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ABSTRACT: This paper proposes a three-dimensional (3D) lattice Boltzmann method (LBM) to analyze the propagation of 

acoustic waves. Indeed, this numerical method uses a stable and accurate scheme, the D3Q19 multiple relaxation model. The 

work carried out focuses on studying the vibration of a square sound source located at the center of the left surface of a 3D 

enclosure filled with water. The main objective of this numerical study is to investigate the waves using a statistical technique 

and to visualize how acoustic waves emitted by a square source propagate instantaneously in three dimensions. The numerical 

code used is verified by studying the usual problem of flows generated by a lid-driven cavity. The two-dimensional LBM 

approach is introduced in a second step to compare the results obtained in two and three dimensions. 
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1. INTRODUCTION 

The applications of sound waves in many fields such as 

industry, medicine, and even in everyday life constitute well-

known research topics. They have been treated in the 

literature for many years. Generally, the production and 

propagation of sound waves are associated with the existence 

of a vibratory motion. In the present work, the vibration is 

applied to a square source placed at the left facet of a three-

dimensional cavity. Thus, the particles of the medium (water) 

enter in vibration one after the other around their equilibrium 

position. This idea allowed us to use a sinusoidal function of 

the density to model the waves by the LBM approach. The 

basic principle is to make the density vibrate around its 

equilibrium position by referring to the acoustic point source 

method [1,2]. This technique is effortless to implement and 

makes LB a powerful numerical way to simulate acoustic 

waves. 

The lattice Boltzmann technique is a numerical method 

derived from lattice gas Automata (LGA) and the kinetic 

theory of gas [3]. It is presented as an alternative numerical 

approach to model fluid dynamics. It is based on the 

probability of the presence of a particle in a lattice. This 

probability is defined by the particle distribution density 

function. Indeed, in the LB method, the fluid is not 

considered a continuous matter but rather as a discrete set of 

fictive particles that interact with each other. 

In recent years, the lattice Boltzmann method has made 

significant progress in the numerical solution of various 

physical problems. For example, in the acoustic domain, the 

LBM has been used in the literature to simulate different 

types of waves (shock waves, sound waves, aeroacoustic 

waves...). In this work, this technique is applied in three 

dimensions to study acoustic phenomena. In the first step, the 

propagation of waves generated by a square source has been 

reviewed, and in the second step, the interaction of waves 

with an obstacle has been treated. 

The present work is arranged into six sections. In the first, a 

general introduction to sound waves and the LB method is 

given. The second part represents a description of the LBM in 

two and three dimensions. The third section describes the 

boundary conditions employed. The validation of our 

computer code is given in the fourth section. After this 

validation, the results found are discussed. Finally, the 

conclusions are reported in the last quarter.  

2. LATTICE BOLTZMANN METHOD 

Due to its accuracy [1], the multiple relaxation time scheme 

is used in 2D and 3D instead of the single relaxation time 

scheme (SRT) to study acoustic waves. In 2D, the D2Q9 

model (Figure 1.0) is applied, and in 3D, the D3Q19 model 

(Figure 2.0) is used. For these two models, the behavior of 

the fluid and the acoustic waves is given by the following 

Boltzmann equation  [2,3]: 

  ( ⃗   ⃗        )    ( ⃗   )         
  

         

 Equation 1 

where   
 ,   , and  ⃗  are the distribution functions, the time 

step, and the vector of lattice velocities in direction  .    and 

  
  

 are moments.     and   are the inverse and collision 

matrices,  respectively. 

The vector  ⃗  defines the direction of the particles in the LBM 

lattice. It is given in the references [2,4].     is the inverse 

matrix of the transformation matrix    These two matrices 

relate the distribution function to the moments [3]: 

     and                     Equation 2 

The 2D and 3D mathematical expressions of       , and the 

moments    are given in the references [3,4]. The 

equilibrium moments can be delivered directly from the 

equilibrium distribution function (  
  ) as:  
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Figure 1.0: The D2Q9 model Figure 2.0: The D3Q19 model 

 

The function   
   depends on the speed of sound (  ), the 

fluid density ( ), the physical velocity vector  ⃗⃗⃗  (     ), 

the LBM velocity vector  ⃗ , and discretization weights (  ) 

[3]: 
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Equation 4 

where    , and   are the macroscopic velocities in  ⃗,  ⃗, and 

 ⃗ directions, respectively.  

