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ABSTRACT: A meshfree collocation method using radial basis functions is developed for numerical solution of a parabolic 

type partial integro-differential equation with a weakly singular kernel. The scheme is constructed by approximating the time 

derivative using forward and central difference formulae while the spatial derivative is approximated using radial basis 

functions. Three types of radial basis functions are used for this purpose. Three test problems are provided to validate the 

proposed scheme. Numerical results are obtained using various numbers of collocation points and time step sizes. Accuracy of 

the method is assessed in terms of    and     error norms. Remarkable accuracy is obtained and the results are also 

compared with cubic B-spline collocation method. 
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1. INTRODUCTION 
Partial integro-differential equations (PIDEs) arise as 

mathematical models of various physical processes including 

heat conduction, viscoelastic polymers, nuclear reactor 

dynamics, immunology, option pricing and electricity 

swaptions. Some applications of PIDE as models of different 

physical phenomena can be found in the literature [1-6]. 

Several numerical techniques have been developed in the 

literature for the approximate solution of various types of 

PIDEs including finite difference methods, finite element 

methods, wavelet methods, spline methods, chebyshev 

polynomials, variational iteration and homotopy perturbation 

methods and radial basis functions methods (see [7-23, 31-

32] and the references therein).  

   In this paper, we develop a meshfree method based on 

collocation principle along with radial basis functions for 

solution of the following type PIDEs: 

∫  (   )  (   )      (   )   (   )   [   ] 
 

 

                                                              (1)                                                                                                             

with initial condition 

 (   )    ( )         ,                                 (2) 

and boundary conditions  

 (   )    ( )  (   )    ( )                         (3)                 

where  ( )  is a weakly singular kernel which is given as 

 ( )  
 (   )

 ( )
,        at          denotes the gamma 

function,   ( )   ( ) and   ( ) are known functions. 

   Meshfree methods using radial basis functions (RBF) 

have become popular in approximation theory because of its 

simplicity, exponential accuracy, flexibility with respect to 

geometry, dimensional independence and straightforward 

implementation. Meshfree methods do not require a grid and 

only make use of a set of scattered data points regardless of 

the connectivity information between the points. Unlike 

finite-difference, finite element, finite volume and spectral 

methods these methods circumvent mesh generation which is 

main problem in mesh-based numerical methods. Also radial 

basis function based methods are domain type methods 

because the solution of the problem can be extended to whole 

domain In 1990, Kansa pioneered the radial basis function 

collocation method for the approximate solution of PDE 

[24]. Later on, Franke and Schaback gave a theoretical 

establishment to the method for the solution of partial 

differential equations [5]. Further applications of this method 

to partial differential equations can be found in [26-30]. 

Recently, the radial basis functions collocation method has 

been used for the solution of different types of PIDEs 

including nonlinear parabolic partial integro-differential 

equation with weakly singular kernel [22], nonlinear volterra 

partial integro-differential equations [31] and convection-

diffusion integro-differential equations [32]. 

Radial basis functions are mainly divided in two 

categories:  

(i) Infinitely smooth RBFs  

(ii) Piecewise smooth RBFs  

The infinitely smooth RBFs contain a parameter called shape 

parameter which affects both accuracy of solution and 

conditioning of collocation matrix, while piecewise smooth 

RBFs are free of shape parameter. To find that value of the 

shape parameter which leads to optimal accuracy is still an 

open problem (see [28-30]). 

 Some of commonly used RBFs are as follows:  

   Multiquadric (MQ)                   ( )  √      

   Gaussian (GA)                          ( )      (    ) 

   Thin plate spline (TPS)             ( )        

   Quintic                                      ( )     

   Spline of degree seven (SD)      ( )     

Where   is the shape parameter.  

In this paper, MQ, GA and SD types of radial basis functions 

are used for computation. 

2. CONSTRUCTION OF PROPOSED METHOD 

Consider the partial integro-differential equation given in 

Eqs. (1)-(3). Let        where   is the time step and 

                    . In Eq. (1), the integral term is 

approximated at        as given in [19, 23]: 

∫
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where     ( )   (      )    (   )    ,   
             
From Eqs. (1) and (4), we have 
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where    
   ( )     (      ),     ( )   (      )  

Assuming      (   )     with     .  

Eq. (5) becomes  
 ( )       

   ( )  
    

 ( )  ∑ (         ) 
   ( )      ( )       

   

(        )  ( )     
   ( )                                                             

(6)                                                                                             

Substituting    , in Eq. (6), then    can be obtained from 

the following: 

  ( )          
    ( )        

 ( ),                  

To obtain approximate solution of the problem (1)-(3) using 

radial basis functions collocation method, we choose     

distinct points                 from the interval 

[   ] such that      and       The RBF approximation 

of the function  (   ) at  th time level is given by  

  ( )  ∑   
  (  )  

                                            (7) 

where   
  are unknown time dependent  parameters to  be 

determined from collocation conditions,   is a radial basis 

function and    |    |  is Euclidean distance. 

