0955 0
S| 1282 1396 1402 1410 0.0886  0.0940 ] 00886 0.0038 0
= 1282 1393 1409 1410 0.0863  0.0994 0 00863  0.0997 0
Yl o128 1256 1250 1275 00220  0.0177 0 00220 0.0056 0
1282 1266 1271 1273 00122 0.0082 0 00122 0.0068 0
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1282 1265 1267 1281 | | 00136 00119 0 | [o00136 0.0005 0 |
1513 14.96 1497 15.02 0.0112 0.0109 0 00112 0.0070 0
| 1513 1491 1495 1499 00143 00120 0 00143 0.0094 0
=] 1513 149 1490 1499 00151 00152 0 00151 0.0094 0
"1 1373 1183 12.61 12.66 0.1383 0.0814 0 0.1383 0.0780 0
1373 1158 1206 1215 01564 01218 0 01564  0.0109 0
1373 1164 1176 1196 01525 01433 0 01525 0.1288 0
1373 1191 1198 1232 01326 01272 0 01326 0.1028 0
g‘i 13.73 1193 1224 12.30 0.0113 0.1088 0 00113 0.1041 0
1373 11.94 12.07 12.16 0.1307 0.1205 0 0.1307 0.1146 0
1373 11.95 11.71 11.89 0.1296 0.1469 1] 0.1296 _ 0.1340 0
1932 18.79 19.27 19.29 0.0273 0.0028 0 0.0273 0.0018 0
~ 16.68 19.02 19.17 19.35 0.1402 0.1495 0 0.1402 0.1599 0
P~ 15.23 19.17 19.30 19.36 02588  0.2671 0 0.2588 0.2712 0
P 1523 1867 1903  19.04 02256 02495 0 02256 02505 0
1523 1901 1927 1962 02481 02652 0 00071 02880 0
1523 1854 1888 1898 02171 02397 0 02171 02462 0
15.23 19.04 1913 19.16 02500 0.2563 0 0.2500 0.2583 0
g | 1523 1900 1907 1907 02474 02521 0 02474 02524 0
1523 1941 1902 1928 02545 02485 0 02545 02659 0
1523 18.92 19.20 1942 0.2424 0.2603 ] 0.2424 0.2751 0
Russell 2000® Index (RUT)
Real Heston  MSV BS  Heston BS  MsV
pricets) PSP1%  price  price Brror  Error  “OWP | | gror  prror Compare
137480 1367.01 136998 1383.73 0.0057  0.0035 0 0.0057 0.0065 0
w | 137472 134112 134145 134170 | | 0.0244 0.0242 0 00244 0.0074 0
| 137472 133858 1339.82 134091 | | 0.0263 0.0254 0 00263 0.0246 0
1374.72 134025 134038 134170 0.0251 0.0250 0 00251 0.0240 0
137472 1340.13 1340.17 134045 0.0252  0.0078 0 00252 0.0249 0
= 1375.03 1337.16 1339.68 134021 0.0275  0.0257 0 0.0275 0.0253 0
1375.03 133854 1339.68 134144 0.0265 0.0257 0 00265 0.0244 0
137503 133761 133926 133983 | | 0.0272  0.0260 0 00272 0.0256 0
137503 134053 134112 134211 | | 0.0251 00247 0 00251 0.0239 0
1375.03 133873  1339.03 134065 0.0264 0.0262 0 0.0264  0.0250 0
139272 1385.68 1387.63 139244 | | 0.0051 0.0037 0 00051 0.0002 0
139272 137968 139235 1393.10 0.0094 0.0003 0 0.0094 0.0003 0
~ | 139270 1391.29 139122 139293 0.0010  0.0011 0 0.0010 0.0002 0
S | 139290 138364 138428 139194 0.0066 0.0062 0 0.0066 0.0007 0
139290 1386.67 138792 1388.78 0.0103 0.0036 0 0.0103  0.0030 0
139290 138629 138924 139149 | | 0.0047  0.0026 0 00047  0.0010 0
= | 139338 130558 1380.94 1390.14 0.0630  0.0089 0 0.0630 0.0023 0
™ 1139338 137892 137963 139073 0.0104  0.0099 0 0.0104¢ 0.0019 0
1393.38 137957 138124 139089 | | 0.0099  0.0087 0 00099 0.0018 0
139290 138117 138130 138822 | | 0.0084 00083 0 00084 _0.0034 0
140328 1399.13 140171 140264 | [ 00011 0.0030 0 00011 0.0005 0
~ 1403.28 140027 140142 1401.80 0.0021  0.0013 0 0.0021  0.0011 0
S | 140328 139999 140154 140160 | | 0.0023  0.0012 0 00023 0.0012 0
S| 140328 139931 1399.09 140143 | | 0.0028  0.0030 0 00028 0.0013 0
1404.08 139524 1396.16 139895 0.0063 0.0056 0 00063 0.0037 0
140408 139693 139797 139895 0.0051 0.0044 0 00051 0.0037 0
® | 140403 137882 138547 138577 0.0180  0.0132 0 0.0180 0.0130 0
E 1404.03 138846 1388.63 1389.22 0.0111  0.0110 0 0.0111  0.0105 0
1404.03 1387.75 138878 138897 0.0116 0.0109 0 00116 0.0107 0
140403 1387.67 138880 139189 | | 0.0117 00108 0 00117 _0.0086 0

6. CONCLUSION

The contribution of this paper are threefold. First and the
main contribution is that a new random volatility model is
used, named as high order moments-based stochastic
volatility model (MSV), in which the volatility is a function
of time with its level being modulated by a random variable.
By using a Taylor series expansion of the option price, it’s
shown that the model yields an easy formula for approximate
option prices and hence can be calibrated extremely fast. The
proposed model can even be implemented on a spreadsheet.
Secondly, we have demonstrated through comprehensive
numerical experiments that MSV model is very competitive
in terms of accuracy with Heston model and BS model, while
being computationally significantly cheaper to calibrate.
Lastly, we have backed up our claims for the usefulness of
our model with simulation experiments for comparison of
European option prices in all three models. MSV model thus
provides a competitive alternative to the existing option
pricing models; it is particularly suitable for high frequency
financial trading due to its speed of calibration. And as a last
note, we conclude that MSV model is more accurate and is
the best method for traders to use this model for hedging

purpose.
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