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ABSTRACT: A meshfree collocation method using radial basis functions is developed for numerical solution of a parabolic
type partial integro-differential equation with a weakly singular kernel. The scheme is constructed by approximating the time
derivative using forward and central difference formulae while the spatial derivative is approximated using radial basis
functions. Three types of radial basis functions are used for this purpose. Three test problems are provided to validate the
proposed scheme. Numerical results are obtained using various numbers of collocation points and time step sizes. Accuracy of
the method is assessed in terms of L, and L, error norms. Remarkable accuracy is obtained and the results are also

compared with cubic B-spline collocation method.
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1. INTRODUCTION

Partial integro-differential equations (PIDES) arise as
mathematical models of various physical processes including
heat conduction, viscoelastic polymers, nuclear reactor
dynamics, immunology, option pricing and electricity
swaptions. Some applications of PIDE as models of different
physical phenomena can be found in the literature [1-6].
Several numerical techniques have been developed in the
literature for the approximate solution of various types of
PIDEs including finite difference methods, finite element
methods, wavelet methods, spline methods, chebyshev
polynomials, variational iteration and homotopy perturbation
methods and radial basis functions methods (see [7-23, 31-
32] and the references therein).

In this paper, we develop a meshfree method based on
collocation principle along with radial basis functions for
solution of the following type PIDEs:

Jy Bt = $)wi(x,5)ds — i (x,8) = g(x, 1), x € [a, b],

t>0, )
with initial condition
w(x,0) = hy(x), a<x <b, 2
and boundary conditions
w(a,t) = hy(t),w(b,t) = hy(t),t =0, ?3)
where B(t) is a weakly singular kernel which is given as
B() = E, 0O<a<1 at t=0, T denotes the gamma

I(a)
function, hy(x), h,(t) and h,(t) are known functions.
Meshfree methods using radial basis functions (RBF)
have become popular in approximation theory because of its
simplicity, exponential accuracy, flexibility with respect to
geometry, dimensional independence and straightforward
implementation. Meshfree methods do not require a grid and
only make use of a set of scattered data points regardless of
the connectivity information between the points. Unlike
finite-difference, finite element, finite volume and spectral
methods these methods circumvent mesh generation which is
main problem in mesh-based numerical methods. Also radial
basis function based methods are domain type methods
because the solution of the problem can be extended to whole
domain In 1990, Kansa pioneered the radial basis function
collocation method for the approximate solution of PDE
[24]. Later on, Franke and Schaback gave a theoretical
establishment to the method for the solution of partial

differential equations [5]. Further applications of this method
to partial differential equations can be found in [26-30].
Recently, the radial basis functions collocation method has
been used for the solution of different types of PIDEs
including nonlinear parabolic partial integro-differential
equation with weakly singular kernel [22], nonlinear volterra
partial integro-differential equations [31] and convection-
diffusion integro-differential equations [32].

Radial basis functions are mainly divided in two
categories:
(i) Infinitely smooth RBFs
(ii) Piecewise smooth RBFs
The infinitely smooth RBFs contain a parameter called shape
parameter which affects both accuracy of solution and
conditioning of collocation matrix, while piecewise smooth
RBFs are free of shape parameter. To find that value of the
shape parameter which leads to optimal accuracy is still an
open problem (see [28-30]).
Some of commonly used RBFs are as follows:

Multiquadric (MQ) Y(r) =Vr? + c?
Gaussian (GA) Y(r) = exp(—cr?)

Thin plate spline (TPS) Y(r)=rlnr
Quintic P(r) =715
Spline of degree seven (SD) () =717

Where c is the shape parameter.
In this paper, MQ, GA and SD types of radial basis functions
are used for computation.

