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ABSTRACT: The purpose of this paper is to study the motion properties of the third body which is moving inside the outer 

layer of the oblate heterogeneous body filled with the viscous fluid, under the influence of the oblate heterogeneous body and 

the radiating point mass which is producing the modified Newtonian potential. Wealso assume that the system is perturbed 

by the small perturbations in Coriolis and centrifugal forces. By using the evaluated system of equations of motion, we 

determine the locations of the collinear, non-collinear and out-of-plane equilibrium points. Finally, the stability 

examinations are done for these equilibrium points.           
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1. INTRODUCTION 
New kind of restricted 3-body problem was introduced by 

[14], where primary is taken as spherical shell which is 

filled with incompressible fluid and secondary is taken as 

point mass. These two bodies are moving in circular orbits 

around their common center of mass. And the third smallest 

body is moving inside the spherical shell in the fluid under 

the gravitational forces of the both massive bodies but not 

influencing them. 

Afterward the Robe’s problem was extended with various 

perturbations by many researchers. [15] studied the effect of 

the perturbations in Coriolis and centrifugal forces on the 

location of equilibrium point in the Robe’s restricted 

problem of 3 bodies and they also supposed that the density 

of the infinitesimal body is equal to the density of the fluid 

filled in the primary. [13] investigated the Robe’s problem 

by considering the first primary as Roche’s ellipsoid and 

examined the linear stability of the equilibrium points. They 

also pointed out the connection between the buoyancy force 

and the Coriolis force. [8, 9, 10] studied the existence and 

stability of equilibrium points in the Robe’s restricted 3-

body problem in two cases for the movement of the 

primaries as elliptical and as circular. In the case of elliptical 

motion, they found only one equilibrium point while in the 

case of circular motion they found infinite number of 

equilibrium points. They also pointed out that the collinear 

equilibrium points are stable while in the classical case it is 

unstable and triangular equilibrium points are stable. 

[16, 17, 18, 19, 20] investigated the locations and stability 

of the smallest body around equilibrium points in circular 

Robe’s restricted 3-body problem under the supposition that 

both the primaries are oblate body. They found two 

equilibrium points in In-plane motion, one near the center of 

the first primary which is conditionally stable and second 

near the line joining the center of both the primaries, is 

unstable. They also found two equilibrium points in out-of-

plane which are unstable. [3, 2, 4] studied the Robe’s 

restricted problem by assuming that the fluid taken inside 

the first primary has viscous force and other primary is 

oblate in shape. They found two collinear equilibrium 

points, infinitely many circular equilibrium points and two 

out-of plane equilibrium points which all are unstable. [12] 

analyzed the equilibrium solutions and their linear stability 

of Robe’s restricted problem when one primary is taken as 

spherical shell and another primary is considered as finite-

straight segment. They observed that the collinear 

equilibrium points are conditionally stable while non-

collinear and out-of-plane equilibrium points are unstable. 

[7] studied this problem by supposing the drag forces. [6] 

examined the stability of the triangular equilibrium points in 

the Robes restricted 3-body problem by supposing the effect 

of solar radiation pressure. Some more related studies are as 

follows: [21,22, 23, 24, 25]. 

We arranged the paper in five sections. The review of 

literature is given in section 1. In section 2, we 

determinedthe equations of motion. In section 3, we 

evaluated the existence of equilibrium points in three 

subsections 3.1, 3.2 as well as 3.3 and the stability 

examination is done in section 4. Finally, the conclusion is 

made in section 5. 

2. EQUATIONS OF MOTION 

Assuming that there are two masses, m1 as primary is an 

oblate heterogeneous body with N−layers having different 

densities ρN, and m2 as secondary is a radiating point mass 

which is producing the modified Newtonian potential. These 

two bodies are moving in circular orbits around their 

common center of mass which is taken as origin O. The 

second primary m2 is moving around the first primary m1 in 

circular orbit also. There is a third infinitesimal body of 

mass m which is moving inside the outer layer (i.e. N
th

 –

layer) of the primary m1, this layer is filled with 

incompressible homogeneous viscous fluid. Therefore at the 
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time of motion, body m has the following forces: 

a. The gravitational force exerted by the fluid and buoyancy 

force in the N
th

 –layer i.e. 

