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ABSTRACT: For a given group G and a subset A⊆ G −Z(G), the non-commuting graph ∆ = [G, A] of the group G is 

a graph with vertex-set V(∆) = A such that two distinct vertices x, y ∈ V(∆) are connected by an edge i. e xy ∈ E(∆) if 

and only if xy = yx in G. In this paper, we study the certain properties of non-commuting graph on Dicyclic group 

DiCn = < a, x : a2n =1, x2 = an ,ax = a−1> of order 4n and obtained certain parameters of graph theory as 

chromatic number, clique number and perfect matching. 
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INTRODUCTION: 
As we know, the algebraic structures pay a very important 

rule in the studies of different branches of Mathematics. 

The involvement of these structures in Graph Theory has 

become one of attractive research activities for 

Mathematicians of modern era. Therefore, in the literature, 

there are many graphs like zero-divisor graphs, total graphs, 

commutative graphs and non-commutative graphs. These 

graphs have been constructed from commutative rings and 

finite groups  under certain algebraic properties of 

idealization, modules, commutatively and non-

commutatively, respectively.  For a detail study, reader can 

see [2,3, 5–7]. Now, we focus on the graphs, constructed 

from finite groups. Segevand Seitz [13, 14] investigated the 

commuting graphs from non abelian simple groups. 

Iranmanesh and Jafarzadeh [9] associated the commuting 

graphs with symmetric and alternating groups. In 2011, 

Chelvametal. [8] and Mashkourietal. [10] found commutating 

graphs from dihedral groups. Abdullah oetal. [1] and 

Moghaddam faretal. [11] constructed non-commuting graphs 

on different types of groups. In particularly, Asghar Talebi 

[4] constructed then on-commuting graphs of the Dihedral 

group. 

In this paper, we construct   the non-commuting graphs from 

non-abelian and finite groups called dicyclic groups DiCn 

with respect to its some specified sub sets. The of paper is 

organized as follows ; the section 2 contains some notations 

and basic definitions, while section 3 includes main results  

of commuting graphs. 

2   Preliminaries: 

Consider simple, finite and undirected graphs. For a graph ∆, 

we denote the vertex-set and edge-set by V(∆) and E(∆), 

respectively. Moreover, m =|E(∆)|and n =|V(∆)| are called 

size and order of the graph∆. The degree of a vertex v ∈ 
V(∆), denoted by deg∆(v) is number of incident edges on v. 

A graph is regular if all the vertices are of same degree. A 

graph of order n is called a complete graph if each pair of 

vertices is adjacent. It is denoted by Kn and is n−1 regular. 

For n=2, it is also called a path of order 2 such that both 

vertices are of degree 1. A friendship graph Fm consists of m 

triangles with exactly one common vertex, this common 

vertex is called the center of Fm. 

A subset X of V(∆) is said to be clique if the sub graph 

induced by X is a complete graph. The maximum size of a 

clique in a graph ∆ is called clique number of ∆. It is 

denoted by ω(∆). For k>0 (an integer), k-vertex coloring of 

the graph ∆ is an assignment of k-colors to the vertices of ∆ 

such that no two adjacent vertices have same color. The 

chromatic number of ∆ (denoted by χ(∆)) is the minimum k 

for which ∆ has k-vertex coloring. A graph ∆ is k-colorable 

(edge), if its edges can be colored with k-colors such that no 

two adjacent edges have same color. It is denoted by χ
0
(∆) 

and  called chromatic index of ∆. Length of minimal cycle in 

a graph ∆ is called girth of ∆. If u and v are the vertices in 

∆, the d(u, v) denotes the distance between u and v (length 

of shortest path between u and v). The largest distance 

between all the pairs of vertices of ∆ is called the diameter of 

∆ and is denoted by dia(∆). A matching on a graph ∆ is a 

sub set of ∆ such that no two edges share a common vertex 

in it and order of this subset is called matching number of ∆ 

denoted by γ(G). The largest possible matching on a graph 

with n nodes consists of n/2 edges and such a matching is 

called a perfect matching. The center of a group G is denoted 

by Z(G) and defined as Z(G) = {x ∈G: xy = yx for all y 

∈G}. Let a be any non-identity element to f G, then 

centralizer of a in G is the set of elements of G which 

commutes with a and it is denoted by Ca(G).  On the other 

hand,       presents the set of elements which do 

not commute with a in G. 

