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ABSTRACT: Let  ,G V E  be a graph and k be a positive integer. A set  S V  is a k-forcing set if its vertices are initially 

colored, while the remaining vertices are initially non-colored, and the graph is subjected to the following color change rule 

such that all of the vertices in G will eventually become colored. A colored vertex with at most k non-colored neighbors will 

cause each non-colored neighbor to become colored. The k-forcing number of G, denoted by  kF G , is the minimum cardinali-

ty of a k-forcing set.  

This study gave the k-forcing number of sun graphs, and sunlet graphs. 
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1. INTRODUCTION 

A subset S of vertices of a graph is a k-forcing set if its 

vertices are initially colored, while the remaining vertices 

are initially non-colored, and the graph is subjected to the 

following color change rule until all the vertices will even-

tually become colored. A colored vertex with at most k 

non-colored neighbors will cause each non-colored neigh-

bor to become colored. The k-forcing number of a graph, 

denoted by  kF G ,  is the cardinality of a smallest k-

forcing set.  

For example, consider graph G in Figure 1. Then    = 

{a} is a 2-forcing set, while    = {b} is not. The 2-forcing 

number of G is 1.  

To see this, we note that a can 2-forces b and f, b can 

2-forces c and e, c can 2-forces d. Hence, all the vertices of 

G will eventually be colored. Thus,    = {a} is a 2-forcing 

set.  

 

 

 

 

 

 

 

Figure 1. The graph G 

 
On the other hand, we observe that b can not 2-force 

either a, e and c. Hence, color change cannot take effect. 

This shows that    = {b} is not a 2-forcing set.  

Clearly,    = {a} is a minimum 2-forcing set. Thus, 

  (G  = 1.  

The k-forcing concept is a generalization of the con-

cept zero forcing number of a graph (the zero forcing num-

ber is actually the 1-forcing number). The concept was 

introduced by Barioli et al. [2] and independently, by 

Burgarth et al. [4]. These concepts were studied in [1–22]. 

 

2. PRELIMINARY RESULTS 

In this section, we present some of the general proper-

ties of the k-forcing number found in [23]. Clearly the k-

forcing number of a graph cannot exceed its order. This 

observation is more formally stated in the next lemma.  

 

Lemma 2.1. Let G be a graph of order n. Then   (G) ≤ n 

for all k ∈ ℕ.                                                                                                    

The following remark says that a k-forcing set is also a 

k+1-forcing set. This idea is utilized in Corollary 2.3. 

Remark 2.2. Let G be a graph. Then every k-forcing set in 

G is also a k +1-forcing set. 

Corollary 2.3. Let G be a graph. Then   (G) ≥     (G) 

for all k ∈ ℕ.  

 

3. MAIN RESULTS AND DISCUSSIONS 

 

Definition 3.1. The sun graph, denoted by   , is the graph 

of order 2n obtained from the cycle    = [  ,   , . . . ,   ] 

by adding vertices    joined by edges to vertices    and 

            for i = 1, 2, . . . , n. 

 
Figure 2. The sun graph    

 

Theorem 3.2. Let    be the sun graph of order 2n. If k = 1, 

then   (  ) = n.  

Proof: Let    be the sun graph of order 2n obtained from 

   = [  ,   , . . . ,   ] by adding vertices    joined by edg-

es to vertices    and             for i = 1, 2, . . . , n. Let S = 

{  ,   , . . . ,   }. Then for each i = 1, 2, . . . , n,    can 1-

force    . Hence, all the vertices of    will eventually be 

colored. Hence, S is a 1-forcing set. Note that a 1-forcing 

set of    cannot have less than n elements. Therefore, 

  (  ) = n.                                                                                                                      

□ 

                                                                               

Theorem 3.3. Let    be the sun graph of order 2n. If k ≥ 2, 

then   (  ) = 1.  

Proof: Let    be the sun graph of order 2n obtained from 

   = [  ,   , . . . ,   ] by adding vertices    joined by edg-
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es to vertices    and             for i = 1, 2, . . . , n. Let S = 

{  } and consider the following cases.  

Case 1. n is even  

     If n is even, then:    can 2-force    and   ;    can 2-

force    and   , and    can 2-force    and   ;    can 2-

force      and     , and    can 2-force    and   ; and so 

on. Until eventually,          can 2-force         , and 

     can 2-force      and         .  

Case 2. n is odd  

     If n is odd, then:    can 2-force    and   ;    can 2-

force    and   , and    can 3-force    and   ;    can 2-

force      and     , and    can 2-force    and   ; and so 

on. Until eventually,          can 2-force         , and 

 ⌊   ⌋ can 2-force  ⌊   ⌋ and         .  

    In any case, all the vertices of    will eventually be col-

ored. Hence, S is a 2-forcing set. Thus,   (  )  = 1. By 

Corollary 2.11,   (  ) = 1 for all positive integer k ≥ 2.                                        

□  

 

Definition 4.1. The sunlet graph, denoted by   , is the 

graph of order 2n obtained from the cycle    = [  ,   , . . . 

,   ] by attaching pendant edges      for i = 1, 2, . . . , n. 

 
Figure 3. The sunlet graph    

 

Theorem 4.2. Let    be the sunlet graph of order 2n. If k = 

1, then   (  ) = ⌈   ⌉.  
Proof: Let    be the sunlet graph of order 2n obtained from 

   = [  ,   , . . . ,   ] by attaching pendant edges      for i 

= 1, 2, . . . , n. Let S = {   : i ≡ 1 (mod 4) or i ≡ 2 (mod 4)}. 

Without loss of generality, assume that n is even. Then for 

each i with i ≡ 1 (mod 4) or i ≡ 2 (mod 4),    can 1-force    

; and,    can 1-force the vertex in N(  )\S. Thus, all the 

vertices of    will eventually be colored. Hence, S is a 1-

forcing set. Thus,   (  ) ≤ ⌈   ⌉. Note that a 1-forcing set 

of    cannot have less than ⌈   ⌉ elements. Therefore, 

  (  ) = ⌈   ⌉.                                                             □  

 

Theorem 4.3. Let    be the sunlet graph of order 2n. If k ≥ 

2, then   (  )  = 1.  

Proof: Let    be the sunlet graph of order 2n obtained from 

   = [  ,   , . . . ,   ]  by attaching pendant edges      for 

i = 1, 2, . . . , n. Let S = {  } and consider the following 

cases.  

Case 1. n is even  

     If n is even, then:    can 2-force   ;    can 2-force    

and   ;    can 2-force    and   , and    can 2-force    

and     ;    can 2-force    and   , and       can 2-force 

     and     ; and so on. Until eventually,          can 2-

force         .  

Case 2. n is odd  

    If n is even, then:    can 2-force   ;    can 2-force    

and   ;    can 2-force    and   , and    can 2-force    

and     ;    can 2-force    and   , and      can 2-force 

    and     ; and so on. Until eventually,  ⌈   ⌉ can 2-

force  ⌈   ⌉.  

    In any case, all the vertices of    will eventually be col-

ored. Hence, S is a 2-forcing set. Thus,   (  ) = 1. By 

Corollary 2.11,   (  ) = 1 for all positive integer k ≥ 2.     

□  

 

4. CONCLUSION  

The important concepts and results presented in this 

paper supported, and intertwined with, those obtained by 

other authors, making this article very interesting. The con-

struction of the different theorems were realized using the 

definition and properties of k-forcing set and k-forcing 

number. Also, some properties focusing on generalizing 

zero forcing set in graph theory were realized. 
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