2. CONSTRUCTION OF PROPOSED METHOD
Consider the partial integro-differential equation given in
Egs. (1)-(3). Let t, = nk, where k is the time step and
ther =th +k, n=0,12.. In Eq. (1), the integral term is
approximated at t = t,,,, as given in [19, 23]:
ftn+1 (tns1=8)*'we(x, s)ds - t2 (W) -wO () (tni1—5)% ds

0 I'(a) to kI'(a)

n ftm W@ -w T () (tnar =) ds o w(0)-wo(x)

r=1Jt, 2k T(a+1) noT(a+1)k!-@

1 _ Wr+1(x)_wr—1(x)
2l (a+1) ZL& by kl-a ! (4)
where w™*(x) = w(x, thy1), by = (n+ 1D* —n% n =
0,1,2,..,M.
From Egs. (1) and (4), we have
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bow™1(x) — 2T (a + Dk *wiFi(x) = bgw™ 1 (x) —
2;1;11 bT(Wn_H'l(x) _ Wn—r—l(x)) _
2b,(Wwi(x) —w°(x)) + 2I'(a + Dk ~%g™ 1 (x),
(%)
where wi (x) = Wy (x, tr41), gV H(x) = g(x, trya),
Assuming d, = 2I'(a + 1)k~ with by = 1.
Eq. (5) becomes
w(x) — dowi ' (x) =
—byw™(x) + X721 (br—q = by )W (X) — byw'(x) +
(bp_q + 2b WO (x) + dog™ (x), n=1.
(6)
Substituting n = 0, in Eq. (6), then u* can be obtained from
the following:

wl(x) — 0.5d,w,,! = w°(x) + 0.5d,g* (x),
To obtain approximate solution of the problem (1)-(3) using
radial basis functions collocation method, we choose N + 1
distinct points x;, i =0,1,2,...,N, from the interval
[a, b] such that a = x4 and xy = b. The RBF approximation
of the function w(x, t) at nth time level is given by
w(x) = Zmoo Am¥(em), )
where A%, are unknown time dependent parameters to be
determined from collocation conditions, ¥ is a radial basis
function and e, =|x—x,| is Euclidean distance.
Collocating Eqg. (6) at x = x;,i = 1,2,...,N — 1, and using
Eq. (7), we get
211\11:0 A?n+1lp(eim) -
do Xm=o ﬂﬁllpn(eim) =
_bl ivn=0 ﬂfnw(elm) +Z7T1;11((br71 -
bri1) Tn=o Am  W(€im)) = by Y=o Am¥ (€im) +
(b +2b,) o Amp(eim) + dog™ (x).  (8)
Also from Egs. (3) and (7), we have
2%:0 At (eom) = hy(tnsr), }
Y=o A W (enm) = ho(tns1),
where e, = |x; — X, |.
In matrix form Egs. (8) and (9) can be expressed as
A = =b1 AL + B0l (by_y — bry)AMNYTT — b AL +
doG™1], (10)

N N
where A = [aij]i,j=0'B = [bij]i,]'=0 such that al-]- = 1/)(el-j),
by = {zp”(ei,-),1 SiSN-10<j<N,
0, i=0N, 0<j<N.

C=[A—-dyB]land A" = [A3, A7, ..., A%]T . Inevitability of
the matrix C is yet to be proved. Eq. (10) represents a system
of N + 1 equations in N 4+ 1 unknown parameters A]’-”l ’s.
The solution of Eq. (10) leads to the vector A*** and then the
approximate solution is obtained by using Eq. (7).
3. NUMERICAL TESTS AND PROBLEMS
In this section we provide some problems in order to test

accuracy of the RBF collocation method (10) for the solution
of the problem (1)-(3). For the sake of comparison all the
three test problems are taken from the reference [19] with

)

a=1 Error norms

2
L and L, are used for this purpose. Accuracy of the proposed
scheme is compared with results of cubic B-spline
collocation method [19]. The solution plotted in each figure
is obtained using multiquadric in the RBF collocation