Moreover, for a ∈A⊆G, Ca(G,A) is set of elements 

of A which commutes with a and 

        is set of elements of A which do not 

commute with a . Thus, if A=G, then 

Ca(G,A)=Ca(G) and         =      The Dicylic 

group is represented by  
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DiCn = <a, x: a2n=1, x2 =an, ax=a−1 > under the 

following multiplication rules; (i) asat=as+t, (ii) 

asatx=as+tx,  

(iii) asxat=as−tx, 

(iv) asxatx=as−t+n. 

It is a member of a class of non-abelian groups of 

order 4n, where n>1. Every  element of Dicyclic 

group can be written in the formaixj, where 

i∈{0,1,2,...,2n−1} and j is 0 or 1. Suppose that  

I1= {1,2,...,n−1,n+1,...,2n−1}, 

I2= {1,2,...,n}, I3={n+1,n+2,...,2n} 

and I4=I2∪I3then 

A1 = {ai: i∈ I1}, Bi={aix, an+I x:i∈I2},  

B=⋃    ∈ C1= {aix:i∈ I2}, 

C2 = {aix:i∈ I3}, 

Di = {ai,aix:i∈ I1}, 

are suitable subsets of  DiCn. 

3   MAIN RESULTS 

In this section, we present the main results of the 

non-commuting graphs ∆ = [DiCn, A], Where A 

⊆  DiCn. 

Lemma3.1. For n≥2 and A = DiCn, if ∆ = 

[DiCn, A] is a non-commuting graph. Then, 

2n, for v ∈ A1 

deg∆(v)={
        ∈   

           ∈   
 

Proof: Let v = ai ∈ A1, where i ∈ I1.Then, 

   (DiCn) = {ajx: j= 1,2,...,2n}. 

Therefore, for  i∈ I1, we have deg∆(ai) = 2n. 

Consequently, deg∆(v) = 2n for each v ∈ A1.  

For v = aix ∈ B , where i ∈ {1, 2, 3,..., 2n}, we 

have Caix(DiCn) = {ajx: j = 1, 2, ..., 2n, j I and 

j  n +i}∪{aj : j∈ I1}. Thus, deg∆(aix) = 

4(n−1) ⇒ deg∆(v) = 4 (n−1) for v∈ B deg∆ 

(aix) = 4(n−1)⇒deg∆(v) = 4 (n−1) for v ∈ B 

Lemma3.2. For n≥2 and A⊆ DiCn, if ∆ 

=[DiCn,A] is a non-commuting graph. Then, the 

following are true; 

(i) If A is an abelian subgroup of DiCn, then  

dia(∆) = ∞. 
(ii) If A = DiCn−Z(DiCn), then  dia(∆) = 2. 

Proof; (i) Since A is an abelian subgroup of DiCn, then the 

non-commuting graph. 

∆ = [DiCn, A] is an empty graph and hence dia(∆) = ∞. 

(ii) If A = DiCn−Z(DiCn), then non-commuting graph is 

multipartite graph. So, dia(∆) = 2. 

Theorem3.3. For n ≥ 2 and A ⊆ DiCn, if ∆ = [DiCn, A] 

is a non-commuting graph. Then, (i) ∆ is an empty graph of 

order 2 ⇔A= Bi for some  i∈ I2 or A = X, where X⊂A1 

such that |X| = 2. 
(i) ∆ is an empty graph of order 2n−2⇔A = A1. 

(ii) ∆ = Kn+1⇔A= C1∪{u}or C2∪{u} for some u∈ 

A1 . 

