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ABSTRACT: Performing filtering on the input and output data sequences through linear time invariant (LTI) 
systems formulates an important operation of Digital Signal and Image Processing fields. This paper 
proposes a simple and efficient technique in discrete-time domain which does the lowpass, highpass, 
bandpass and bandstop filtering of the input auto and cross correlation sequences of discrete-time real wide 
sense stationary (WSS) process through exponential, rectangular, triangular and trapezoidal shaped 
windows in linear time. As the frequency responses of the discrete-time windows mentioned above 
resemble very much with the frequency response of low pass filters, the proposed algorithm [5] does 
indeed perform the Low Pass Filtering (LPF) of the input auto and cross correlation sequences in linear 
time. We have already shown in [5] that processing or LPF of auto and cross correlation sequences through 
the above four mentioned windows can be achieved in O(L) time, where L denote the size of the input 
autocorrelation sequence. From the knowledge of impulse response of low pass filter, hlp[n], the impulse 
response of a high pass filter hhp[n] may be obtained by subtracting hlp[n] from the unit sample sequence, 
δ[n]. This shows that high pass filtering (HPF) of the input auto and cross correlation sequences can also 
be performed through above four windows in linear time.  Finally, the known values of impulse responses 
of low and high pass filters determine the impulse and frequency responses of a band pass filter, hbp[n].  In 
frequency domain, it is usually implemented with a cascade connection of low and high pass filter’s 
frequency responses with different cut-off frequencies. However, in time domain, hbp[n] becomes equal to 
the convolution of hlp[n] with hhp[n]. Moreover, like hhp[n], the impulse response of band stop filter, hbs[n] 
is simply equal to the difference of δ[n] and hbp[n]. This reveals that bandpass filtering (BPF) and bandstop 
filtering (BSF) operations on the input auto and cross correlation sequences can also be done through 
above four windows in linear time. We have also shown in [5] that our proposed algorithm outperformed 
all the existing techniques in both time and frequency domains with regards to both exact number of 
arithmetic operations and to its worst case time complexity that grew linearly with the length of the input 
auto correlation sequence for the case when L >> K, where K denote the size of an exponential window. 
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1 INTRODUCTION 
There are plenty of application examples that require the 
filtering operation in certain kind, for example in the area of 
medical image and video processing, radar and  sonar signal 
processing, statistical signal processing and modern 
communication systems employing coherent receivers [1,2]. 
Convolution of input data sequence through an FIR linear 
shift invariant system (LSI) basically implements both 
filtering and smoothing operations on the input data. 
Although, convolution in time domain contains no 
processing delays but the required computational cost using 
convolution sum makes it highly impractical. Thus, it is 
usually implemented in frequency domain using FFT/IFFT 
based overlap-add and overlap-save methods. However, 
efficiency is achieved at the expense of the delay introduced 
equal to the filter length [3,5]. 
The processing of discrete-time wide sense stationary (WSS) 
random processes through FIR LSI-systems plays a very 
useful role in studying the behavior of many wireless 
communication systems and networks. Filtering operation 
does not bring about any change in stationarity status of the 
input process and thus both input and output discrete-time 
processes become jointly stationary [5-9]. Frequency 
responses of all discrete-time windows discussed in this 