The matrix   is a diagonal matrix. It is composed of fixed and 

variable relaxation times (  ). The fixed ones are maintained 

at constant values between 0 and 2. On the other hand, the 

varying times    are generally related to the kinematic 

viscosity ( ) of the fluid. The mathematical expression of   

can be given as: 

 (    )      (                )       Equation 5 

 (     )      (                       )   Equation 6 

In the present study, the relaxation times utilized in 2D and 

3D are listed in Ref. [2] and Ref. [4], respectively. 

 

3. BOUNDARY CONDITION 

 In the lattice Boltzmann method, the boundary conditions are 

not necessarily based on the velocity or pressure, for 

example, but rather on the distribution function. There are 

different types of boundary conditions in LBM simulations, 

such as periodic conditions, absorption conditions, open 

boundary conditions, and so on [3]. In this work, simple 

requirements are used to define the solid walls of the cavity. 

It concerns the Bounce-back boundary conditions (BBC). The 

principle of this condition is to reverse the direction of the 

unknown distribution functions at the boundaries. They are 

implemented as:  

  ( ⃗ )    ̅( ⃗ )                      Equation 7     

where   ( ⃗ )  is the unknown function at the node  ⃗  and 

  ̅( ⃗ )  is the known function in the inverse direction of   

( ̅    ).         
 

4. VALIDATION 

In our study, we have proposed the D3Q19-LBM model to 

simulate acoustic waves in 3D. This model is validated by 

studying the lid-driven cavity problem. This type of physical 

problem is considered in the literature as one of the 

benchmark problems. It concerns a cubic cavity with a 

surface driven with a constant velocity. In our case, the upper 

wall is in uniform motion with a speed        (Figure 3.0). 

 
Figure 3.0: Illustration of the validation problem 

 

The flow created by the entrained cavity can be produced 

numerically by using the boundary conditions of Bouzidi et 

al. [5]. The Reynolds number (      ) has been chosen to 

compare our results with those of Ku et al. [6], Jiang et al. 

[7], and Ding et al. [8]. Figure 4.0 represents the 

adimensional velocities along the   (       ) and   

(       ) axes. This figure illustrates that the velocity 

 ( ) starts with a zero value, then, takes a negative value and 

arrives at the maximum value 1. However, the velocity  (x) 

varies according to   between 0 and 1, and takes a minimum 

value of about -0.4 and another maximum of about 0.2. In 

this figure, we also note a good correspondence between our 

results and those of the references [6–8].  

In the present work, only the 3D numerical code is validated. 

However, the 2D code is already verified in our previous 

work  [2]. 
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Figure 4.0: Velocity profiles  ( ) and  ( ) along the cavity centerlines for Re=400. 

 

5. RESULTS AND DISCUSSION 

As previously mentioned, the physical problem considered in 

this work is a square acoustic source, which vibrates with a 

frequency of        (Figure 5.0). It is placed in the center 

of the left wall of a three-dimensional enclosure filled with 

water. The walls of the cavity are considered solid. The BBC 

conditions are applied to these boundaries. The length, width, 

and height of the hole are denoted by   ,   , and   , 

respectively. The node numbers which correspond to these 

dimensions are         ,         , and        . 

The LB method is a non-dimensional technique. However, 

performing physical simulations requires parameters in 

natural units. The space step (  ) and the lattice time step 

(  ) can be used to make the conversions [1]. In the present 

study, the waves propagate with a wavelength (    ) of 

          . To obtain an accurate simulation of the waves in 

the cavity, we have chosen to get at least      in     . This 

guided us to choose              . Step    can be 

obtained from the physical (    ) and LBM (    ) speeds of 

sound as                           . From these 

space and time steps, several LBM and physics quantities can 

be related to each other. For example, the LBM period and 

wavelength can be found as                    and 

                  , respectively.  

The numerical technique used to generate the waves is the 

acoustic point source method (APSM). For this technique, the 

vibration of the density around its equilibrium value produces 

the waves as follows [1,2]: 

   
 
  

 
     (

  

    
 )                 Equation 8  

Our numerical study started with verifying the APSM 

technique described in equation 8. This check studies the 

waves generated by a point source localized in the center of a 

cubic enclosure. Figure 6.0 shows the distribution of the 

density in the cavity. The waves thus caused propagate in a 

spherical form in 3D (Figure 6.0(A)). A vertical section at 

       is given in Figure 6.0(B) to clarify the propagation 

of the waves in 2D. In this case, the wave propagation takes 

place in a circular form. The points of the LBM lattice used 

in this test are             nodes, where  
 
 and  

 
 are 

the equilibrium density and the amplitude. The value of   
 

 

used in this work is employed in the references [1,2] ( 
 

 

    ).   