1

4
( 1)

3

N
B NF mG r





   

The gravitational force due to (N − 1) layers of an oblate 

heterogeneous primary m1 i.e. (see [5]) 
2*
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[ ]
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r r r
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The modified gravitational force due to the second primary 

m2  i.e. (see [1]) 
2
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The force due to radiation pressure from the second primary 

i.e. (see [11]) 

2 2 2 2
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p
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F
F F F F p qF

F
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The viscous force i.e. 

0 0 0( , , ) ( , , ),v x y zF m v v v m x y z       with 

viscous constant 0 . 

Hence the total force on m will be 
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Nm = the mass of the N
th

-layer, 

p = Radiating force/Gravitational force, 

 
4

( 1),
3

N
NK G





   

1
2 2 2

1 1

1

4 1
( ) (2 ),

3 5

N

i i i i i i i i

i

h a b c a b c


 






     

1
2 2

3 1

1

4 1
( ) ( ).

3 5

N

i i i i i i i

i

h a b c a c


 






    

For the non-dimensional units, we have m1 + m2 = 1, G = 1 

and the separation distance between the primary and 

secondary is unity, and also µ = m2/(m1 + m2) . Hence m1 = 

1−µ and m1
*
  = 1− µ − µN  with µ N = mN/(m1 + m2) 

.Therefore the equations of motion of the small body in the 

cartesian coordinate will be as follows: 

2 ,

2 ,

,
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y n x v
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                                                    (1) 

With, n is the mean motion of the system and given by Eq. 

(18). iJ and k  are the dimensionless quantities of ih  and K 

respectively. 
2

2 2

2 2

2 2

( )( 1)
( )

( )
x

q r x
n x k x

r r

  
 



  
   


 

2

3
13 5 2

1 1 1

(1 )( ) 53( )
( ),

2

N x J zx
J

r r r

      
    

                                                                                        (2) 
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3 Determination of Equilibrium points 
For the equilibrium points we have to put zero to all the 

derivative with respect to time in the system (1), hence 
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                                                                                        (6) 
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After solving equations (6), (7) and (8), we can find the 

locations of equilibrium points in three cases. 

3.1 Locations of collinear equilibrium points 
Collinear equilibrium points can be obtained from equation 



Sci. Int.(Lahore),33(2),147-151,2021  ISSN 1013-5316;CODEN: SINTE 8 149 

149 

March-April 

(6) by taking 0, 0, 0.x y z    

2
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When the first primary is a spherical shell and also m2 is 

moving around m1 as well as m is moving inside m1 and 

also there are no perturbations, i.e. r2   = − (x + µ − 1), then 

Eq. (9) reduces to 

2
( ) 0,

( 1)
x k x

x





   

 
                               (10) 

and hence 
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The real solutions of Eq. (11) inside the spherical shell are 

1 ,x    and 

2

2 2 2 ( 4 4)
.

2(1 )

k k k
x

k

        



           (12) 

Now when the first primary is heterogeneous body with N-

layers then there are two cases for r1. 

 First case: r1  =  (x + µ). 

Then Eq. (9) reduces to 
2
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Assume that x1 + R1 ,  |R1 | << 1 and x2 + R2 , |R2 | << 1 are 

the two real roots of Eq. (13). Putting these values of 

solutions in Eq. (13) and rejecting the second and higher 

powers of R1, R2 and J1 , we get 
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where,  
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    According to the values of R1 and R2, we get (− µ 

+
1

,
2


0, 0) and (x2 + R2, 0, 0)  two equilibrium points. 

Second case: r1 = − (x + µ). 

