CORRIGENDUM [*R*-DYNAMIC CHROMATIC NUMBER OF CYCLES, COM-PLETE GRAPHS AND FORESTS, IJPAM, VOL. 110 NO. 4 2016, 609-622].

¹Hermie V. Inoferio, ^{2*}Michael P. Baldado Jr.

¹College of Education Jose Rizal Memorial State University Katipunan, Zamboanga del Norte, Philippines ^{2*} Mathematics Department, Negros Oriental State University, Dumaguete City, Philippines

Email:michael.baldadojr@norsu.edu.ph

ABSTRACT: In this article we would like to present a corrected proof of Theorem 4.6 of the article entitled "r-Dynamic Chromatic Number of Cycles, Complete Graphs and Forests" published in IJPAM [Vol. 110 No. 4 2016, 609-622]. The original proof of the Theorem uses Corollary 4.5 of the article, which was found to be false (as pointed out by Dr. Sergio R. Canoy Jr. of MSU-IIT who gave us a counterexample). It is surprising that Theorem 4.6 is still true, and we would like to present a corrected version of the proof [not using the Corollary].

Keywords: r-dynamic k-coloring, r-dynamic chromatic number, vertex gluing

1. INTRODUCTION

To give the readers a background of the concept, we would like to give a walk through. The concept dynamic coloring of graphs is a generalization of the concept proper vertex coloring.

The dynamic coloring of a graph G is a proper coloring such that every vertex of G with degree at least two has at least two neighbors that are colored differently. This concept was introduced by Montgomery in [3]. Since then, the concept was studied by many authors, see for example [1-7]. A generalization of the dynamic coloring was also introduced by Montgomery in [3].

The concept *r*-dynamic coloring is further generalized to the concept *r*-dynamic *k*-coloring. This general concept was studied in [8] and [9].

A vertex coloring of a graph G = (V, E) is a function f from V to a finite set C, whose elements are called color. A k-coloring is a vertex coloring with at most k-colors. We always assume that $C = \{1, 2, ..., k\}$. A k-coloring may also be viewed as a vertex partition $(V_1, V_2, ..., V_k)$, where $V_i = \{v \in V : f(v) = i\}$ are called the color classes. A graph is k-colors. The chromatic number of a graph G, denoted by $\chi_r(G)$, is the smallest k such that G is k-colorable. An r-dynamic k-coloring of G is a proper coloring f such that for all vertices v in V, $|f(N(v))| \ge \min\{r, \deg_G(v)\}$. The r-dynamic chromatic number of a G, denoted by $\chi_r(G)$, is the smallest k such that f is an r-dynamic k-coloring of G.

Let $G_1, G_2, ..., G_t$ be graphs, each containing a complete subgraph K_r ($r \ge 1$). Let G be a graph obtained from the union of t graphs G_i by identifying the complete graphs K_r (from each graph G_i) in an arbitrary way. We call G a K_r -gluing of $G_1, G_2, ..., G_t$. In particular, when r = 1 we say that G is a vertex-gluing.

2. RESULTS

Lemma 4.1 is found in [13]. This lemma is used in Theorem 2.3.

Lemma 2.1. Let G = (V, E) be graph. Let $f : V \to C$ with $C = \{1, 2, ..., k\}$ be a k-coloring of G and let $\{V_1, V_2, ..., V_k\}$ be a partition of V such that for each $i \in C$, $V_i = \{v \in V : f(v) = i\}$. Then f is an r-dynamic k-coloring of G if and only if

1. V_i is an independent set for each i = 1, 2, ..., k; and,

2. for each $v \in V$, $|\{j \in C : N(v) \cap V_j \neq \emptyset\}| \ge \min\{r, \deg_G(v)\}$.

