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ABSTRACT: A holographic version of the equipartition of energy was derived for a general diffeomorphism invariant theory 

by Padhmanabhan (2010). We discerned that Hawking’s temperature is the equipartition law, or vice versa, granted that the 

horizon area is measured in Planck units (2017). Under the equipartition law, we wish to point out that the semi-classical 

holographic setup, including the Bekenstein-Hawking entropy, is consistent only when the horizon is quantized in exact Planck 

units. This is in clear contrast to the previously obtained values of the minimal area from theories such as loop quantum 

gravity and others. It becomes evident that the previously determined values though good for the entropy formula, are 

inconsistent with the equipartition law, hence with Hawking’s temperature.  
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INTRODUCTION 
The striking resemblance between the laws of black hole 

mechanics and those of thermodynamics [1, 2] led 

Bekenstein to conjecture that a black hole should possess 

entropy proportional to its horizon area measured in Planck 

units G [3]. We will assume 1c  1Bk  and throughout 

the paper. Investigating quantum fields in a Schwarzschild 

metric, Hawking discovered that a non-zero temperature  

8
T

GM
                                                (1)  

should be attributed to the horizon. The requirement that the 

area-mass relation  
2

16A GM  leads to the first law 

M T S   the formula for the black hole entropy could 

then be deduced as   
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This confirmed Bekenstein’s conjecture and fixed the 

proportionality constant at1/ 4 , 

 

’t Hooft elevated the area law of entropy to the status of a 

general rule, termed the holographic principle, according to 

which all the three-dimensional information about a 

gravitational system in a spatial region is represented by its 

boundary with a finite microscopic degree of freedom 

proportional to the area of the boundary in units of the Planck 

area [4]. Evidence for the holographic principle came from 

the AdS/CFT correspondence [5].  

The deep connection between gravity and thermodynamics 

was further unveiled by few authors. Jacobson derived 

Einstein’s field equations from the laws of thermodynamics 

on the horizon [6]. Padhmanabhan demonstrated that 

combined with the holographic principle the field equations 

of general relativity reduce to the equation of state of a 

macroscopic thermodynamic system [7]. Furthermore, it was 

shown by Verlinde that Newton’s gravity emerges as an 

entropic force in a holographic setup [8]. These observations 

hint towards reclassifying gravity as an emergent 

phenomenon—in much the same manner as the macroscopic 

thermodynamic variables, such as temperature and entropy, 

emerge from the dynamics of a large number of underlying 

microscopic degrees of freedom. If we extrapolate this, the 

spacetime must also consist of some microscopic degrees of 

freedom. One may call these microstates ―atoms of 

spacetime‖, the correct dynamics of which will be governed 

by a much-awaited theory of quantum gravity.  

A crucial relation that connects the microscopic degrees of 

freedom with macroscopic thermodynamic variables of an 

ensemble is the law of equipartition of energy. Remarkably, a 

holographic version of such a relation was shown to exist in 

any diffeomorphism invariant theory of gravity [9, 10]. For a 

general horizon at temperatureT , as perceived by a local 

Rindler observer, the total equipartition energy contributed by 

all quanta of space on the boundary is equal to the active 

gravitating mass M enclosed by the boundary, i.e.,  

1
.

2
M nT                                                   (3) 

Here /n A G is a natural number giving a (large but) a 

finite number of degrees of freedom on the horizon. Each 

degree of freedom contributes a patch of Planck area and 

energy / 2T . The essential input in this derivation was the 

Davies-Unruh temperature [11, 12].  

In a previous communication, we pointed out that Hawking’s 

temperature (1) and the holographic form of the equipartition 

of energy (3) are the same equation provided the horizon area 

is measured in Planck units [13]. This indicates that 

Hawking’s temperature agrees to the quantization of the 

horizon in discrete units of the Planck area. It turns out that 

the whole holographic setup is consistent only if the horizon 

is quantized in Planck’s units. This observation has a direct 

impact on the horizon spectra predicted by loop quantum 

gravity (LQG) and other theories. In LQG, for instance, the 

spacing in the area spectrum happens to be a ―constant 

multiple‖ of the Planck area [14-16]. This comes after fixing 

its inherent ambiguity in the geometric spectra, represented 

by the unknown Immirzi parameter [17]. The actual problem 

we deal with is that LQG sets the minimal area by appealing 

to the entropy formula (2)—a component of the holographic 

setup—which by itself favors the quantum of the area to be 

none other than the Planck unit. In addition, while one 

expects the quantum of the area to be consistent with all the 

holographic equations, the result predicted by LQG does not 

comply with the equipartition rule, or equivalently, 

Hawking’s temperature. Thus, we face an apparent 

inconsistency. Another example in which such a situation 

arises is a rough theory of quantum gravity postulated by 

Bekenstein and Mukhanov in an attempt to quantize the black 
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hole [18, 19]—here it will be referred to as BM theory in 

short. In this letter, we show that a simple rearrangement of 

the holographic relations yields quantization of the horizon in 

units of Planck area and that the quantum of the area from 

LQG (or the BM theory and the like) does not consistently 

obey the holographic equations.   