Proof: (i)(case-i)  

Assume that ∆ = [DiCn,A] is an on-commuting graph such 

that A = Bi for some i∈ I2. As             = Φ 

=                for each i∈ I2 ⇒ deg∆(a
i
) = 0 = 

deg∆(a
i
x).  

 

Moreover, |Bi| = 2 for each i∈ I2. Thus, ∆ is an empty 

graph of order 2. (case-ii)Assume that ∆=[DiCn, A] is a 

non-commuting graph such that A=X, where X ⊂A1 with 

|X| = 2. As each element of A1  commutes with others in 

A1, there for both element of X, say a and b commutes with 

each other. Thus,           =Φ= 

          ⇒ deg∆(a) =0 = deg∆(b). Thus, ∆ is an 

empty graph of order 

2. Conversely, assume that ∆ = [DiCn, A] is a non-

commuting graph such that ∆ is an empty graphoforder2. Let 

v ∈ A⇒ v ∈ V(∆)⇒ deg ∆(v) = 0 ⇒. Thus, v ∈ Bi for some 

i∈ I2 or v ∈ X. If v ∈ Bi for some I ∈ I2 ⇒A ⊆ Bi and also 

Bi⊆A. Consequently, A=Bi for some i. If v ∈ X ⇒A ⊆X 

and also X ⊆A. Consequently, A=X. 

(ii) Assume that ∆ =[DiCn,A] is a non-commuting graph 

such that A=A1.As 

           =Φ for each a ∈ A1 ⇒deg ∆(a) = 0 for each 

a∈ A1.Thus, ∆ is an empty graph. Also |A| = 2n −2 ⇒ ∆ is 

anemptygraphoforder2n−2.Conversely, assume that ∆ = 

[DiCn, A] is a non-commuting graph such that 

∆ is an empty graph of order 2n−2. Let v∈ A ⇒ v ∈ V(∆) ⇒ 

deg ∆(v) = 0⇒ v commutes with each  element of A.  Thus, 

v ∈ A1 ⇒A⊆ A1 and also A1 ⊆ A. Consequently, A = A1. 

 

(iii) Assume that ∆ = [Di Cn,A] is a non-commuting graph 

such that A= C1∪{u}, where u ∈A1. Then, 

            = n for each v ∈ C1∪{u}⇒deg∆(v) = n for 

each v ∈ C1∪{u}. Thus, ∆ is a complete graph of order 

n+1⇒∆ = Kn+1. Conversely, assume that ∆ = [DiCn,A] 

is a non-commuting graph  such that ∆ = Kn+1. Let v ∈ A 

⇒ v ∈ V(∆)⇒v ∈ Kn+1⇒ deg∆(v) = n⇒v does not 

commute with n elements of A. Thus, v∈ C1∪{u}for some u 

∈ A1 ⇒A⊆ C1∪{u}and also C1∪{u}⊆A. Consequently, 

A= C1∪{u}. Similarly, we can prove for A = C2∪{u}. 

Corollary 3.4. For n ≥2 and A ⊆ DiCn, if ∆ = [DiCn,A] 

is a non-commuting graph. Then ∆ = Kn⇔A = C1 or C2. 
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Theorem3.5. For n ≥2 and A ⊆ DiCn, if ∆ = [DiCn,A] is 

a non-commuting graph. Then, (i)∆ is a star graph S(2n−2) 

⇔A = A1∪{u} for some u ∈ B. 

(ii) ∆ = K2n-2,2,2,2,…., ⇔A = A1∪B 

Proof: (i) Assume that ∆ = [DiCn, A] is a non-commuting 

graph such that A=A1∪{u}for 

Some u∈ B. As             =|A1|=2n−2 for each u∈ B 

and             =1for each v ∈ A1. Thus, ∆ is a graph 

such that one vertex is of degree 2n−2 and remaining vertices 

are pendent⇒∆=S(2n−2). 