Proof : Assume that *f* is an *r*-dynamic *k*-coloring of *G*. Since *f* is a proper coloring, *V_i* is an independent set for each *i*=1,2,...,*k*. Let *v*∈*V*. Then |f(N(v))| $\geq \min\{r, \deg_G(v)\}$. This implies that $|\{j \in C : N(v) \cap V_j \neq \emptyset\}| \geq \min\{r, \deg_G(v)\}$. Conversely, assume that conditions (1) and (2) hold. Let *uv* ∈ *E*. Then *f* is a proper coloring by (1). Next, let *v*∈*V*. Then $|f(N(v))| = |\{j \in C : N(v) \cap V_j \neq \emptyset\}|$ $\geq \min\{r, \deg_G(v)\}$ by (2). Therefore *f* is an *r*-dynamic *k*coloring.

Theorem 2.2 is also found in [13], and we present it here with the corrected proof.

gives the *r*-dynamic chromatic number of the vertex gluing of two graphs.

Theorem 2.3. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. Let *G* be a vertex gluing of G_1 and G_2 . If $r \le \min \{\delta(G_1), \delta(G_2)\}$, then $\chi_r(G) = \max \{\chi_r(G_1), \chi_r(G_2)\}$.

Proof : Let G be the graph obtained by identifying $u \in V_1$ and $v \in V_2$, that is G is a vertex gluing of G_1 and G_2 . Let $f_1 = \{V_1^{(1)}, V_2^{(1)}, ..., V_{k_1}^{(1)}\}$ and $f_2 = \{V_1^{(2)}, V_2^{(2)}, ..., V_{k_2}^{(2)}\}$ be r-dynamic k_1 -coloring of G_1 and r-dynamic k_2 -coloring of G_2 , respectively, such that $k_1 = \chi_r(G_1)$ and $k_2 = \chi_r(G_2)$. Without loss of generality, suppose that $u \in V_1^{(1)}$ and $v \in V_1^{(2)}$, and $k_1 \ge k_2$. Let $f: V(G) \rightarrow \{1, 2, ..., \max\{\chi_r(G_1), \chi_r(G_2)\}\}$ be given by $f(w) = \begin{cases} f_1(w), & \text{if } w \in G_1 \\ f_2(w), & \text{if } w \in G_2 \end{cases}$,

that is, $f_1 = \{V_1^{(3)}, V_2^{(3)}, \dots, V_{k_1}^{(3)}\}$ where $V_1^{(3)} = V_1^{(1)} \cup V_j^{(2)}$ for all $j = 1, 2, \dots, k_2$ and $V_q^{(3)} = V_q^{(1)}$ for $q = k_2 + 1, k_2 + 1, \dots, k_1$. Let $xy \in E(G)$. Then either $xy \in E_1$ or $xy \in E_2$. Without loss of generality, suppose that $xy \in E_1$. Suppose $x \in V_r^{(1)}$ and $y \in V_s^{(3)}$ for some $r, s \in \{1, 2, \dots, k_1\}$. Since $f_1 = \{V_1^{(3)}, V_2^{(3)}, \dots, V_{k_1}^{(3)}\}$ is an r-dynamic k_1 -coloring, by Lemma 4.1 $r \neq s$. Hence, $x \in V_r^{(3)}$ and $y \in V_s^{(3)}$ where $r \neq s$. This shows that f is a proper coloring.