In the following section, for relevance, we briefly review how 

the elemental area is fixed in LQG and the BM theory. After 

the following section, we show that the holographic equations 

altogether require the horizon to be quantized in exact Plank 

units. Here we also point out that the previously determined 

horizon spectra do not encompass Hawking’s temperature 

which is at the root of the holographic setup. Finally, we 

conclude the paper.      

The minimal area elements in quantum theories of gravity  

Loop quantum gravity (LQG) is a canonical quantization of 

gravity that has produced results that geometrical quantities 

such as area and volume are quantized [20-22].  The state-

space of LQG is spanned by those of spin networks. Spin 

networks are graphs with edges each of which carries with it 

a spin / 2j ΝÎ labeling irreducible representations of

(2)SU  which serves as the gauge group of the theory. The 

area of a given region of space has a discrete spectrum in 

such a way that if a surface is punctured by a set of spin 

network edges  ij  the surface acquires an area 

( ) 8 ( 1).i i i

i

A j G j j                                  (4) 

The theory, however, carries the burden of the undetermined 

free parameter , called the Immirzi parameter [17]. This 

curious parameter is absent in classical gravity but appears 

unavoidably in the quantized version. The physical 

significance of the parameter is obscured but its value is 

usually fixed by the requirement that the LQG computation 

produces the Bekenstein–Hawking entropy (2). 

The area of the horizon, being an eigenvalue of the area 

operator, is considered to be a consequence of a large number 

of edges embedded in the boundary. The black hole entropy 

is then calculated according to the usual definition as the 

logarithm of the dimension of the boundary Hilbert space 

boundary
H  [14-16],  

ln dim .
i

N

j

i

S
 

  
 
 H                                      (5) 

Here dim jH  2 1j is for a puncture with spin j N and 

is the number of edges puncturing the horizon. The leading 

contribution to the entropy comes from that configuration in 

which the minj edges are dominant [15]. Therefore, the 

maximum entropy can be written as 

min minln(2 1)jS N j  .                                         (6) 

Here 
min min

/j jN A A is the number of edges, all with spins

minj , whereas
minjA  represents the minimal area element. It 

is assumed that min,( )iA j A . The entropy (6), with

min 1/ 2j  , is then equated to the Bekenstein-Hawking 

formula to extract the value of the Immirzi parameter

ln 2 / 3 .  

But, by considering the entropy formula along with the quasi-

normal mode (QNM) spectrum of a Schwarzschild black hole 

[23-25], Dreyer came up with a different value, 

ln 3 / 2 2   [26]. Concurrently, this approach also 

suggested that the dominant contribution should come from 

edges with min 1j  and that the true gauge group of the 

theory should therefore be considered as (3)SO  rather than

(2)SU .  

Based on a combinatoric formulation of the black hole 

entropy it was claimed that contribution from all values j
should be taken into account [27, 28]. These studies resulted 

in different values of . The controversy over the group 

structure of LQG and the counting of the microstates has 

provoked considerable attention. See, for instance, references 

[29-36]. 

To summarize, after fixing , the minimal area element or 

the lower bound on the increase in the horizon area is given 

by 

min min4 ln(2 1).jA G j                                        (7)  

Here minj is 1/2 or 1 depending on whether (2)SU  or 

(3)SO is chosen as the gauge. So, there is still a lack of 

agreement over the exact spacing in the area spectrum of the 

horizon.  

A similar result for the spacing of the area spectrum also 

follows in the BM theory [18, 19]. In a quantum theory of 

black holes, one would be interested in finding the mass and 

areal spectra required to determine the quantum and statistical 

mechanical properties of black holes. In the BM theory, the 

authors assumed that the horizon of a neural and non-rotating 

Schwarzschild black hole is quantized in equal steps of a 

constant multiple of the Planck area, 

.A n G                                                    (8)   

Here n is a natural number and  is an arbitrary scale factor. 

This will allow, semi-classically, a discrete mass spectrum 

and hence a discrete mass emission. Assuming that all the 

Planck scale degrees of freedom on the boundary are equally 

probable and that each one is k -fold degenerate, the entropy 

is written as  

ln
A

S k
G

                                                   (9) 

The unknown  is fixed at 4ln k  by comparing (9) with (2). 

This gives the elemental area as  

min 4 ln ,A G k                                        (10) 

which is similar in form to (7). Choosing 2k  makes 

consecutive energy levels differ in entropy of exactly one bit. 