 

 
 

Figure 5.0: Acoustic problem studied. 

 

Figure 7.0 shows the waves generated by the source 

represented in Figure 5.0 at time      .  The surface of the 

square source is defined by          . The discretization 

of this source gives       point sources. The waves emitted 

by each point interfere between them and provide an acoustic 

beam in the cavity. The three-dimensional density field 

(Figure 7.0(A)) shows that the global acoustic beam is 

directed towards the right wall. However, the obtained waves 

are not too focused on the central axis of the source, as in the 

case of a circular source. Remarkable reflections can be 

observed near the lateral and horizontal walls. The general 

shape of the waves can be considered as circular with a 

tendency to take a flat form. The vertical cross-section of the 

density field shown in Figure 7.0(B) illustrates that the waves 

propagate in two dimensions as semicircles in the near field 

and assume a flat form in the far-field in the proximity of the 

wall facing away from the source. 
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Figure 6.0: Depiction of the acoustic wave propagation produced by a point source at        iterations; (A) 3D 

illustration; (B) 2D illustration for a vertical section at       . 

 

 
 

Figure 7.0:  Density field obtained with a square source at      : (A) 3D depiction and (B) 2D depiction for a vertical 

section at       .

As mentioned before, and to visualize the difference between 

2D and 3D simulations, a 2D study is introduced in this work.  

The waves generated by a line of 80 point sources in 2D are 

compared with the 3D case.  In this context, the 2D and 3D 

longitudinal density profiles are plotted at the center of the 

cavity along the x-axis (Figure 8. 0). The waves obtained 

from both simulations propagate in phase and are attenuated 

as they propagate farther from the source due to the 

dissipation effect and geometric spreading. However, there is 

a difference between the two results in terms of amplitude. 

The amplitude of the waves obtained in 3D is quite large than 

that found in 2D. This is due to the contribution of the 

neighboring points of the linear source in 3D.  

  
Figure 8.0: Longitudinal density profiles at the center of the 

cavity along the x-axis and time 500. 
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After comparing 2D and 3D simulations, the emphasis in this 

section is on the treatment of the behavior of the waves when 

they encounter an obstacle of size comparable to the 

wavelength. This phenomenon is known in the literature as 

diffraction. Indeed, in acoustics, the diffraction of sound 

waves is more pronounced with waves of large wavelengths. 

This means that the low frequencies around obstacles can be 

heard well than the higher frequencies. The large wavelength 

waves can pass around obstacles and reach our ears from 

sources in faraway places. This principle is also used in the 

sound insulation of a room. High-quality soundproofing 

requires no openings, because even a tiny space can allow 

sound to enter the room and, through the process of 

diffraction, propagate throughout the area and cause 

disturbance (noise). This is considered as one of the 

significant applications of diffraction in everyday life or, 

more precisely, in civil engineering [9].  

Figure 9.0 shows the behavior of sound waves when they 

pass through a small aperture. In this figure, a plane with a 

central opening of 20 points (smaller than the wavelength 

       ) is used to visualize the diffraction phenomenon 

clearly. This plane is located at the position        . The 

waves are generated here with the vibration of the entire left 

wall of the cavity. The emitted waves are plane waves. When 

they pass through the aperture, their shape is significantly 

modified. The waves are no more plane but become circular. 

 

 
 

Figure 9.0: Diffraction of sound waves at time 500; (A) 3D depiction and (B) vertical section at       . 

 

6. CONCLUSION  

The lattice Boltzmann method has been applied to study the 

propagation of acoustic waves in three dimensions. In the 

first step, the waves emitted by a single point source and a 

square source were studied. Then, the diffraction 

phenomenon was investigated in the second step. These 

studies have shown the propagation of the waves in the cavity 

(spherical or circular shapes). To better visualize the wave 

propagation, 2D presentations have been considered. 

Moreover, to obtain a reliable numerical code, the three-

dimensional LBM approach has been verified by simulating 

the lid-driven cavity problem. The results obtained show that 

the LBM approach can be applied confidently to different 

sound wave studies. 
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