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ABSTRACT: Let G = (V, E) be a graph and k be a positive integer. A set S(c V) is a k-forcing set if its vertices are initially
colored, while the remaining vertices are initially non-colored, and the graph is subjected to the following color change rule
such that all of the vertices in G will eventually become colored. A colored vertex with at most k non-colored neighbors will
cause each non-colored neighbor to become colored. The k-forcing number of G, denoted by F, (G) is the minimum cardinali-

ty of a k-forcing set.

This study gave the k-forcing number of sun graphs, and sunlet graphs.
Keywords: k-forcing number, sun graph, sunlet graph, cycles

1.INTRODUCTION

A subset S of vertices of a graph is a k-forcing set if its
vertices are initially colored, while the remaining vertices
are initially non-colored, and the graph is subjected to the
following color change rule until all the vertices will even-
tually become colored. A colored vertex with at most k
non-colored neighbors will cause each non-colored neigh-
bor to become colored. The k-forcing number of a graph,

denoted by F (G), is the cardinality of a smallest k-

forcing set.

For example, consider graph G in Figure 1. Then S, =
{a} is a 2-forcing set, while S, = {b} is not. The 2-forcing
number of G is 1.

To see this, we note that a can 2-forces b and f, b can
2-forces ¢ and e, ¢ can 2-forces d. Hence, all the vertices of
G will eventually be colored. Thus, S; = {a} is a 2-forcing
set.
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Figure 1. The graph G

On the other hand, we observe that b can not 2-force
either a, e and c. Hence, color change cannot take effect.
This shows that S, = {b} is not a 2-forcing set.

Clearly, S; = {a} is a minimum 2-forcing set. Thus,
F,(G) =1.

The k-forcing concept is a generalization of the con-
cept zero forcing number of a graph (the zero forcing num-
ber is actually the 1-forcing number). The concept was
introduced by Barioli et al. [2] and independently, by
Burgarth et al. [4]. These concepts were studied in [1-22].

2. PRELIMINARY RESULTS

In this section, we present some of the general proper-
ties of the k-forcing number found in [23]. Clearly the k-
forcing number of a graph cannot exceed its order. This
observation is more formally stated in the next lemma.

Lemma 2.1. Let G be a graph of order n. Then F,(G) <n
forall k € N.

The following remark says that a k-forcing set is also a
k+1-forcing set. This idea is utilized in Corollary 2.3.
Remark 2.2. Let G be a graph. Then every k-forcing set in
G is also a k +1-forcing set.

Corollary 2.3. Let G be a graph. Then F,(G) > F;,1(G)
forall k eN.

3. MAIN RESULTS AND DISCUSSIONS

Definition 3.1. The sun graph, denoted by S,,, is the graph

of order 2n obtained from the cycle C,, = [vq, v, ..., v, ]
by adding vertices u; joined by edges to vertices v; and
vi+1(mod n) fori= 1, 2, R |
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Figure 2. The sun graph Sg

Theorem 3.2. Let S,, be the sun graph of order 2n. If k = 1,
then Fy.(S,) =n.
Proof: Let S, be the sun graph of order 2n obtained from

C, = [vy, V4, . .., v,] by adding vertices u; joined by edg-
es to vertices v; and vy ygmoany fori=1,2,...,n. LetS=
{vi, V1, ..., v} Thenforeachi=1,2,...,n, v; can 1-

force u; . Hence, all the vertices of S,, will eventually be
colored. Hence, S is a 1-forcing set. Note that a 1-forcing
set of S, cannot have less than n elements. Therefore,
Fy(Sn) = n.
O

Theorem 3.3. Let S,, be the sun graph of order 2n. If k> 2,
then Fy.(S,) = 1.

Proof: Let S, be the sun graph of order 2n obtained from
C, = [vy, V4, . .., v,] by adding vertices u; joined by edg-
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es to vertices v; and vy ygmoany fori=1,2,...,n. LetS=
{u+} and consider the following cases.
Case 1. niseven

If n is even, then: u; can 2-force v; and v,; v; can 2-
force u, and v,, and v, can 2-force u, and v;; v, can 2-
force u,,_, and v,_,, and v, can 2-force u; and v,; and so
on. Until eventually, v(,44), Can 2-force ue,yz)/,, and
Up /2 Can 2-force w,, and v42y -

Case 2. nis odd

If n is odd, then: u,; can 2-force v; and v,; v, can 2-
force u, and v,, and v, can 3-force u, and v;; v, can 2-
force u,_, and v,,_4, and v; can 2-force u; and v,; and so
on. Until eventually, v(,43),, can 2-force w41y, and
Vjn/2) Can 2-force wpy, /) and vin41y/2-

In any case, all the vertices of S,, will eventually be col-
ored. Hence, S is a 2-forcing set. Thus, F,(S,) = 1. By
Corollary 2.11, F,(S,) = 1 for all positive integer k > 2.
O

Definition 4.1. The sunlet graph, denoted by L,, is the
graph of order 2n obtained from the cycle C,, = [v4, vy, . . .
, U] by attaching pendant edges v;u; fori=1,2,...,n.
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Figure 3. The sunlet graph Lg

Theorem 4.2. Let L,, be the sunlet graph of order 2n. If k =
1, then Fi (L,,) = [n/2].

Proof: Let L,, be the sunlet graph of order 2n obtained from
Cy, = [vy1, v4, . .., ;] by attaching pendant edges v;u; for i
=1,2,...,n.LetS={v;:i=1(mod 4) ori =2 (mod 4)}.
Without loss of generality, assume that n is even. Then for
each i with i =1 (mod 4) or i =2 (mod 4), u; can 1-force v,
; and, v; can 1-force the vertex in N(v;)\S. Thus, all the
vertices of L, will eventually be colored. Hence, S is a 1-
forcing set. Thus, F,(L,) < [n/2]. Note that a 1-forcing set
of L, cannot have less than [n/2] elements. Therefore,

Fi(Ln) = [n/2]. O

Theorem 4.3. Let L,, be the sunlet graph of order 2n. If k>
2, then F (L) =1.
Proof: Let L,, be the sunlet graph of order 2n obtained from
C, =[vy, vq, ..., v,] by attaching pendant edges v;u; for
i=1,2,...,n LetS={u} and consider the following
cases.
Case 1. niseven

If n is even, then: u, can 2-force v,; v, can 2-force v,
and v,; v, can 2-force u, and v;, and v, can 2-force u,
and u,_;; v5 can 2-force u; and v,, and v,,_; can 2-force
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Up_1 and v,,_,; and so on. Until eventually, vy, can 2-
force u(n12),2-

Case 2. nis odd

If n is even, then: u, can 2-force v,; v, can 2-force v,
and v,; v, can 2-force u, and v, and v, can 2-force u,
and v,,_,; v; can 2-force u; and v,, and v,_, can 2-force
Up_gand v,_,; and so on. Until eventually, vy, ,; can 2-
force up, ).

In any case, all the vertices of L,, will eventually be col-
ored. Hence, S is a 2-forcing set. Thus, F,(L,) = 1. By
Corollary 2.11, F(L,) = 1 for all positive integer k > 2.
O

4. CONCLUSION

The important concepts and results presented in this
paper supported, and intertwined with, those obtained by
other authors, making this article very interesting. The con-
struction of the different theorems were realized using the
definition and properties of k-forcing set and k-forcing
number. Also, some properties focusing on generalizing
zero forcing set in graph theory were realized.

*Partially supported by Rural Engineering and Technology
Center of Negros Oriental State University.
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