However, considering the QNM spectrum of the black hole 

and the BM theory, Hod [24] suggested the area spacing of a 

quantum black hole to be 4 ln3G .   
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Horizon area quantization in the semi-classical theory 

As opposed to equations (6) and (9), the Bekenstein-Hawking 

entropy (2) was not derived, in the first place, by counting 

degenerate microstates on the horizon. This is why it is free 

of the logarithm factor. The only inputs in its derivation were 

Hawking’s temperature, the classical area-mass relation, and 

the first law of thermodynamics at the horizon. Hawking’s 

temperature, which is fundamental to the entropy formula (2), 

by itself resulted from low energy quantum field theory on a 

black hole metric. But a simple rearrangement of these semi-

classical equations on the boundary shows that the horizon is 

quantized in the standard Planck units G . This is in contrast 

to the result from LQG (or the BM theory) which uses the 

semi-classical formula (2) to fix the minimal area.  

To derive area quantization in the semi-classical theory it is 

important to note that the Hawking temperature formula (1) 

can be written precisely as the equipartition law (3), or vice 

versa, provided the horizon area is measured in Planck units 

[13]. This implies that Hawking’s temperature by itself 

requires the horizon to be quantized in equal Planck’s steps. 

To derive the area spectrum explicitly, one combines (1) with 

(3) to get    

 
2

16 ,GM nG                                        (11) 

Alternatively, from the equipartition formula (3), one can 

write 

.
8 4

n
M

GM
 



 
  

 
                                 (12) 

Here one notices that the correct first law of thermodynamics 

(with the correct entropy) follows only if the horizon area is 

measured in standard Planck units.  

 

That the Planck area is the actual operational unit in the 

holographic setup can also be seen from the following 

argument. One can rewrite (12) or the area-mass relation 

 
2

16A GM  as  

2

1
.

8 4
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M

G M
 



 
  

 
                              (13) 

It can be noted that one can multiply and divide (13) by G

, any free constant  ; however, the correct first law 

M T S  that follows is free of  . Therefore, any 

constant that multiplies the Planck unit cancels out in the 

holographic equations altogether. 

For LQG (or the BM theory) to be physically viable, the 

minimal area should be fixed only once and has to be 

consistent with all the relevant equations. But we see that this 

is not the case. For instance, although the quantum of area (7) 

accounts for the correct entropy, it fails to reproduce 

Hawking’s temperature through the equipartition law (3). If 

the LQG result is to be made consistent with (1), one has to 

choose  such that the minimal area element on the boundary 

is the Planck area. This may be possible if a version of the 

equipartition rule is imposed on the minj edges such that the 

Hawking temperature is obtained—of course, one may be 

tempted to think of the equipartition to hold for 

homogeneously distributed minj edges forming a spherical 

boundary. But having  adjusted in this way the entropy 

produced by LQG will not match the Bekenstein-Hawking 

formula as long as we stick to the usual definition of entropy. 

Thus, LQG cannot produce both the Hawking temperature 

and the black hole entropy consistently. The same reasoning 

also applies to the BM theory. 

 

CONCLUSION 

The semi-classical holographic formulation uncovers the 

horizon area to be quantized in exact Planck units. The 

impetus in this proof has been the holographic version of 

equipartition law (3) and the clue that this law represents 

Hawking’s temperature. Comparison of the entropy from 

LQG (and the BM theory) with formula (2) leads to the 

quantum of the area that is inconsistent with the equipartition 

law (3), or equivalently, Hawking’s temperature. The 

minimal area element should be adjusted once in a way as to 

be consistent with all the relevant laws.  

Could it be that the free parameter  of LQG is a free factor 

like   that should disappear in the low energy holographic 

relations though it may well be significant at the deep 

quantum gravity level? The parameter  can be seen to 

cancel out in the actual definition of the number of edges on 

the surface, 
min minmin,( ) /j i jN A j A , before the coarse-

graining approximation, min,( )iA j A . This approximation 

seems to be crucial to determining
minjN , yet it comes at the 

price of bringing the ambiguity  back to the scene, which is 

then made to compensate for the constant and the logarithm 

factor by equating (6) to the known semi-classical formula 

(2). This implies that LQG cannot find the black hole entropy 

unless the answer is known from elsewhere. Besides this, it is 

not obvious how trivially one could make correspondence 

between LQG and a low energy semi-classical theory of the 

horizon.  

The constant  in the BM theory was associated with the 

microscopic unit of the area since it was not realized at the 

time that the true quantum of the area according to the 

holographic equations is the exact Planck unit. In the same 

theory, the degeneracy of the microstates was assumed to 

account for the entropy directly, but this was done without 

realizing that the resulting minimal area is inconsistent with 

Hawking’s temperature. 

Astonishingly, many authors have studied the equipartition 

law in the holographic perspective (see, for instance, [8, 10, 

37]), but no one has even suspected the law is exactly the 

Hawking temperature formula. The equipartition rule for the 

minimal spin edges on a spherically symmetric holographic 

boundary was also discussed by Smolin whilst dealing with 

the derivation of Newton’s gravity as an entropic force in the 

LQG framework [38]. 
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