paper correspond to the frequency response of low pass 
filters [6-9].  
The use of low pass filtering eliminates the aliasing 
phenomenon in A/D conversion systems due to creation of 
false lower frequencies when the input signal contains 
frequency components above half A/D sampling rate. A low 
pass filter when applied to each input channel of A/D 
converter card also eliminates unwanted high frequency 
noise and interference introduced prior to sampling. This 
reduces system cost, acquisition storage requirements and 
analysis time by allowing for a lower sampling rate. It is 
also a well known fact that low pass filtering of WSS input 
processes brings smoothness, removes noise buried in the 
uncorrupted input data and blurness present in the 
underlying image respectively, etc [6-8].  
The high pass filter is good for removing a small amount of 
low frequency noise from a multi-dimensional signal. 
However, a band pass filter is useful when it is required to 
eliminate the noise at low and high frequency components of 
the input signal. Similarly, a bandstop filtering is needed 
when it is desired to eliminate the unwanted noise from the 
desired signal within certain band of frequencies [6–8].  To 
the best of our knowledge, there exists no algorithm so far in 
the literature either in time or frequency domain that 
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performs lowpass, highpass, bandpass and bandstop filtering 
of the input auto and cross correlation sequences through 
FIR shaped windows in linear time. We have already 
discussed the basic idea of the proposed algorithm in 
discrete time domain in [5].  In this paper, we, thus present a 
very simple and efficient method in time domain for 
performing lowpass, highpass, bandpass and bandstop 
filtering of the auto and cross-correlation sequences through 
FIR LTI-windows. The various types of discrete-time FIR 
windows discussed in this paper are exponential, rectangular 
(moving average), triangular and trapezoidal shaped ones. 
This paper is organized as follows: Section 2 computes the 
frequency responses of the four windows discussed in the 
paper. Section 3 describes the system block diagram that 
implements the lowpass, highpass, bandpass and bandstop 
filtering of auto and cross correlation sequences through 
these windows using the proposed algorithm [5]. Worst case 
time complexity for four types of filtering operations is 
discussed in section 4. Variation of magnitude frequency 
responses of the four windows with regards to their sizes is 
discussed in section 5. Comparison of various filtering 
operations with other existing algorithms is discussed in 
section 6. Finally, we present our conclusions in section 7.       
2 COMPUTATION OF FREQUENCY RESPONSES 

OF THE FOUR WINDOWS IN DISCRETE-TIME 
DOMAIN 

a) For an exponential window having ‘K’ samples 
An exponential window, exp[n] having K samples can be 
defined as exp[n] = an for 0 ≤ n ≤ K – 1 and zero otherwise, 
where |a| < 1. In terms of unit step sequences, this window 
can be expressed as [6], exp[n] = an(u[n] – u[n – K]). Its 
frequency response, Exp(ejw) may be computed from its      
z-transform tables and properties [6] – [8] as given below: 
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Equation (1) describes the magnitude response of an 
exponential window under the condition of |a| < 1 and for 
large value of K, i.e., sufficient number of samples of the 
window. 
• For a moving average / rectangular window having 

‘K’ samples 
Moving average window, mov[n] containing K samples in 
terms of unit step sequences may be defined as [6], mov[n] =   
K-1(u[n] – u[n – K]) and zero otherwise. Its frequency 
response, Mov(ejw) can also be computed from its                
z-transform as shown below: 
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The above expression reveals that z-transform of moving 
average window contains one pole of (K – 1)th order at z = 0 
place (i.e., origin) and (K – 1) zeros lying on the boundary of 
unit circle with angular spacing of exp(j2π/K) between any 
two adjacent zeros. Due to cancellation of one pole with one 
zero at z = 1 location, Region of Convergence (RoC) of the 
transform consists of entire z-plane except its origin where 
the pole is located. For z-transform of rectangular window, 
rect[n] it is suggested that the scaling factor, K is made equal 
to unity. Thus, we can obtain frequency response, Rect(ejw) 
of the rectangular window using the above result as, 
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Equation (2) provides the frequency response of a 
rectangular window having K samples. We also notice from 
eqs. (1) and (2)  that exponential window, exp[n] reduces to 
rectangular window, rect[n] by making a = 1 and the same 
expression for magnitude of Fourier Transform given in    
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eq. (2) can be obtained by setting  a = 1 in eq. (1) alongwith 
the application of some useful calculus results. 

