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ABSTRACT: In this paper we study transnormal surfaces in the Euclidean space R". We use the distance function and

the Euler characteristic to deduce some properties regarding transnormal surfaces in R".
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1. INTRODUCTION

The concept of transnormality, which is due to Robertson
[8], is a generalization of the concept of constant width
referred to Mellish [6]. A surface of constant width can be
formulated as follows. Let S be a smooth compact
connected surface without boundary that is smoothly
embedded in R". A chord of S is normal if it is normal to
S at one of its endpoints and binormal if it is normal to S
at both end points. The surface S is of constant width if
and only if every normal chord of S is binormal to S.
Each point of the endpoints is called the opposite of the
other. The differential geometry of curves and surfaces of
constant width was studied by Al-Banawi [1]. Now for

each point p € S, there exists a unique tangent plane T o
tangentto S at p with dimension 2 and a unique normal
plane N, normal to S at p with dimension n—2.

Thus, there are maps T and N with T (p)=T and
N(p)=N,.
Definition 1. [8] The surface S is transnormal in R"
iff Vp, geS, if e N(p), then N(g)=N(p).
Let W be the space of normal planes of S, so
W =N(S). Then N : S -»W isacovering map [9]. If

S is a transnormal surface in R" and the order of N as a
covering map is I, then S is called an r —transnormal
surface.

Definition 2. [8] Let S be a transnormal surface in

R". The generating frame of Sat p s
HP)=SNN(p). If Sis then
|¢(p)| =T where ‘ ‘ is the cardinality.

Now any normal plane of a compact I —transnormal
surface S cuts S transversally at exactly r points. Also
there are planes of the same dimension as these normal
planes that don’t meet S at all. The mod 2 intersection
number of each plane with S is therefore equal to zero.
Since any two planes of the same dimension can be moved
onto one another, it follows that the mod 2 intersection
number of any normal plane with S is also r. Thus, for a
compact r —transnormal surface, r is even.
The work in this article is built on the main theorems

on transnormality due to Robertson [8,9,10] and is a
continuation of the work of Al-Banawi and Carter in [2,3]
on transnormal compact curves and transnormal partial
tubes. In [4], Al-Banawi studied transnormal surfaces in

R® and R*. He classified compact and noncompact

I -transnormal,

transnormal surfaces in R® and R* as well their orders

and illustrated how the usual torus is not transnormal in

R® while the product one is transnormal in R*.

2. The Euler characteristic of compact transnormal
surfaces

Now let S be an r—transnormal surface in R".

Assume that F : S — R" is a smooth embedding of S
into R". For peS, let A S —>R+U{O} be the

distance function defined by A (u,v)= ||F(u,v)— p||2.

A point a critical A if

oA, OA,
—— =——=0. A critical point p is nondegenerate

OX oy

iff the Hessian matrix

peS is point of

azAp azAp
x> ox
2 is nonsingular. If p is a nondegenerate
N, O°A,
oxoy  oy®

critical point of A, then

its index is the number of negative eigenvalues of the
Hessian matrix at p.

The Euler characteristic of a surface is an alternating
sum over the cells (vertices, edges and faces) of the surface.

To have a simple look, for a surface S the Euler
characteristic is defined by y(S)=a—b+cC where a is

the number of vertices of S, b is the number of edges of
S, and C is the number of faces of S.
If S is compact and C, denotes the number of critical

points of Ap of index 1, then the Euler characteristic of

Sis given by x(S)=C,-C,+C,[7]. Since
N :S >Wis an r -fold covering, then
2S)=ryW)[E. Ao Cy>0 so that
—r<y(S)<r, and hence —1<py(W)<l. So

W )=0 or y(W)=1. Thus, for a compact r—
transnormal surface, either »(S)=0 or ¥(S)=r.
Example 1. Let

F(u,Vv) =(cosu,sinu,cosv,sinv),
p=(10,1,0). Then
A, (u,v) IR, v) - plF
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= (cosu—1)% + (sinu—0)?(cosv —1)° + (sinv—0)°

=c0s?uU—2cosu-+1+sin?u+cos?v—2cosv+1+sin’vay

=4-2c0SU—2COSV.
Now

OA
P =2sinu,—* =2sinv.

Hence  for  the critical points,  we  have
u= {0, 71'} V= {O, 7[}. Thus, A, has four
nondegenerate  critical points, namely (1,0,1,0),
(ll 01 _ll O) ! (_1! 0’ 11 0) ! (_1! Oa _l 0)
Now
O°A, O°A,
,— =2C0SU and —,— =2CO08V,
o°u oV
2 2
A, A,
ouov  ovou
Thus, the Hessian matrix is

2cosu 0
H= , and so
0 2C0SV

.0 Hy=| 2 O
at (uv)=(0,0, .=, )

(0 H. = 2 0
at(u,v)=(0,7), H, = 0 o/

(7.0 H. = -2 0
at (u,v) =(x,0), Hy; = 0 2/

at (u,v) = ( H-[2

V) = (7, ), 4—[0 —2}

Hence H, has no negative eigenvalues, and so index(H,)
=0. Similarly, index(H,)= index(H;)=1,
(H,)=2.Thus, C, =1, C, =2, C, =1.
x(S)=C,-C,+C,=1-2+1=0.