Then Eq. (9) reduces to    
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Assume that x1 + R3 ,  |R3 | << 1 and x2 + R4 , |R4 | << 1 are 

the two real roots of Eq. (15). Putting these values of 

solutions in Eq. (15) and rejecting the second and higher 

powers of R3, R4 and J1 , we get 

3
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R
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4
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R
                                       (16) 

According to the values of R3 and R4, we get (− µ + 

1
,

2


 0, 0) and (x2 + R4, 0, 0) two equilibrium points 

. Thus, the collinear equilibrium points are (−µ + 

1
,

2


 0, 0),  (x2 + R2, 0, 0) and (x2 + R4, 0, 0), provided 

these points lying inside the outer layer of oblate 

heterogeneous body. 

3.2 Locations of non-collinear stationary points 

Non-collinear stationary points can be obtained from 

equations (6) and (7) by taking z = 0,  we get 
2 2 2( 1 ) 1 .x y                                          (17) 

 Which is the equation of circle with center at the center of 

the secondary and radius 1 .  Provided 

3
2 2

(1 )
.

q
n






                                                            (18) 

The general coordinate of the stationary point is 

(1 Cos , Sin , 0),     where α is a parameter. 

These points will be the coordinates of the stationary points 

when they will be in the outer layer of the oblate 

heterogeneous body. 

3.3 Locations of out-of-plane stationary points 

When the shape of the first primary is spherical then from 

equations (6) and (8) by taking y = 0, we get 
1/3

2, .x k r
k

 
    

 
                                                 (19) 

Which confirms the result of [16]. Now when the shape of 

the first primary is heterogeneous with N-layers, then let 
1/3
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2 2 2 2 1
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From Eqs. (6) and (8), we get 
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Putting the valuesfrom Eq. (20) in Eqs. (21) and (8), 

correspondingly we get 
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Solving equation (22) for δ1 and δ2 , we get 
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Therefore,  
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The Eq. (23) represents the coordinates of out-of-plane 

provided these points are lie in the outer layer (N
th

-layer) of 

the heterogeneous body. 

4 Stability 
We examine the stability of an equilibrium point (ξ0, η0, ζ0) 

to observe the behaviour of small body’s motion in its 

vicinity (ξ0 + α1, η0 + α2, ζ0 + α3), where (α1, α2, α3) are small 

displacements from the equilibrium points. The variational 

equations for the system (1) can be written as 
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Where the superscript 0 denotes the value at the 

corresponding equilibrium point. Here, 
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The characteristic polynomial of equation (24) can be 

written as 
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     

   
 

0 2 0 2 0 2 0 0

1 0

0 0 0 0

[( ) ( ) ( ) (

)],

xy xz yz xx yy

xx zz yy zz

d    

 
 

0 0 2 0 0 2 0 0 2

0

0 0 0 0 0 0

[ ( ) ( ) ( ) ]

2 2 .

xx yz yy xz zz xy

xy yz zx xx yy zz

d    

 
 

Now ( )p as    and 0(0)p d . Here the 

stability of the equilibrium points will depend on the value 

of d0, i.e. if d0 < 0 then there will be at least one positive 

root, so the equilibrium points will be unstable. 

5 Conclusion 

New kind of Robe’s problem is investigated where one of 

the primaries as heterogeneous body with N-layers 

having different densities and second radiating primary is 

producing the modified Newtonian potential. Here the 

third infinitesimal body is moving inside the N th -layer 

of the first primary having viscous incompressible fluid. 

We have determined the equations of motion which is 

depend on the density parameters of the heterogeneous 

body and the modified parameter of the secondary. The 

location of equilibrium points are evaluated where we 

found three collinear equilibrium points, infinite numbers 

of circular equilibrium points and two out-of-plane 

equilibrium points provided these points lie inside the N 

th -layer of the heterogeneous body. In this case we 

found three-collinear equilibrium points which are 

depending on the taken parameters while in the classical 

case only two collinear equilibrium points are exist. 

Finally we have examined the stability of equilibrium 

points which all are unstable. 
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