b) For a Triangular window having (2K+1) samples 
Triangular window, tri[n] having (2K + 1) samples can be 
defined as [6], tri[n] = n for 0 ≤  n ≤ K and tri[n] = 2K – n 
for K+1 ≤ n ≤ 2K and zero otherwise. We also know from 
the discussion of Signals and Systems Course that a 
triangular window can be fabricated from the convolution of 
two rectangular windows having the same number of 
samples, i.e., the width. Therefore, we may express tri[n] in 
the form of a relation with rect[n] as, 
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Equation (3) describes the frequency response of triangular 
shaped window having (2K + 1) samples. On comparison of 
eq. (3) with eq. (2), we conclude that its frequency response 
is simply the square of the frequency response of rectangular 
shaped window having K samples. 

c) For a Trapezoidal window having (2K+1) samples 

Like triangular shaped window, a trapezoidal shaped 
window, trap[n] having (2K + 1) samples can also be 
defined as [6], trap[n] = n for 0 ≤  n ≤ K1, trap[n] = K1 for       
K1 + 1 ≤  n ≤    K2 – K1, trap[n] = 2K – n for K2 – K1+1        
≤  n ≤ 2K and zero otherwise, where K = K1 + K2. We also 
know from the discussion of Signals and Systems course that 
a trapezoidal shaped window can also be fabricated from the 
convolution of two rectangular windows having different 
number of samples, i.e., the widths. Therefore, we may 
express trap[n] in the form of a relation with rect[n] as, 
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We realize that for K1 = K2, the equation (4) reduces to 
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Equation (4) describes the frequency response of trapezoidal 
shaped window having (2K + 1) samples. On comparison of 
eq. (5) with eq. (3), it can easily be concluded that its 
frequency response simply reduces to the frequency 
response of triangular shaped window already computed in 
eq. (3) for the case when K1 = K2. 
3 IMPLEMENTING LOWPASS, HIGHPASS, 

BANDPASS AND BANDSTOP FILTERING OF 
AUTO AND CROSS CORRELATION SEQUENCES 
USING THE PROPOSED ALGRITHM IN [5]   

Figure 1 shows the block diagram of our system for 
implementing lowpass, highpass, bandpass and bandstop 
filtering operations using the proposed algorithm [5]. In this 
figure, RX[n], RXY[n], h[n] and δ[n] denote the input auto and 
cross correlation sequences, impulse response of the window 
under consideration and unit sample sequence respectively. 
The lower sub system shown in this figure implements 
lowpass and highpass filtering operations on the input auto 
and cross correlation sequences. While the upper sub system 
(which is exact replica of the lower sub system) implements 
bandpass and bandstop filtering operations of the input auto 
and cross correlation sequences. These four filtering 
operations are clearly shown in figure 1 as the outputs of the 
adders.   

 
Figure 1: System Block Diagram implementing four types of 

filtering operations using the Proposed Algorithm[5] 
The plot of magnitude responses of the four windows 
computed in eqs. (1) – (5) are sketched in section 5. It can 
easily be seen from their sketches (figure 2 – 5) that these 
graphs resemble very much with the magnitude responses of 
the low pass filters. It was shown in [5, sections 3, 4 and 5] 
how cross and auto correlation of the output discrete-time 
real WSS process can be obtained from processing of the 
input auto correlation sequence having L samples through 
four types of the windows discussed in the paper. It was also 
shown in all cases that under the condition when L >>K, the 
worst case time complexity of the proposed algorithm varies 
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linearly with the size of the input auto correlation sequence, 
i.e., O(L). This shows that low pass filtering (LPF) of the 
input auto and cross correlation sequences can be 
implemented in linear time using the proposed algorithm [5] 
as shown in figure 1.      
Likewise, we can also perform highpass (HPF), bandpass 
(BPF) and bandstop (BSF) filtering operations of auto and 
cross correlation sequences through the same four types of 
windows by utilizing the facts of [6] as:  
hhp[n] = δ[n] – hlp[n], hbp[n] = hlp[n] * hhp[n] and hbs[n] =  
δ[n] – hbp[n], where δ[n],  *, hhp[n], hbp[n], hbs[n] and hlp[n] 
denote the unit sample sequence, discrete convolution 
operation and impulse responses of highpass, bandpass, 
bandstop and the four types of windows discussed in the 
paper respectively.  
Figure 1 depicts that highpass (HPF) filtering can also be 
accomplished by subtracting the output sequences obtained 
after performing lowpass filtering (LPF) operation from the 
input auto and cross correlation sequences. Similarly, 
bandpass filtering (BPF) can also be done conveniently by 
performing the lowpass filtering of the input auto and cross 
correlation sequences followed by highpass filtering with the 
impulse response of the high pass filter as demonstrated in 
figure 1. Finally, bandstop filtering (BSF) can also be 
implemented by taking the output from an adder shown in 
figure 1 which does the subtraction of the output sequences 
obtained after performing bandpass filtering (BPF) from the 
input auto and cross correlation sequences.           
4 DETERMINING THE WORST CASE TIME 