Theorem 1. Let S be asurface in R". Then the following
are equivalent:

(1) The surface S is r —transnormal.

(2) The distance function on S has I nondegenerate
critical points.

Proof. (@ =>D) Assume that S is r —transnormal. Then
N:S—>W s a covering map with order r. Let
A, 1S — R {0} be the distance function defined by

A (u,v) ZIF(U,v)—p[F where peS and (u,v)

are local coordinates of S. Of course, S is the image of
F. Now we show that Ap has a nondegenerate critical

point at g iff g—-p is in  N(Q).
A, (u,v)=(F(u,v)—p)-(F(u,v)—p), and so

index

For,
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®(q)= 26%((1)«4 -p) and
u

oA oF
P =2 (q)-(g-
Y (a) Py (@)-(q-p)
oA OA
Hence 6u” (a)= av" (q)=0iffq—pL%(q)

oF
and q—pL E(q) iff g— p e N(q). Thus, the set of

critical points of A is the generating frame ¢(p).

P
While Robertson in [ 9] had proved that a transnormal
surface does not meet its sets of focal points, one can
conclude that P is not a focal point of S, and so g isa

nondegenerate critical point of Ap.

(b):>(a) Let peS. Then A hasaset A of r

critical points including p itself. Since V(QqeA,

oAy, oA
(q—p)-E(q)—(q p). ~ (@)=0, it is clear

that qe N(p). By symmetry, peN(q). Hence

N(p)=N(q), and so S is transnormal. But|A| =T.
Hence S is r —transnormal.
Corollary 1. If Sis an r—transnormal surface in R",

then the order of the covering map N :S —>W s the
number of nondegenerate critical points of the distance
function that is defined on S.
A function whose all critical points are nondegenerate is
called a Morse function [7]. So good news are guaranteed
by the next corollary.
Corollary 2. Any transnormal surface admits a Morse
function on itself, in particular the distance function.
Theorem 2.The index of P as a minimum point of

A b is the number of negative eigenvalues of the first

fundamental matrix evaluated at p.
Proof. Recall that

A
® =2F,.(F-p) and
ou
Thus,
O°A,
7 =2F,.(F-p)+2F,.F, =2F,.(F - p)+2E,

Ny _oF (F-p)
av - V" p

%=2FW.(F—p)+2FV.FV=2FW.(F—p)+ZG,

A, =2F,.(F - p)+2F,F, =2F, .(F — p) + 2F.
ouov

Now ifg is a nondegenerate critical point, then

A, (@)=A,(@)=0, and

January-February



Sci.Int.(Lahore),34(1),13-15,2022

Aw(@) Ay (Q)

det(
A, (@) A,(9)
P,

det(ZE(p) 2F(p)j
2F(p) 2G(p)

Also the Hessian matrix of A has no negative eigenvalues,
since P isa minimum point.

Also, we show in the next example that the above result
only works for the minimum point.

Example 2. Let

F(u,Vv) =(cosu,sinu, cosV, SiNV). Then the first

1 0
fundamental matrix is I" = 0 )

1
Take p=(1,0,1,0). Then by Example 1, A, has four
nondegenerate  critical  points, namely (1,0,1,0),

L0,-10), (-10,140), (-10,-10).
For p=(10,1,0),index = 0 =index ['(p).
Forq=(-1,0,—1,0), index = 2 # index ['( p).
Fors, =(1,0,-1,0), index =1=index "(p).
Fors, =(=1,0,1,0), index =1=index ().
Now we explain the difference in behavior between H and
" of A, at other critical points.

For q=(-10,-10),

2

P = 2(1,0,0,0).(~2,0,-2,0) + 2E

o%u

= (—4)+2E,

A,

7y = (-4) + 2G,

O*A. A
P=—P2=0+2F,

ouov  ovou

For s, =(1,0,-1,0),

2

P~ 2(0,0,0,0).(0,0,2,0) + 2E

o

=0+2E,

A,

Ty =(-4)+2G,

O*A. DA
P=—F =0+2F.

ouov  ovou

For s, =(-1,0,1,0),
2

O°A,
—7, = 210,0,0(-2,0,0,0)+2E
=(-4) + 2E,

2

5 P = 0+2G,
oV

j;ﬁ 0. For the choice of g to be
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0’°A_ O°A
— PP _042F.
ouov  ovou

3. CONCLUSION

= 4(E(p)G(p)— F?(p)) = 4detilRe distance function on a transnormal surface is a good

tool to extract information regarding the behavior of a

transnormal surface in R". Here the Hessian matrix of the
distance function is compared with the first fundamental
matrix of the surface itself.
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