Conversely, assume that  ∆ = [DiCn, A] is a non-

commuting graph such that ∆ = S(2n−2). Let v ∈ A ⇒ v ∈ 

V(∆)⇒ v∈ S(2n−2)⇒ either deg∆(v) = 2n−2 or deg∆(v) = 

1. If deg ∆(v) = 2n−2 ⇒ v does not commute with 2n−2 

elements of A ⇒ v ∈ A1∪{u} for some u ∈ B . If deg∆(v) 

=1, where v ∈A and |A| = 2n−1⇒v does  not commute with 

exactly one elements of A⇒ v ∈ A1∪{u} for some u  ∈ B 

⇒ A ⊆ A1∪{u} and also A1∪{u}⊆A for some u ∈ B. 

Consequently, A = A1∪{u}. 

(ii)Assume that ∆ = [DiCn,A] is a non-commuting graph 

such that A = A1∪B. Then, for i∈{0,1,2,...,2n−1}, Cai
 

(X) (DiCn,A) = {a
j
x: j= 0,1,2,..., 2n−1, j i and 

j n+i}∪{a
j
: j=1,2,3,...,n−1,n+1,...,2n−1}⇒deg∆(a

i
x) = 

2(n−1) + (2n−2) = 4n−4 for each a
i
x ∈ A . Similarly, for 

i∈{1,2,..., n−1,n+1,..., 2n−1}, Cai(DiCn,A) = Φ∪{a
j
x: j 

= 0,1,2,3,...,2n−1}⇒deg∆(ai) =2 n for each ai∈A. 

Moreover, as aix commutes with a
i+n

x for each i in A. 

Therefore, there are n+1 partitions in A such that (a) one of 

order 2n−2 and others n are of same order  2. 

(b) all elements of the same partition are isolated. 

(c)each element of a partition is adjacent to all the elements 

of the remaining partitions. Thus, K2n−2,2,2,...,2. 

Conversely, assume that  ∆ = [DiCn,A] is a non-commuting 

graph such that ∆=K2n−2,2,2,...,2. Let v ∈ A ⇒ v ∈ V(∆) 

⇒deg∆(v) = 2n or deg∆(v)= 4n−4. If deg∆(v) = 2n⇒ v = 

a
i 

for some i∈{1, 2, 3,..., n−1, n+1,..., 2n−1}⇒v ∈A1⇒v 

∈A1∪B⇒A⊆ A1∪B. If deg∆(v) = 4n−4⇒v = aix 

For some i∈ {0,1,2,3,...,2n−1}⇒v∈ B⇒ v∈ 

A1∪B⇒A⊆A1∪B. Similarly, A1∪B⊆ A. Consequently, 

A=A1∪B. 

Corollary 3.6. For  n≥2 and A⊆ DiCn, if ∆ = [DiCn, A] 

is a non-commuting graph. Then, 

(i)∆ = K2n−2,2⇔A= A1∪Bi for some i∈ I2 (ii)∆= K2,2  

if A =Bi∪Bj, for i j and i, j∈ I2. (iii)∆= K2,2,...,2⇔A = 

B. 

Theorem3.7.For n ≥ 2 and A⊆ DiCn, if ∆ = [DiCn, A] is 

a non-commuting graph. Then, 

(i) ∆ = P2  ⇔ A= {u, v}for some u ∈ A1 and v ∈ B or A 

= {u, v} for u∈ Bi, v∈ Bj, 

i = j and i,j ∈I2. 

(ii) ∆ = P3  ⇔A = Bi∪{u} for some u∈ A1 and i∈ I2 or 

A = {u, v}∪{x}, where u, v ∈ A1 and x ∈ B or A = 

Bi∪{x}, where x ∈ Bj, i= j and i, j ∈ I2. 

Proof. (i) (Case-i) Assume that ∆ = [DiCn, A] is a non-

commuting graph such that A = {u, v} for some u ∈ A1 

and v∈ B. Since each element of A1 does not commute with 

any element of B, therefore u            ∈A1 does not commute with v ∈ 

B .As |A| = 2, therefore |Cu (DiCn, A)| = 1 = |Cv(DiCn, 

A)| ⇒ deg∆(u) = 1 = deg∆(v)⇒ ∆ is a path graph of  order 

2, i.e  ∆ = P2. 