Collocating Eq. (6) at                 , and using 

Eq. (7), we get 
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Also from Eqs. (3) and (7), we have 
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}                              (9)          

where     |     |  
In matrix form Eqs. (8) and (9) can be expressed as    
 

       [     
 
 ∑ (         )  

      
          

   
   ]                                                        (10)                                         

where     [   ]     

 
,  [   ]     

 
such that      (   ) ,  

    {
   (   )               

                          
  

  [     ]        [  
    

      
 ] . Inevitability of 

the matrix   is yet to be proved. Eq. (10) represents a system 

of     equations in     unknown parameters   
   ’s. 

The solution of Eq. (10) leads to the vector     
 and then the 

approximate solution is obtained by using Eq. (7).  

3. NUMERICAL TESTS AND PROBLEMS 

In this section we provide some problems in order to test 

accuracy of the RBF collocation method (10) for the solution 

of the problem (1)-(3). For the sake of comparison all the 

three test problems are taken from the reference [19] with 

  
 

 
  Error norms  

   and    are used for this purpose. Accuracy of the proposed 

scheme is compared with results of cubic B-spline 

collocation method [19]. The solution plotted in each figure 

is obtained using multiquadric in the RBF collocation 

method (10).      

Example 1: Consider Eqs. (1)-(3) with    [   ] , and  

 (   )  is chosen so that the exact solution [19] is 

  (   )  (   )      .                                         

The initial and boundary conditions are obtained from the 

exact solution. Computations are performed using MQ, SD 

and GA types of RBFs with parameters            
             and the error norms    and    up to time 

level        are reported in Tables (1)-(2) whereas Table 

(3) contains the error norms for different number of 

collocation points                   Better accuracy of 

the present method using MQ and GA than cubic B-spline 

collocation method [19] is obvious from Tables 1-2. 

However, SD produces better results than [19] for larger 

values of     Fig. 1 presents the RBF and exact solutions up 

to       . Fig. 2 shows the RBF solutions over the time 

interval [0, 1]. Fig. 3 shows    errors versus 1/   . Most 

accurate results are obtained for shape parameter   
           corresponding to          respectively for 

MQ and       for GA while SD is free of shape 

parameter         
   Example 2: In this example we consider Eqs. (1)-(3) and 

choose  (   ) such that the exact solution [19] is 

 (   )  (   )      ,   [   ]  
The initial and boundary conditions are taken from the exact 

solution. Numerical simulations are done using MQ, SD and 

GA with parameters                     and the 

error norms    and    up to time level        are 

reported in Table (4) while Table 5 contains the error norms 

for different number of collocation points            
          Better accuracy of the present method using MQ, 

SD and GA than B-spline collocation methods [19, 23] is 

evident from Table (4). However, SD requires larger values 

of   for better accuracy than [19, 23]. Fig. 4 presents the 

RBF and exact solutions up to time level      . Fig. 5 

shows the RBF solutions over the time interval [0, 1]. Most 

accurate results are obtained for shape parameter        

for MQ and         corresponding to                

respectively for GA. The radial basis functions SD is 

independent of the shape parameter         
 Example 3: We consider Eqs. (1)-(3) and choose  (   ) 

such that the exact solution [19] is 

 (   )  (   )      ,    [    ]. 
The initial and boundary conditions are taken from the exact 

solution. Simulations are done using MQ, SD and GA with 

parameters                      and the error norms 

   and    up to time level       are reported in Table (6) 

Better accuracy of the present method using MQ, SD and GA 

than cubic B-spline collocation method [19] can be seen 

from Table (6). However, SD requires larger values of   for 

better accuracy than [19]. Fig. 6 presents the RBF and exact 

solutions up to time level       . Fig. 7 shows the RBF 

solutions over the time interval [0,1]. Most accurate results 

are obtained for shape parameter            

corresponding to                 respectively for MQ 

and         corresponding to                 

respectively for GA. The radial basis function SD is 

independent of shape parameter    
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Table 1:    and     for            
                                                  N =60 N =100 

 M                       

 10 1.67      8.48      1.66      7.13      

 50 1.74      1.20      1.71      9.65      

M
Q 

100 1.79      1.43      1.73      1.07      

 500 1.87      1.89      1.82      1.38      

 1000 1.98      2.07      1.91      1.55      

 10 1.01      5.54      1.22      5.11      

 50 1.04      7.51      1.25      6.88      

SD 100 1.06      8.52      1.26      7.79      

 500 1.12      1.10      1.33      1.00      

 1000 1.22      1.22      1.40      1.12      

 10 3.85      2.21      8.45  
     

2.98      

 50 3.94      2.98      7.91  
     

3.50      

GA 100 4.23      3.46      9.13  
     

5.09      

 500 4.56      4.53      9.51  
     

6.38      

 1000 4.82      4.98      9.82  
     

7.20      

[19

] 

10 4.12      3.76        

 50 4.06      3.71        

Table 2:    and     for           
                                                  N =60 N =100 