method (10).
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Example 1: Consider Egs. (1)-(3) with x € [0,1], and
g(x, t) is chosen so that the exact solution [19] is
w(x,t) = (t + 1) sinmx.
The initial and boundary conditions are obtained from the
exact solution. Computations are performed using MQ, SD
and GA types of RBFs with parameters N = 60, 100, k =
0.0001, 0.001 and the error norms L., and L, up to time
level M = 1000 are reported in Tables (1)-(2) whereas Table
(3) contains the error norms for different number of
collocation points N = 10, 20, 30,40, 60. Better accuracy of
the present method using MQ and GA than cubic B-spline
collocation method [19] is obvious from Tables 1-2.
However, SD produces better results than [19] for larger
values of N. Fig. 1 presents the RBF and exact solutions up
to M = 1000. Fig. 2 shows the RBF solutions over the time
interval [0, 1]. Fig. 3 shows L, errors versus 1/ N. Most
accurate results are obtained for shape parameter ¢ =
0.21,0.125 corresponding to N = 60,100 respectively for
MQ and ¢ =100 for GA while SD is free of shape
parameter c.
Example 2: In this example we consider Egs. (1)-(3) and
choose g(x,t) such that the exact solution [19] is
w(x,t) = (t + 1) cosmx, x € [0,1].
The initial and boundary conditions are taken from the exact
solution. Numerical simulations are done using MQ, SD and
GA with parameters N = 60, k = 0.001, 0.0001 and the
error norms L, and L, up to time level M = 1000 are
reported in Table (4) while Table 5 contains the error norms
for different number of collocation points N = 10, 20, 30,
40, 50, 60. Better accuracy of the present method using MQ,
SD and GA than B-spline collocation methods [19, 23] is
evident from Table (4). However, SD requires larger values
of N for better accuracy than [19, 23]. Fig. 4 presents the
RBF and exact solutions up to time level M = 500. Fig. 5
shows the RBF solutions over the time interval [0, 1]. Most
accurate results are obtained for shape parameter ¢ = 0.21
for MQ and ¢ = 80,90 corresponding to k = 0.001,0.0001
respectively for GA. The radial basis functions SD is
independent of the shape parameter c.
Example 3: We consider Egs. (1)-(3) and choose g(x,t)
such that the exact solution [19] is
w(x, t) = (t+ D?sinmx, x € [-1,1].
The initial and boundary conditions are taken from the exact
solution. Simulations are done using MQ, SD and GA with
parameters N = 40, k = 0.001, 0.00125 and the error norms
Lo, and L, up to time level M = 500 are reported in Table (6)
Better accuracy of the present method using MQ, SD and GA
than cubic B-spline collocation method [19] can be seen
from Table (6). However, SD requires larger values of N for
better accuracy than [19]. Fig. 6 presents the RBF and exact
solutions up to time level M = 1000. Fig. 7 shows the RBF
solutions over the time interval [0,1]. Most accurate results
are obtained for shape parameter ¢ = 0.4,0.32
corresponding to k = 0.001,0.00125 respectively for MQ
and c¢=7570 corresponding to k =0.001,0.00125
respectively for GA. The radial basis function SD is
independent of shape parameter c.
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N =60 N =100
M Lo L, Lo, L,
10 1.67x 1077 848x10™° 1.66x 107 7.13x107°
50 174x 1077 1.20x107® 1.71x 1077 9.65x 10~°
M 100 1.79x 1077 143x10® 1.73x 1077 1.07x 1078
Q
500 1.87x1077 1.89x107® 1.82x 1077 1.38x 1078
1000 1.98x 1077 2.07x10°® 1.91x1077 1.55x107®
10 1.01x 1075 554x 1077 1.22x10°¢ 511x 1078
50 1.04x 1075  7.51x 1077 1.25x10¢ 6.88x 1078
SD 100 1.06x10~° 852x1077 1.26x107® 7.79x 1078
500 1.12x1075 1.10x107® 1.33x107® 1.00x 1077
1000 1.22x1075 1.22x10™® 1.40x10~® 1.12x 1077
10 3.85x 1077 221x 1078 8.45x 2.98x 1078
1077
50 3.94x 1077 298x 1078 7.91x 3.50x 1078
1077
GA 100 4.23x1077 346x107® 9.13x 5.09x 1078
1077
500 4.56x 1077 453x107® 951X 6.38x 1078
1077
1000 4.82x 1077 4.98x10°® 9.82x 7.20x 1078
1077
[19 10 412x 107°  3.76x 107°
|
50 4.06x 107¢  3.71x 1077
Table 2: L, and L, for k = 0.001.
N =60 N =100
M Lo, L, Lo, L,
10 2.88x 1078 2.66x10™° 1.13x1077 6.85x 107°
50 488x 107® 463x107° 1.17x1077 9.03x107°
M 100 4.71x107% 470x107° 1.29x1077 1.04x 1078
Q
500 6.67x107% 7.29x10° 1.76x 1077 1.53x 1078
1000 7.47x107® 7.74x107° 2.40x 1077 217x 1078
10 1.06x 10~° 8.13x 1077 1.26x10°° 7.44x 1078
50 1.23x10"° 1.08x 107 1.33x107® 9.87x 107®
SD 100 1.18x10™° 1.21x107® 1.40x107¢ 1.10x 1077
500 1.62x107° 1.80x107® 1.91x107® 1.64x 1077
1000 2.17x1075 245x107® 256x107° 2.23x 1077
10 463x 1077 226x 1078 530x107® 2.72x107°
50 3.74x 1077 2.75x 107® 1.80x 1077 8.20x 107°
GA 100 3.06x1077 252x10% 1.20x1077 5.89x107°
500 4.63x 1077 450x 107 295x 1077 1.78x107®
1000 5.86x 1077 6.08x 1078 3.31x 1077 229x 1078
[19 10 8.77x10™* 8.01x 107°
1
50 8.23x 10™*  7.51x 107°
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RBF and exact solutions for Example-1 for k=
0.001.