(Case-ii) Assume that ∆ = [DiCn, A] is a non-commuting 

graph such that A = {u, v} for some u∈ Bi ,v ∈ Bj, i j 

and i, j ∈ I2. Since each element of Bi does not commute 

with any element of Bj for i j and i, j∈ I2, therefore u ∈ 

Bi does not com- mute with v ∈ Bj for i j and i, j ∈ I2. 

As |A| = 2, therefore 

          =1=          ⇒deg∆(u) = deg∆(v)⇒ ∆ 

is a path graph of order 2, i.e ∆ = P2. Conversely, assume 

that ∆ = [DiCn, A] is a non-commuting graph such that ∆ 

= P2. Let x ∈ A ⇒ x ∈ V(∆)⇒ x ∈ P2. As P2 consists of 

exactly two vertices such that each vertex is of degree1, 

therefore x∈ {u, v} such that deg∆(u) =1 = deg∆(v). 

Since each element of A1 does not commute with any  

element of B and each element of Bi does not commute with 

any element of Bj for i j and i, j∈ I2 , therefore x∈ {u, 

v}, where u∈ A1 and v ∈ B or u ∈ Bi and v∈ Bj for i j 

and i, j ∈ I2. Consequently, A = {u, v} for some u ∈ A1 

and v ∈ B or A= {u, v} for u ∈ Bi, v ∈ Bj, i j and i,j ∈ 

I2. 

(ii) (Case-i) Assume that ∆ = [DiCn, A] is a non-

commuting graph such that A = Bi∪ {u}for some u ∈ A1 

and i∈ I2. As, |Bi| =2 and a
i
x commutes with a

i+n
x for 

each i∈ I2. 

Moreover, Cu(DiCn,A)=Bi for each u ∈ A1 and i∈ I2. 

Thus, two elements in A commute with each other and third  

does not commute with them⇒ degree of two vertices is1 and 

third vertex is of degree 2 in then on-commuting graph ∆ = 

[DiCn,A]⇒ ∆ =P3. 

Case-ii Assume that ∆ = [DiCn, A] is a non- commuting 

graph such that A= {u, v}∪{x}, where u, v ∈ A1 and x ∈ 

B. Consider, Cu(DiCn,A) = {x} = Cv(DiCn,A) and 

Cx(DiCn,A) = {u, v}⇒ deg∆(u) = 1 = deg∆(v) and 

deg∆(x) = 2in ∆ = [DiCn,A] ⇒ ∆ = P3.  

(Case-iii) Assume that ∆ = [DiCn, A] is a non-commuting 

graph such that A = Bi ∪ {x}, for x ∈ Bj, i= j and i, j ∈ 

I2. Since both the elements of Bi commute with each other 

for  i∈ I2 and do not commute with x ∈ Bj, where i= j and 

i, j ∈ I2 ⇒ deg∆(u) = 1 = deg∆(v) and deg∆(x) = 2 in 

∆ = [DiCn, A], where u, v are in Bi for some i∈ I2⇒∆ 

=P3. 
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Conversely, assume that ∆ = [DiCn, A] is a non-commuting 

graph such that ∆ = P3. Let u ∈A ⇒u ∈ V(∆) ⇒ u ∈ P3. 

As two vertices are of degree 1 and one vertex is of degree 2 

in P3  ⇒ either deg∆(u) is 1 or 2. If deg∆(u) =1, then for 

other two vertices of P3 say v and x are such that deg∆(v) 

=1and deg∆(x) = 2. Consequently, A = {u, v}∪{x}, where 

u, v ∈ A1 and x ∈ B or A = Bi∪{x}, where x ∈ Bj, i=j and 

i, j∈ I2. If deg∆(u)=2 then for other two vertices of P3  say  

v and x are such that deg∆(v) =1 = deg∆(x) ⇒ v and x 

commute but u does not commute with them in A⇒ v and x 

∈ Bi for some i ∈I2 and u ∈ A1 ⇒A= Bi∪{u}for some u 

∈ A1 and i∈ I2. 