 M                             

 10 2.88      2.66      1.13      6.85      

 50 4.88      4.63      1.17      9.03      

M

Q 

100 4.71      4.70      1.29      1.04      

 500 6.67      7.29      1.76      1.53      

 1000 7.47      7.74      2.40      2.17      

 10 1.06      8.13      1.26      7.44      

 50 1.23      1.08      1.33      9.87      

SD 100 1.18      1.21      1.40      1.10      

 500 1.62      1.80      1.91      1.64      

 1000 2.17      2.45      2.56      2.23      

 10 4.63      2.26      5.30      2.72      

 50 3.74      2.75      1.80      8.20      

GA 100 3.06      2.52      1.20      5.89      

 500 4.63      4.50      2.95      1.78      

 1000 5.86      6.08      3.31      2.29      

[19
] 

10 8.77      8.01        

 50 8.23      7.51        

 
Figure 1: RBF and exact solutions for Example-1 for       

     . 

 

 
Figure 2: RBF solutions over time interval [   ] corresponding 

to Example-1 for               . 

 

Table 3:    and     for                 
   
 

MQ [19] 

N                             

10 9.33          
      

8.58      1.84 
     

20 3.18      3.61      1.62      2.06 
     

30 1.14      9.40      4.09      2.96 
     

40 4.14      2.88 
      

1.32      1.16 
     

60 1.67      8.48      9.14      6.85 
     

 GA  SD 

10 1.30      2.77      4.90      8.01 
     

20 6.39      6.00      2.14      2.18 
     

30 7.09      7.02      3.88      3.08 
     

40 1.55      8.22      1.18      7.93 
     

60 3.85      2.21      2.34      1.48 
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Table 4:    and     for        

 SD  [19] 

N                             

10 4.29      7.20      2.02      4.51      

20 1.20      1.25      4.29      6.78      

30 1.92      1.57      1.35      1.74      

40 5.55      3.84      3.22      3.60      

50 2.16      1.32      1.54      1.54      

60 1.01      5.54      4.12      3.76      

 
Figure 3:    error versus     Example-1 for         . 

 
Figure 4: RBF and exact solutions corresponding to le-2 for 

             . 

 

Table 5:    and     for                
                                                  k =0.001 k =0.0001 

 M                             

 10 3.06      2.00      2.43      9.18      

 20 3.18      2.12      4.14      2.03      

M
Q 

50 3.25      2.25      4.10      1.64      

 100 3.39      2.38      3.70      1.86      

 500 4.62      3.32      3.57      2.12      

 10 2.34      1.48      2.25      1.20      

 20 2.38      1.56      2.28      1.32      

SD 50 2.46      1.66      2.32      1.44      

 100 2.59      1.77      2.35      1.51      

 500 3.54      2.46      2.47      1.67      

 10 1.55      8.18      2.43      1.16      

 20 1.59      9.49      3.22      1.49      

GA 50 1.64      8.73      2.00      1.16      

 100 1.71      1.07      3.24      1.64      

 500 2.35      1.26      2.33      1.43      

[19 10 9.90      8.59      9.14      6.85      

 20 9.88      8.58      9.10      5.40      

 50 9.77      8.48      8.86      5.44      

    

[23 

10 7.29      8.15      1.02      1.14      

 20 1.16      1.29      1.02      1.14      

 50 2.06      2.30      2.90      3.24      

 
Figure 5: RBF solutions over time interval [   ] for Example-2 

for               . 

 
Figure 6: RBF and exact solutions corresponding to Example-3 

for              . 

 

Table 6:    and     for        
                                                  k =0.001 k =0.00125 

 M                             

 10 5.98      6.69      8.82      9.84      

 20 9.99      1.12      1.46      1.63      

M
Q 

50 1.86      2.08      2.68      3.00      

 10

0 
2.87      3.21      4.11      4.59      

 50

0 
7.27      8.13      1.03      1.15      

 10 6.06      6.26      6.14      6.78      

 20 6.31      7.56      6.43      8.30      

SD 50 6.86      9.97      7.32      1.10      

 10
0 

8.22      1.22      9.84      1.40      

 50

0 
1.86      2.62      2.37      3.28      

 10 9.08      5.90      6.31      6.52      

 20 9.14      6.63      1.13      1.16      

GA 50 1.16      1.19      2.25      2.36      
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 10

0 
2.01      2.05      3.57      3.81      

 50

0 
5.46      5.64      9.02      9.69      

[19
] 

10 5.99      6.25      1.00      1.05      

 20 4.33      4.66      7.23      7.71      
 50 2.00      1.67      2.87      2.34      

 
Figure 7: RBF solutions over time interval [   ] for 

Example-3 for               . 

 

4. CONCLUSION 
A collocation method coupled with radial basis functions is 

employed to approximate solution of a parabolic type 

integro-differential equation with a weakly singular kernel. 

The proposed method is validated by implementing three 

benchmark problems from literature. The errors are 

satisfactorily small and the results are in good agreement 

with exact solution. Implementation of the method is simple 

like finite difference method. Infinitely RBFs provided 

excellent accuracy. Numerical simulations suggest that this 

method can be used for numerical approximation of integral 

equations, partial differential equations and partial integro-

differential equations of such type. 
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