k-FORCING NUMBER OF UNIFORM \boldsymbol{n}-STAR SPLIT GRAPHS

Vincent L. Banot

${ }^{1}$ College of Teacher Education, Negros Oriental State University, Kagawasan Avenue, Dumaguete City, Philippines
Email:vincent.liloonline01@gmail.com

Abstract

Let $G=(V, E)$ be a graph and k be a positive integer. A set $S(\subseteq V)$ is a k-forcing set if its vertices are initially colored, while the remaining vertices are initially non-colored, and the graph is subjected to the following color change rule such that all of the vertices in G will eventually become colored. A colored vertex with at most k non-colored neighbors will cause each non-colored neighbor to become colored. The k-forcing number of G, denoted by $F_{k}(G)$, is the minimum cardinality of a k-forcing set.

This study gave the k-forcing number of uniform n-star split graphs, graph $\operatorname{SS}(n, r)$, and graph $C S(n, r)$.

Keywords: k-forcing number, uniform n-star split graphs, graph $S S(n, r)$, graph $C S(n, r)$.

1. INTRODUCTION

A subset S of vertices of a graph is a k-forcing set if its vertices are initially colored, while the remaining vertices are initially non-colored, and the graph is subjected to the following color change rule until all the vertices will eventually become colored. A colored vertex with at most k non-colored neighbors will cause each non-colored neighbor to become colored. The k-forcing number of a graph, denoted by $F_{k}(G)$, is the cardinality of a smallest k forcing set.

For example, consider graph G in Figure 1. Then $S_{1}=$ $\{a\}$ is a 2-forcing set, while $S_{2}=\{b\}$ is not. The 2-forcing number of G is 1 .

To see this, we note that a can 2-forces b and f, b can 2 -forces c and e, c can 2-forces d. Hence, all the vertices of G will eventually be colored. Thus, $S_{1}=\{\mathrm{a}\}$ is a 2 -forcing set.

Figure 1. The graph G

On the other hand, we observe that b can not 2-force either a, e and c. Hence, color change cannot take effect. This shows that $S_{2}=\{b\}$ is not a 2-forcing set.

Clearly, $S_{1}=\{a\}$ is a minimum 2 -forcing set. Thus, $F_{2}(G)=1$.

The k-forcing concept is a generalization of the concept zero forcing number of a graph (the zero forcing number is actually the 1 -forcing number). The concept was introduced by Barioli et al. [2] and independently, by Burgarth et al. [4]. These concepts were studied in [1-22].
2. \boldsymbol{k}-Forcing Number of Uniform \boldsymbol{n}-Star Split Graphs

Figure 2. The graph $\boldsymbol{S S}_{6}^{5}$
Theorem 2.1. Let $S S_{n}^{r}$ be a uniform n-star split graph. If k $=\max \{r, n\}$, then $F_{k}\left(S S_{n}^{r}\right)=1$.

Proof: Let $S S_{n}^{r}$ be the uniform n-star split graph obtained from the star $K_{1, n}=(\{x\}, \varnothing)+\left(\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, \varnothing\right)$ by adding stars $K_{1, r}^{i}=\left(\left\{u_{i}\right\}, \varnothing\right)+\left(\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{r}^{i}\right\}, \varnothing\right)$ for $i=$ $1,2, \ldots, n$. Let $k=\max \{r, n\}$ and $S=\{x\}$. Then simultaneously, x can k-force u_{i} for all $i=1,2, \ldots, n$. Next, for each $i=1,2, \ldots, n u_{i}$ can k-force $v_{j}^{(i)}$ for all $j=1,2, \ldots$, m. Hence, all the vertices of $S S_{n}^{r}$ can be colored by applying the color-change rule to S. Thus, S is a k-forcing set. Therefore, $F_{k}\left(S S_{n}^{r}\right)=1$.