Corollary3.8. For n≥2 and A⊆ DiCn, if ∆ = [DiCn,A] is 

a non-commuting graph. Then, ∆ =P2 if A = D i= 

{a
i
,a

i
x} for each i∈ I1. 

Theorem3.9. For n≥3 and A ⊆ DiCn, if ∆ = [DiCn,A] is 

a non-commuting graph. Then, 

(i)∆ = C3  ⇔ A = {a
i
x, a

j
x}∪ {u}, where i, j ∈ I4, i j, 

j n+I and u ∈ A1 or A = {a
i
x, a

j
x, a

k
x}, where i, j, k ∈ 

I4, i j k,j n+i, k n+i and k n+j. 

(ii) ∆ = C4  ⇔ A= Bi∪{u, v}for u, v ∈A1 and i∈ I2 or A= 

Bi∪Bj,for i jand i, j∈ I2. 

Proof.(i)(Case-i)Assume that ∆ = [DiCn, A] is a non-

commuting graph such that A = {a
i
x, a

j
x} ∪{u}, where i, 

j∈ I4, i j, j  n + i and u ∈A1 .  Since, under the 

supposed conditions a
i
x and a

j
x do not commute, also u 

does not commute with a
i
x and a

j
x. Therefore, |Cv (DiCn, 

A)| = 2 for each v ∈A⇒ each element of A has  degree 2 in 

∆ = [DiCn, A] .As, |A| = 3 ⇒ ∆ = [DiCn, A] = C3. 

(Case-ii) Assume that ∆ = [DiCn, A] is a non-commuting 

graph such that A = {a
i
x, a

j
x, a

k
x}, where i, j, k ∈ I4, i j 

 k, j  n+i, k  n+I and k  n+j. Under the supposed 

conditions, we note  that each element of A do not commute 

with remaining two elements of A⇒|Cv(DiCn, A)| = 2 for 

each v ∈ A⇒ each element of A has degree 2 in ∆ = 

[DiCn, A]. Consequently, ∆ = [DiCn, A] = C3. 

Conversely, Assume that ∆ = [DiCn, A] is a non-

commuting graph such that ∆ = [DiCn, A] = C3. Let 

v1,v2,v3  ∈ A⇒ v1,v2,v3 ∈ V(∆)⇒ v1, v2, v3∈ C3 ⇒v1, 

v2  and v3 do not commute with each other.  

(Case-i) We have possibilities as (i) v1, v2 and v3 ∈ A1, (ii) 

any two say v2 and v3∈A1 and (iii) only one say v3 ∈ A1. 

The possibilities (i) and (ii) are not possible as each pair of 

elements commute in A1. The possibility (iii) holds, thus 

others elements v1, v2 are must in B such that if v1= a
i
x 

then v2 = a
n+I 

x for i∈ I4. Thus, v3∈ A1 and v1, v2 ∈ 

{a
i
x, a

j
x}, where i,j ∈I4, i= j, j = n+i. Clearly, A ⊆ 

{a
i
x, a

j
x}∪{u} and also {a

i
x, a

j
x}∪{u}⊆ A. 

Consequently, A = {a
i
x, a

j
x}∪ {u}, where i, j∈ I4, i= j, j 

= n +i and u∈ A1. 

(Case-ii) if v1,v2  and v3  ∈/ A1⇒v1,v2  and v3 ∈ B such 

that if v1 = a
i
x, then v2 = ajx and v3 = akx with i, j, k 

∈I4, i≠ j≠ k, j ≠ n +i, k≠ n +i and  k ≠ n + j. 

Consequently, A={aix, ajx, akx}, where i , j, k ∈ I4, i≠j 

≠k ,j ≠ n +i, k≠ n+ I and k≠ n+ j. (ii) Proof follows by 

Corollary (3.6) ((i) and (ii)). 

 

Theorem3.10. For n≥ 2 and A ⊆ DiCn, if ∆ = [DiCn, A] 

is a non-commuting graph. Then, 

(i) |E(∆)| = 0⇔A ⊆ A1 or A = Bi for some i∈ I2.  