Figure 2: RBF solutions over time interval [0, 1] corresponding
to Example-1 for N = 60,k = 0.001.

Table 3: L, and L, for k=0.0001,M = 10.

MQ [19]

N Lo, L, Lo, L,
10 9.33x 1078 1.44 858x 10™*  1.84x
x 1078 107*

20 3.18x 1077 361x107% 1.62x107* 2.06x
1075

30 1.14x 1077  9.40x 10™° 4.09x 10~° 2.96x
107°

40 414x107°  2.88x 1.32x107¢  1.16x
1010 10-¢

60 1.67x 1077 8.48x107° 9.14x 1075 6.85x%
10°

GA SD

10 1.30x 108 2.77x10™° 4.90x 103 8.01x
107*

20 6.39x 1078 6.00x 10™° 2.14x10™* 2.18x
1075

30 7.09x 1078  7.02x 10™° 3.88x10~° 3.08x
107

40 155x 1077  8.22x10™° 1.18x10~° 7.93x
1077

60 3.85x 1077 221x 1078 2.34x107° 1.48x
1077




1N

Figure 3: L, error versus 1/N Example-1 for k= 0.001.
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Table 4: L., and L, for N = 60. 100 1.71x 1077 1.07x 1078 324x 1077 1.64x 1078
SD [19] 500 2.35x 1077 1.26x 1078 233x 1077 1.43x 1078
N Lo, L, Lo L, [19 10 9.90x 10™* 859x10° 9.14x10™° 6.85x10°°
10 429x 1072 7.20x 1073 2.02x 1073 4.51x 107* _
O . -4 . -5 . -5 . X 0 6
20 120x107 125x10* 420x10* 6.78x 10~ 2 988x 107 8.58x 107 9.10x 107  540x1
30 1.92x 10~* 157x 105 1.35x 10~* 1.74x 105 50 9.77x107* 8.48x 1075 8.86x 105 544x107°°
r3 —7 -5 -6
40 555x10-5 3.84x 1076 3.22x10-5 3.60x 10-6 23 10 729x10™ 8.15x107" 1.02x10™ 1.14x10
50 216x 1075  1.32x107° 1.54x 1075 154x10°° 20 1.16x 1075 1.29x107® 1.02x 105 1.14x 107
60 1.01x 1075 5.54x 1077 4.12% 10_5 3.76x 107¢ 50 2.06% 1075 2.30%x 10~¢ 2.90% 1075 3.24% 10~¢
x 10"
8 T T T T T T T T
7« -
6« -
5 1 =
g
45 1
9
3« -
2« -
l« -
0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 5: RBF solutions over time interval [0, 1] for Example-2
for N= 60,k =0.001.
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Figure 6: RBF and exact solutions corresponding to Example-3
for N = 40,k =0.001.

Table 6: L., and L, for N = 60.