Theorem 2.2. Let $S S_{n}^{r}$ be a uniform n-star split graph. Then $F_{1}\left(S S_{n}^{r}\right)=n r$.
Proof: Let $k=1$, and $\mathrm{S}=\left\{v_{j}^{i}: j=1,2, \ldots, m\right.$ and $i=1,2$, $\ldots, n\}$. Then for each $i=1,2, \ldots, n, v_{1}^{i}$ can 1-force u_{i}. Next, for some $i=1,2, \ldots, n u_{i}$ can 1-force x. Hence, all the vertices of $S S_{n}^{r}$ can be colored by applying the colorchange rule to S. Thus, S is a i-forcing set. Therefore, $F_{1}\left(S S_{n}^{r}\right) \leq n r$. It can be shown that a 1-forcing set of $S S_{n}^{r}$ cannot have less than $n r$ elements. Accordingly, $F_{1}\left(S S_{n}^{r}\right)=$ $n r$.

3. \boldsymbol{k}-Forcing Number of Graph $\operatorname{SS}(n, r)$

Theorem 3.1. Let $S S(n, r)$ be the graph obtained from the star $K_{1, n}=(\{x\}, \varnothing)+\left(\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, \varnothing\right)$ by adding edges $u_{i} w_{i}$ and stars $K_{1, r}=\left(\left\{w_{i}\right\}, \emptyset\right)+\left(\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{r}^{i}\right\}\right.$, $\emptyset)$ for $i=1,2, \ldots, n$. If $k=\max \{r, n\}$, then $F_{k}(S S(n, r))=$ 1.

Proof: Let $k=\max \{r, n\}$ and $S=\{x\}$. Then, x can k-force u_{i} for all $i=1,2, \ldots, n$. Next, for each $i=1,2, \ldots, n, u_{i}$ can k-force $v_{j}^{(i)}$ for all $j=1,2, \ldots, m$. Hence, all the vertices of $S S(n, r)$ can be colored by applying the color-change rule to S. Thus, S is a k-forcing set. Therefore, $F_{k}(S S(n, r))$ $=1$.

Figure 3. The graph $\operatorname{SS}(6,5)$
Theorem 3.2. Let $S S(n, r)$ be the graph obtained from the star $K_{1, n}=(\{x\}, \varnothing)+\left(\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, \emptyset\right)$ by adding edges $u_{i} w_{i}$ and stars $K_{1, r}=\left(\left\{w_{i}\right\}, \varnothing\right)+\left(\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{r}^{i}\right\}\right.$, $\emptyset)$ for $i=1,2, \ldots, n$. Then $F_{1}(S S(n, r))=n r$.
Proof: Let $k=1$, and $S=\left\{v_{j}^{i}: j=1,2, \ldots, m\right.$ and $i=1,2$, $\ldots, n\}$. Then for each $i=1,2, \ldots, n, v_{1}^{i}$ can 1-force u_{i}. Next, for each $i=1,2, \ldots, n u_{i}$ can 1-force w_{i}. Hence, all the vertices of $C S_{n}^{r}$ can be colored by applying the colorchange rule to S. Thus, S is a 1 -forcing set. Therefore, $F_{1}(S S(n, r)) \leq n r$. It can be shown that a 1 -forcing set of $S S(n, r)$ cannot have less than $n r$ elements. Accordingly, $F_{1}(S S(n, r))=n r$.

4. \boldsymbol{k}-Forcing Number of Graph $\operatorname{CS}(\boldsymbol{n}, r)$

Figure 4. The graph $\operatorname{CS}(6,5)$
Theorem 4.1. Let $C S(n, r)$ be the graph obtained from C_{n} $=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ by adding edges $u_{i} w_{i}$ and stars $K_{1, r}=$ $\left(\left\{w_{i}\right\}, \emptyset\right)+\left(\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{r}^{i}\right\}, \varnothing\right)$ for $i=1,2, \ldots, n$. Then $F_{1}(C S(n, r))=n r$.
Proof: Let $k=1$, and $S=\left\{v_{j}^{i}: j=1,2, \ldots, m\right.$ and $i=1,2$, $\ldots, n\}$. Then for each $i=1,2, \ldots, n, v_{1}^{i}$ can 1-force u_{i}. Next, for each $i=1,2, \ldots, n u_{i}$ can 1-force w_{i}. Hence, all the vertices of $C S_{n}^{r}$ can be colored by applying the colorchange rule to S. Thus, S is a 1 -forcing set. Therefore, $F_{1}\left(C S_{n}^{r}\right) \leq n r$. It can be shown that a 1 -forcing set of $C S_{n}^{r}$ cannot have less than $n r$ elements. Accordingly, $F_{1}\left(C S_{n}^{r}\right)=$ $n r$. \square

8. ACKNOWLEDGMENT

The authors would like to thank the Rural Engineering and Technology Center of Negros Oriental State University for partially supporting this research.