July-August

Next, let $w \in V(G)$. Then either $w \in V_1$ or $w \in V_2$. Without loss of generality, assume that $w \in V_1$ of $w \in V_2$. Without loss of generality, assume that $w \in V_1$. Since f_1 is an *r*-dynamic k_1 -coloring, by Lemma 4.1, $\left| \left\{ j \in \{1, 2, ..., k_1\} : N_G(w) \cap V_1^{(1)} \neq \emptyset \right\} \right| \ge \min \left\{ r, \deg(w) \right\}$ = r. Thus, $\left| \left\{ j \in \{1, 2, ..., k_1\} : N_G(w) \cap V_1^{(1)} \neq \emptyset \right\} \right| \ge r$. Therefore, *f* is an *r*-dynamic k_1 -coloring of *G*. Hence, $x \in G > k = \max \left\{ x \in G \right\} = (G_1)^{k_1}$ $\chi_r(G) \le k_1 = \max \{\chi_r(G_1), \chi_r(G_2)\}.$ Next, suppose that $\chi_r(G) = k \; .$ Let $g: V(G) \rightarrow \{1, 2, \dots, k\}$ be an *r*-dynamic *k*-coloring of *G*. Let $\{U_1, U_2, ..., U_k\}$ be a partition of V such that for each Let $\{U_1, U_2, ..., U_k\}$ be a partition of V such that for each i = 1, 2, ..., k, $U_i = \{v \in V : f(v) = i\}$. For each i = 1, 2, ..., k, let $W_i^{(1)} = U_i \cap V_1$ and $W_i^{(2)} = U_i \cap V_2$. Define $g_1 : V_1 \rightarrow \{1, 2, ..., k\}$ by $g_1(v) = i$ whenever $v \in W_i^{(1)}$, and $g_2 : V_2 \rightarrow \{1, 2, ..., k\}$ by $g_2(v) = i$ whenever $v \in W_i^{(2)}$. Clearly, g_1 and g_2 are *r*-dynamic *k*-coloring of G_1 and G_2 , respectively. Thus, $k \ge \max\{k_1, k_1\} = \max\{x_1, K_1\}$ and $\{v, (G_i)\}$ of $i \in I$.

 $\left\{\chi_r(G_1),\chi_r(G_2)\right\}$. QED

Theorem 2.3 may be extended to a vertex gluing of nnumber of graphs G_1, G_2, \ldots, G_n using the Principle of Mathematical Induction.

Corollary 2.4. Let $n \in N$ and G_1, G_2, \ldots, G_n be graphs. Let $G \quad \text{be a vertex gluing of } G_1, G_2, \dots, G_n \in \mathcal{G}_r^{-1}, f(G_n) \in \mathcal{G}_r^{-1}$

3. ACKNOWLEDGMENT

The authors would like to thank the Rural Engineering and Technology Center of Negros Oriental State University for partially supporting this research.

REFERENCES:

- H.J. Lai, B. Montgomery, H. Poon, Upper [1] bounds of dynamic chromatic number, Ars Combin. 68, 193-201, (2003)
- [2] A. Taherkhani, r-Dynamic Chromatic Number of Graphs, Dis. App. Math, 201, 222-227 (2016)
- B. Montgomery, Dynamic Coloring of Graphs [3] (Ph.D. Dissertation), West Virginia University, (2001)
- B. Gao, L. Sun, H. Sung, H.J. Lai, On the Dif-[4] ference Between Dynamic Chromatic and Chromatic Number of Graphs, Journal of Mathematical Sciences: Advances and Applications 34, 1-10, (2015)
- Y. Chen, S. Fan, H.J. Lai, H. Song, L. Sun, On [5] dynamic coloring for planar graphs and graphs of higher genus, Discrete Applied Mathematics 160, 1064-1071 (2012)
- Y. Kim, S.J. Lee, S.I. Oum, Dynamic Coloring [6] of Graphs Having No K5 Minor, Matematiche e *Naturali*, 96(1), 4 (2018)
- [7] M. Alishahi, On the dynamic coloring of graphs, Discrete Applied Mathematics, 159,

152-156 (2011)

- [8] R. Kang, T. Muller, D.B. West, On r-dynamic coloring of grids, Discrete Applied Mathematics 186, 286-290 (2015)
- [9] S. Jahanbekam, J. Kim, Suil O, D.B. West, On r-dynamic coloring of graphs, submitted for publication.
- [10] H.J. Lai, B. Montgomery, Dynamic coloring of graphs, West Virginia University, (2002)
- Wikipedia contributors. "Graph coloring." Wik-[11] ipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 30 Jun. 2016. Web. 8 Jul. (2016)
- [12] J. Gross, J. Yellen, Handbook of Graph Theory, CRC Press LLC, N. W., Corporate Blvd, Boca Raton, Florida, (2000)
- [13] H.V. Inoferio, M.P. Baldado. r-Dynamic Chromatic Number of Cycles, Complete Graphs and Forest, Int. Journal of Pure and App. Math, 110(4), 609-622 (2016)