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1- INTRODUCTION:

Fractional differential equations and systems arise in variety
engineering and scientific disciplines. For some recent
development on this theory, we refer the reader to [1, 2, 4, 5, 9,
10, 11, 12, 14, 23, 25, 27, 28, 29 and 30]. In a series of articles
dating from 1836—1837 Sturm and Liouville created a
whole new subject in mathematical analysis. The theory, (later
known as Sturm-Liouville theory) plays an important role in
different many areas of science, for example, engineering,
mathematics, physics, chemistry, etc... For more details, we
refer the interested reader to [6, 17, 22, 26 and 31]. A standard
form of the Sturm-Liouville differential equation is given as:

d d
O F1+h@y =2 Oy, 2>0, te[ap]
with separated boundary conditions of the form

{aly(a)+a2y'(a) =0, ()*+(a,)*>0,
BYB)+ LY (B)=0, (B)+(5,)">0.

where the functions g and h are continuous over [«, ]
such that g(t) > 0, and

file,p1x R - R " s a continuous function.

The Langevin equation (first formulated by Langevin in 1908)
is found to be an effective tool to describe the evolution of
physical phenomena in fluctuating environments, in [19],
Langevin introduced the classical Langevin equation as
follows:

%[%+/1h(t)]= Oy, telapl, 4>0.

With various boundary conditions, the above problem has
been studied by many authors, see for instance the works [3, 7,
19, 20, 21]. In addition, the Ulam stability of fractional
differential equations can be considered as a new way for the

researchers. Truthfully, we can inspect from it several topics in
nonlinear analysis problems. Moreover, the analysis on
stability of fractional order differential equations is more
complex than that of classical differential equations, Ulam
type stability problems has been attracted by many
researchers, see [13].

In [17], Kiataramkul et al. have investigated the following
existence of fractional order differential equation:

D’[p(t)D” +r(t)Ix(t) = g(t, x(1)), 1<t<T,
X(@) =-x(T), Dx(1) =-D"x(T),

where D” denotes the Caputo-type Hadamard derivative of
order pef{a,f}, p :[LT]—> R s continuous and
feC(LTIxR,R) .

In [22], the autohrs have considered the following systems of
fractional differential equations with anti-periodic boundary
conditions:

D% [p(t)D* +r()]x(t) = f(t,x(t), y(t)), 0<t<T,
D”[q(t)D* +s(®]Ix(t) = g(t, x(t), y(1), 0<t<T,
X(0) =—x(T), D*x(0) =—-D*x(T),

y(0) =—y(T), D*x(0) = -D"x(T),

where D is the Caputo fractional derivative of orders
Se{a,a,, B, 5} f,0€C(0,T]xR*R) and

P,ge C([O!T]’ R _{0}) :

In [8], the authors have studied another boundary value
problem of system of generalized Sturm-Liouville and
Langevin Hadamard fractional differential equations. The
existence and uniqueness of solutions have been proved via
Banach contraction principle fixed point theorem, also, the
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Ulam-Hyers stability has also been addressed for the proposed
problem.
Recently in [24], the authors have proposed an approach to the
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fractional version of the Sturm-Liouville and Langevin
problems.

In this paper, we are concerned with the following coupled system of Langevin tpye:

{ D [g,(t)D™ +h, (1)Ix (t) = f,(t, X, (t), X, (t), DX, (t), D?X, (1)), 0<t<1, )
D”2[g, (t)D” + h, (t)]x, (t) = f,(t, X (1), X, (t), D*x,(t), DX, (t)), 0<t<1,

with the boundary conditions:
{ ¥, (0)+x,(1) =0, D"x(0)+D"x(1)=0,

- (2)
X,(0)+x,(1) =0, D*:x,(0)+D*x,(1) =0,

(D)

where D is the Caputo fractianal derivative of orders ¥ e{e,@,, B, 3,,0,,0,} with 0< ey, e, B, ,,9,,0, <1 with
o,<ay, 8,<a, andf, f,eC([0,]xR*R), g,,9,<C([0,1],R—{0}) with

|9,(t) 1 9,(t) [>1, h,h, e C([0,1], R).

Note that system (1)-(2) is a generalization of Sturm-Liouville
and Langevin fractional differential systems.

We arrange the rest of the paper as follows. Section 2
contains an auxiliary result that plays a key role in analyzing
the given problem. The main results for the problem (1)-(2) are
discussed in section 3. We give an existence and uniqueness
result with the dael of ORegan's theorem. In Section 4, we
investigate some types of Ulam stability for this fractional
system. Finally, the paper was appended examples which

Jaf(t)—l f0)
where (@) = ["e 'u“du.

Note that for o >0, >0 , we have:
JEIPE() =32 1 (1)

Definition 2: The Caputo fractional derivative of order
a >0 of afunction f € C"([a,b],R)

Df(t) = J™D"f(Y)

is given by:

F(nl—a) I;(t_s)n “1 £ (s)ds,

Where n=[a]+1 and [«] denotes the integer part of
positive real number & , and T'(.) is the Gamma function.