(ii) |E(∆)| = 2n (n−1)⇔A= B. 

(iii) |E(∆)| =
 
n(n−1)⇔A = C1 or  A = C2.(iV) |E(∆)| = 

6n(n−1)⇔A = DiCn−Z(DiCn). 

Proof: (i) Let  A ⊆ A1 or A= Bi for some i ∈ I2. Since, 

each element of A1 commute with all other  elements of A1 

and similarly both the elements of Bi also commute with  

each other, where i∈ I2 ⇔∆ = [DiCn, A1] and ∆ = 

[DiCn, Bi] for some i∈ I2 are empty graphs 

⇔|E(∆=[DiCn,A1])| = 0 = |E(∆ = [DiCn, Bi]) |⇔ 

|E(∆ = [DiCn,A])| = 0⇔ |E(∆)| = 0. 

(ii) By Corollary (3.6 (iii)), ∆ = K2,2,...,2 

⇔ A= B. Thus, |E(∆)| =
1

n (n−1) (4) = 2n (n−1)⇔A = B. 

(iii) By Corollary 

(3.4(iii)), ∆ = Kn⇔A = C1 or C2. Thus |E(∆)| =
1 

n (n−1) 

⇔A = C1 or C2. (iv) By Theorem3.5 (ii) ,∆ = 

K2n−2,2,2,...,2 ⇔ 

A = A1∪B Thus, |E(∆)| = 2n(n−1) +2n(2n−2) = 6n 

(n−1)⇔A = DiCn−Z(DiCn). 

Theorem3.11. For n ≥ 2 and A = DiCn− Z(DiCn), if ∆ 

= [DiCn, A] is a non-commuting graph. Then, 

(i) ω(∆) = χ(∆) = n + 1 

(ii) The grith of ∆ = [DiCn, A] is 3. 

(iii) The maximal matching of ∆ = [DiCn, A] is D = {ai 

aix :i∈ I1} with γ(∆) = 2n−2, which is not a perfect 

matching. 

Proof: (i) By Theorem 3.3 (iii), ∆ = Kn+1 ⇔A = C1 

∪{u} or C2∪{u} for some u∈ A1 ⇒ ∆ = [DiCn, C1∪{u}] 

or ∆ = [DiCn, C2∪{u}] is a maximal complete subgraph 

with or der n+1 of the non-commuting graph ∆ = [DiCn, 

A] ⇒ ω(∆) = n + 1. By Theorem 3.5 (ii) ∆ = 

K2n−2,2,2,...,2 ⇔A = A1∪B ⇒ ∆ is a complete (n+1) –

partitegraph ⇔ A = DiCn−Z(DiCn). Thus,   n + 1 colors 

are required to colour the complete (n + 1) -partite graph. 

Thus, χ(∆) = n + 1. Consequently, ω(∆) = χ(∆) = n + 
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1. The non-commuting subgraph of ∆ = [DiCn, A] induced 

by C1 is a complete graph of order n (Corollary3.4). So 

completeness of this  implies that there exists at least one 

cycle of minimum length 3. So, ∆ = [DiCn, A] has grith  3. 

(iii) By Corollary 3.8, ∆ = P2 if A = Di = {ai, aix} for 

each i∈ I1 Thus, for each i∈ I1, aiaix is P2 with different 

end points and |I2| = 2n− 2, where ai ∈ A1 and aix ∈ B 

.As |A1| = 2n−2, |B| =2 n and n, 2n ∈/ I2⇒ we leave only 

two vertices x and anx which are not end of any P2   in D = 

{aiaix: i∈ I1}, otherwise we get edges with common vertex. 

Consequently the maximal matching of ∆ = [DiCn, A] is D 

={a
i 

a
i
x: i∈ I1} with γ(∆) = 2n − 2. As γ(∆) is not equal 

to the half of |DiCn − Z(DiCn)|, therefore matching is not 

perfect. 
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