REFERENCES:

[1] D. Amos, Y. Caro, R. Davila, and R. Pepper. Upper bounds on the k -forcing number of a graph. Discrete Applied Mathematics, 181:110, 2015.
[2] F. Barioli, S. M. Fallat, and R. L. Smith. On acyclic and unicyclic graphs whose minimum rank equals the diameter. Linear algebra and its applications, 429(7):1568-1578, 2008.
[3] B. Brimkov and R. Davila. Characterizations of the connected forcing number of a graph. arXiv preprint arXiv:1604.00740, 2016.
[4] D. Burgarth, V. Giovannetti, L. Hogben, S. Severini, and M. Young. Logic circuits from zero forcing. Natural computing, 14(3):485490, 2015.
[5] Y. Caro, R. Davila, and R. Pepper. Extremal k forcing sets in oriented graphs. Discrete Applied Mathematics, 262:42-55, 2019.
[6] Y. Caro and R. Pepper. Dynamic approach to k forcing. arXiv preprint arXiv:1405.7573, 2014.
[7] R. Davila and M. A. Henning. On the total forcing number of a graph. Discrete Applied Mathematics, 257:115-127, 2019.
[8] R. Davila, M. A. Henning, C. Magnant, and R. Pepper. Bounds on the connected forcing number of a graph. Graphs and Combinatorics, 34(6):1159-1174, 2018.
[9] R. Davila and F. Kenter. Bounds for the zeroforcing number of graphs with large girth. arXiv preprint arXiv:1406.0482, 2014.
[10] R. R. Davila. Bounding the forcing number of a graph. PhD thesis, 2015.
[11] D. Ferrero, L. Hogben, F. H. Kenter, and M. Young. The relationship between k-forcing and k-power domination. Discrete Mathematics, 341(6):1789-1797, 2018.
[12] M. Gentner, L. D. Penso, D. Rautenbach, and U. S. Souza. Extremal values and bounds for the zero forcing number. Discrete applied mathematics, 214:196-200, 2016.
[13] M. Gentner and D. Rautenbach. Some bounds on the zero forcing number of a graph. Discrete Applied Mathematics, 236:203-213, 2018.
[14] F. Harary. Graph theory. Reading, Massachusetts : Addison-Wesley Publishing Company, 1969.
[15] T. Kalinowski, N. Kamcev, and B. Sudakov. The zero forcing number of graphs. SIAM Journal on Discrete Mathematics, 33(1):95-115, 2019.
[16] L. Lu, B. Wu, and Z. Tang. Proof of a conjecture on the zero forcing number of a graph. Discrete Applied Mathematics, 213:233-237, 2016.
[17] S. A. Meyer. Zero forcing sets and bipartite circulants. Linear Algebra and its Applications, 436:888-900, 2012.
[18] Z. Montazeri and N. Soltankhah. k-forcing number for cartesian product of some graphs. Contributions to Discrete Mathematics, 16(1):89-97, 2021.
[19] K. Premodkmuar, C. Dominic, and B. Chacko. Connected k -forcing sets of graphs and splitting graphs. J. Math. Comput. Sci., 10(3):656-680, 2020.
[20] K. Premodkumar, C. Dominic, and B. Chacko. Two distance forcing number of a graph. J. Math. Comput. Sci., 10(6):2233-2248, 2020.
[21] M. Raksha and C. Dominic. On the k-forcing number of some ds-graphs. In Data Science and Security, pages 394-402. Springer, 2021.
[22] Y. Zhao, L. Chen, and H. Li. On tight bounds for the k -forcing number of a graph. Bulletin of the Malaysian Mathematical Sciences Society, 42(2):743-749, 2019.