COMPLEXITY OF LOW, HIGH AND BAND PASS 
FILTERING USING THE ALGORITHM IN [5] 

We have shown in [5, section 5] that under the assumption, 
when the length of input auto correlation sequence becomes 
very large than the size of the window, (i.e., when L >>K), 
the worst case total time complexity of the proposed 
algorithm according to [10], just reduces to O(L) which 
shows that it linearly grows with the length of input auto 
correlation sequence, RXX(k). This shows that lowpass 
filtering (LPF) of input auto and cross correlation sequences 
can be performed in linear time using the proposed 
algorithm [5]. Similarly, in order to perform highpass 
filtering (HPF) of the cross and auto correlation sequences, 
we thus require L more subtraction operations in addition to 
the worst case time complexity of the proposed algorithm 
[5]. We know from [10] that O(L) + O(L) = O(L) for large L. 
This shows that our proposed algorithm in [5] also does 
perform the highpass filtering (HPF) of auto and cross 
correlation sequences in linear time. 
Likewise, bandpass filtering (BPF) of the input auto and 
cross correlation sequences using the proposed algorithm of 
[5] can be implemented by first performing the lowpass 
filtering operation followed by the highpass filtering of the 
input auto and cross correlation sequences. The worst case 
time complexity of bandpass filtering operation (BPF) using 
the proposed algorithm may be computed by summing the 
worst case time complexities taken by the proposed 
algorithm in doing the lowpass and the highpass filtering 
operations of the input auto and cross correlation sequences.  

Thus, we compute the worst case time complexity for band 
pass filtering (BPF) = worst case time complexity for low 
pass filtering (LPF) + worst case time complexity for high 
pass filtering (HPF) = O(L) + O(L) = O(L) from [10] in case 
of large L. Similarly, we require L more subtraction 
operations in addition to worst case time complexity in order 
to implement bandstop filtering (BSF). This shows that our 
proposed algorithm described in [5] does indeed perform the 
lowpass, highpass, bandpass and bandstop filtering 
operations of the input auto and cross correlation sequences 
in linear time under the worst case scenario.           
5 SKETCHING OF MAGNITUDE RESPONSES OF 