2 T T T T
e RBF
151 =1 Exact -
1 -
05 =0 .
z0- 4
0.5 g
_1 =
-1.5F 8
_2 r r r r
0 0.2 0.4 X 0.6 0.8 1
Figure 4: RBF and exact solutions corresponding to le-2 for
N = 60,k =0.001.
Table5: L., and L, for k=0.0001, M = 10.
k =0.001 [ k =0.0001
M Lo L, Lo Ly
10 3.06x 1077 2.00x 1078 2.43x 1077 9.18x107°
20 3.18x 1077  212x107% 4.14x 1077 2.03x10°8
M 50 325x 1077 225x107® 4.10x 1077 1.64x 1078
Q
100 3.39x 1077  2.38x 1078 3.70x 1077 1.86x 1078
500 462x 1077  3.32x107% 357x 1077 2.12x 1078
10 234x107% 148x1077 225%x107°% 1.20x 1077
20 2.38x 107 1.56x 1077 2.28x107° 1.32x 1077
SD 50 246x 107 1.66x 1077 2.32x107° 1.44x 1077
100 259x 107  1.77x 1077  2.35x 107® 1.51x 1077
500 3.54x 107% 246X 1077 247x107°% 1.67x1077
10 155%x 1077 8.18x107° 243x1077 1.16x 1078
20 159x 1077  9.49x107° 3.22x 1077 1.49x 1078
GA 50 1.64x 1077 873x107° 2.00x 1077 1.16x 1078

k =0.001 | k =0.00125

M Lo, L, Lo, L,

10 598x107® 6.69x1077 8.82x107° 9.84x 1077

20 9.99x107¢ 1.12x107® 1.46x1075 1.63x 107
M 50 1.86x1075 2.08x107® 2.68x 1075 3.00x 10~°®
Q

10 287x10° 321x107° 4.11x10™° 4.59x 107°

0

50 7.27x1075 813x107® 1.03x10™* 1.15x10°°

0

10 6.06x10"° 6.26x107° 6.14x10™5 6.78x 107°

20 6.31x107° 756x107° 6.43x 1075 8.30x 107
SD 50 6.86x1075 9.97x10°° 7.32x10°5 1.10x 1075

10  8.22x10° 1.22x107¢ 9.84x 105 1.40x 1075

0

50 1.86x107* 2.62x1075 2.37x107* 3.28x10°°

0

10  9.08x107® 590x 1077 6.31x10°° 6.52x 1077

20 9.14x107% 6.63x1077 1.13x1075 1.16x 107
GA 50 1.16x10™° 1.19x107® 2.25x107° 2.36x10°°

January-February



Sci.Int.(Lahore),29(1),1-6,2017 ISSN: 1013-5316; CODEN: SINTE 8 5
(1)0 2.01x 1075 2.05x107® 357x 10> 3.81x 107¢ [8] Le Roux, M.N. and V. Thomee, “Numerical solution of
semilinear integro-differential equations of parabolic
50 546x10™° 564x107¢ 9.02x10™° 9.69x 107¢ -
0 x X % X type with nonsmooth data”, SIAM J. Numer. Anal., 26:
[19 10 599x10* 6.25x10° 1.00x10~® 1.05x 10" 1291-1309 (1989).
] 20 433x10-* 466x10-5 723x 104  771x 10-5 [9] Yanik, E.G. and G. Fairweather, “Finite element methods
50 200x10-3 167x10-* 287x10-% 234 10-* for parabolic and hyperbolic partial integro-differential

Figure 7: RBF solutions over time interval [0, 1] for
Example-3 for N = 40,k = 0.001.

4. CONCLUSION

A collocation method coupled with radial basis functions is
employed to approximate solution of a parabolic type
integro-differential equation with a weakly singular kernel.
The proposed method is validated by implementing three
benchmark problems from literature. The errors are
satisfactorily small and the results are in good agreement
with exact solution. Implementation of the method is simple
like finite difference method. Infinitely RBFs provided
excellent accuracy. Numerical simulations suggest that this
method can be used for numerical approximation of integral
equations, partial differential equations and partial integro-
differential equations of such type.
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