THE FOUR WINDOWS AS A FUNCTION OF ‘K’  
In this section, we provide the plots of magnitude responses 
of the four windows discussed in the paper as a function of 
its width, K and the constant, a. Figure 2 shows the plot of 
the magnitude response of an exponential window, exp[n] as 
a function of the constant, a for sufficient number of samples 
of the window, i.e., preferably K ≥ 100. The value of the 
magnitude response at w = 0 changes from 1.33 to 20 
(1400%) when the value of the constant, a is increased from 
0.25 to 0.95 (280%) progressively. This can easily be 
inferred from eq. (1) that magnitude of frequency response 
at w = 0 just reduces to 1/(1-a) and thus increasing the value 
of the constant, a towards unity strengthens the value of the 
magnitude response of this window at w = 0. 
Figure 3 describes the magnitude of the frequency response 
in case of rectangular window as a function of its width, K. 
The value of the magnitude response at w = 0 is just equal to 
K (computed from L Hospital’s Rule) and the width of the 
main lobe is simply equal to (2π / K). It can easily be seen 
from the figure that smaller the value of K indicates less 
height of the main lobe but points towards its wider width as 
compared to higher values of K which is obviously a trade 
off in designing all types of low pass filters.   
Figure 4 describes the magnitude of the frequency response 
in case of triangular window as a function of its width, K. 
The value of the magnitude response at w = 0 is simply 
equal to K2 (again computed from L Hospital’s Rule) and the 
width of the main lobe is just equal to (2π / K, same as that 
of fig. 3). It can again easily be seen from the figure that 
smaller the value of K indicates less height of the main lobe 
but points towards its wider width as compared to higher 
values of K. The comparison of figure 4 with that of figure 3 
reveals that its magnitude response is simply equal to the 
square of the magnitude response of the rectangular window 
shown in fig. 3. 
Figure 5 describes the magnitude response in case of 
trapezoidal window as a function of its width, K = K1 + K2. 
The value of the magnitude response at w = 0 is equal to the 
product of K1 and K2 (again computed from L Hospital’s 
Rule) and the width of the main lobe is simply equal to       
(2π/LCM(K1, K2), where LCM(.) denote the least common 
multiple of the two numbers. It can again easily be seen 
from the figure that smaller the value of K indicates less 
height of the main lobe but points towards its wider width as 
compared to higher values of K. The comparison of fig. 5 
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with fig.4 reveals that its magnitude response simply reduces 
to that of triangular window for the case when K1=K2. 

  
Figure 2: Magnitude Response of an Exponential Window 

 
Figure 3: Magnitude Response of a Reactangular Window 

 
Figure 4: Magnitude response of a Triangular Window 

 
Figure 5: Magnitude Response of a Trapezoidal Window 

6 COMPARISON OF FILTERING OPERATION 
WITH THE EXISTING ONES USING THE 
PROPOSED ALGORITHM [5] 

It was shown in [5, section 6] that the worst case time 
complexity of the proposed algorithm for performing the 
low pass filtering of the input auto and cross correlation 
sequences under the assumption L>>K is O(L). Likewise, 
we have also explained in detail in section 4 that worst case 
time complexity of the proposed algorithm [5] for carrying 
out high pass, band pass and band stop filtering operations of 
the input auto and cross correlation sequences through above 
four types of windows under the same assumption is also 
O(L). We immediately infer from [10] that O(L)<O(Llog2L) 
< O(LK), where 2nd and 3rd terms denote the worst case time 
complexities taken by the existing algorithms for performing 
filtering operations in frequency and time domains. We thus 
conclude from the above discussion that our proposed 
algorithm [5] does indeed perform the lowpass (LPF), 
highpass (HPF), bandpass (BPF) and bandstop (BSF) 
filtering operations of the input auto and cross correlation 
sequences through different FIR LSI windows much better 
than the existing algorithms in both time and frequency 
domains in terms of the worst case time complexity. The 
worst case time complexity for performing all four types of 
filtering operations grows linearly with the length of the 
input auto correlation sequence, i.e., O(L).      
7 CONCULUSIONS 
In this paper, we discussed four types of filtering operations 
on the input auto and cross correlation sequences through 
various types of FIR windows using a very simple and 
efficient technique described in [5]. We described lowpass, 
highpass, bandpass and bandstop filtering operations on the 
input auto and cross correlation sequences using the 
proposed algorithm [5]. It was shown that all types of 
filtering operations can be performed in a much easier and 
faster manner through four types of windows discussed in 
the paper in time domain. It was also shown that the worst 
case time complexity of various filtering operations grows 
linearly with the size of the input auto  correlation sequence 
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and it outperforms all the existing algorithms in both time 
and frequency domains. 
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