Definition 3: The Mittag-Leffler function is an entire
function defined by the series

- ()
E, (z a>0,
()= ZF(k +1)’
where T"(.) is the Gamma function.

The following lemmas give some properties of fractional
calculus theory, see [16, 18].

(5L t-2)" f(2)dr, a>0, a<t<b,

illustrate the applicability of the results in Section 5.
2- Basic Definitions and Relevant Lemmas
In this section, we introduce some fractional calculus notations
and definitions that will be used in this paper, for more details,
see [14, 15].
Definition 1: The Riemann-Liouville fractional integral of
order >0 for a continuous function f :[a,b] >R is

defined as:

f(t), a=0,

a=0, a<t<b,

Lemma 4: Fora>0,neN’ 7 the general solution of the

equation D*X(t) =0 is given by

X(t) =Cy +Ct+C,t* +---+c ",

n-Ln=[a]+1.

Lemma5: Fora >0, neN’

J[D“x(t)] = X(t) + ¢, +Cct +C,t* +...+¢C, ,t",

n-Ln=[a]+1 .
Lemma6: Let q>p>0 and f el*([a,b]). Then
DPIYf@)]=JP[f(1)], te[a,b]

The following lemma is crucial for our results:

Lemma 7: LetQ) be an open subset of a closed and convex
set Y . Assume that 0 Q) and

‘P(E_l) is bounded, where ¥ : Q—Y is given by
F QX

where C, €R,1=0,1,--,

forsome C, €R,i=0,1,--,

in Banach space X

Y=¢+¢, , in which ¢ is completely
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contimuous and @, : Q—> X is called nonlinear 'ePresentthe boundary of € .

. . . . . We prove the following lemma too:
contraction (i.e. there exists a nonnegative nondecreasing

function @ 1[0,%0) — [0, 0) such that Lemma 8  Let fi, f, e(C[O,l], R) be tow given
@(X) < X, ¥Xx >0 and functions. Then the solution of the problem

lo: ()~ efx -y, Fx.yQ . Then, eitrer {D“Z[gl(UD“l+h1(t)]x1<t)=f1<t>. 0<t<l

B D*[g,®)D* +h, (1)]x,(0) = f,(t), 0<t<1,
W has a fixed point Xe&€ or, there exists a point

XeoQ and A€[0,1] , with X=A¥X, where 0Q s given by the following expression:

I (RN (D (-t
w0 = e O "t (s)dsdr - & OhEx (s

) j(l (T)a;_l N0l [« (oc)a)_lf(s)olsdr+ JED" o, (), ()

(al )

i =0 -0 L)
(f o BT ‘”j

{ ] L€ (”a;_ f(r)dr+(gll(0)h1(0)—gﬂ(l)hl(l))xl(l)} . @

and

X, (t) = i (t (T)l)_l @) i (Z) f(s)dsdr—i% (), (), (7)d 7

S 2 0] I = " £, (s)dsdr + - gw O, ()%, ()dr

) ° ﬁl(l)
TED G s G
_ K2 I dr .[ 2 jx
(o rg) O ey @O
pr-1
[ iy pd (;)) f(r)dr+(g;1(0)h2(0)—g;l(l)hza))xz(l)} . (@

where

1
Ki = S
g M+9,(0)
Proof: Let C;, d; €R,1=0;1 . Hence, ityields that

Ht=n)" (- tt=o)"
X, (t) = I (al) ()I (az) f(s)dsdr IW 20 ()% (r)dz
tt-n)“"
cofW 2r)dr—c,, . (B)
and
U (- Ht-2)"" ot
X, (t) = { (ﬂl) )J (ﬂz) f(s)dsdr IW S (), (2)x, (r)d T
(t_T) At A
—dogm gZ (T)dT—dl. (6)

Thanks to boundary conditions (2), we get
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- {951(1)5% f(0)dz+ [0, Oh @ - 6, O, (0)| %, )]

Co=— N am
9, (0+9,7(Q

2
and

dy=—F""—=
(0)+g o)

On the other hand, we have

Bl
{ = T) f(r)dr+[g;l(l)hz(l)—g;l(O)hz(O))xz(l)}

11A-0)"" L S(r—s) =0
2C1 —_[ (al) ( )J. (az) f (S)deT ITal) (T)hl(T)Xl(T)dT
11(1 0 (1)t . B
- 2SR AR ()d{ Wl o f,(r)dz + (g, (O)h, (0) - g; (1)h1(1))x1(1)}.
and
B 0P 9t CLit-o)At
2d, = 2{ (1) (r)g—r(ﬂz) f,(s)dsdz 2£—F(,Bl) g, (0)h,(7)x,(r)dz

K_}]- T)ﬂll —1
20

N
dr g,
(ﬂl) 2 (7) { ®]

Substituting the values in (5) and (6), we get (3) and (4), and
this completes the proof.
3- Main results:

This section focuses on two results. The first is concerned with
the existence of a solution of the problem considered. While in
the second result, we will investigate the issue of at least one
solution for (1)-(2).
First of all, let us consider the Banach space:
X, =% | eC([0.1,R),D%x, eC([01],R)},
and the norm

O 9
||x1||x1 = x|+ HD lxlu = sup |, (t)| + sup ‘D 1xl(t)‘.

te[0,1] t€[0,1]

Then (X1,||Xl||x ) is a Banach space. Similarly we define the

space

T) Bl

o 1(5,)

f,()d7 + (03 (O), (0) - 07 Wh, @) )x, (1)}

X, =%, | X, C([0,1],R), D*X, e C([0,1],R)}
and the norm
=%, + HD‘SZ XZH = sup |x2 (t)| + sup ‘D‘sz X, (t)‘

t<[0,1]

Also (X, ,||X2||x2 is a Banach space.

is a Banach space.

xoxy = Il Flely, for

Certainly (X, x X, ’||'||Xl><Xz)

Equipped with norm ||(X1, X2)|

(%,,%,)e X, x X, .
In view of Lemma 8, me define an operator

Yo X xX, > X, xX, by
‘P(Xl,xz)(t) (¥, (Xl,Xz)(t) W, (%, %, )

As follows:
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t -1 T a,-1
(t-2)"" 4 (r-9)" 5 5
Y(x, X () = ~—1_fls, , .D* D> dsd
1(X1 Xz)() gl F(Otl) l91 (T)g F(az) 11(5 X,(8), %, (8), D*x,(8) Xz(s)) a7
Li@-o)" 4, \((r=9)" 5 5
- = ~—2fs, , D™ ,D* dsd
)] o) 11<r)g Fay M 0% 1o (5)dsde
1i(t-7)"" tt-o)
- h dr - h d
+ 2{ F(al) 0, (7) 1(T)X1(T) T { F(al) 0, (7) 1(T)X1(T) T
=) 1t(1-7)""
_ dr+=
<[ sone )
) 11_ a,-1
[911(1)6[( F(Zt) ) fl(f’ X, (7) %, (7), Dalxl(f)a D52x2(z-))dz-
2
: (50,0 - 07 OR D )x) } (7
and
wlon)) - A 0 S (909,06 D, (9
_ % i (11;(21’;” 5211 ) g% (s % fs), X, (s)iloﬁl x,(5), D%, (s))dsd ¢
o s on ek ed [ g o o e
Al p-1
_ [J.S(t (’Ifg)) 71( )d += g( (2) l(T)J
[ g (;)ﬁ; f, (e, %, (7). %, (2), D%, (7), D*x, (7)) d
¥ (9,4, (0) - 9;: W, @))%, )] e (®)
For calculation convenience, we introduce the quantities:
_3 » Ik, g7 (D]
Ay = 5 SuPeeponln (t)l(r(a1+a2+1) F(a1+1)1“(a2+1))'

lkea 195 (1) )
F(81+Bz+1) T+ G+ 1)
|(g1 1(0)h1 0) - 91_1(1)}11(1)) |5upte[o,1]h1 (t)|)
I'(a; +1) I'(y+1)

A, = Supte[OI |gz ®l

B, = Supte 011197 (®)| (

B, == Supte01]|gzl(t)| lk,|(gz1(0)h,(0) — g5 (1)h,(1)) |supte[o‘1]h2(t)|)

e, +1) e +1n
- |kallgi* (D) )
M, = 1t ,
1= supeuanlen O (F @+ +1-8) I (g+1-8)0 (+1)
- |kallgr* (D) )
M, = 1t
2 = Subecoldr O (1" @+ +1-8) T (g+1-8)T (@ +1)
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lk1l(g1" (0)h1(0) — gi ' (DA (1)) N |Supte[0,1]h1(t)|>

Ny = Supte[o,1]|91_1(t)| (

I'(a, +1-8,) (g +1-8))

_ lk21(g7* (0)h,(0) — g5 (DA, (1)) |5uPte[0 1h2 (t)|)

N, = supeejonlgs’ : ,
2 = SuPreqo11lgz t (B)1 ( TG+ 1-5) + T (B, +1-5,)

In the following, we need the assumptions:
(Hy): There exist non negative constants |; ;, 1=1,2, and j=1...4, suchthatforeach te[0,1] and for all

u;,v; eR,j=1...4, wehave

|f,(t,uy,u,,uy,u, ) - fi(t,vl,vz,vg,v4)|Sili’j‘uj—vj‘, Li:max(li,j), i=12.

j=1
(H,): The functions f, :[0,1]xR* - R areajointly ~FOrsimplicity, we define
continuous functions. F.O=f (t’ X (1), X, (t), D*x, (1), D*x, (t))' 1=12.
(Hs): There exist nonnegative functions And
@, D, e C([0,1],R) , and nondecreasing functions A o ZZ: L (AI M i) £B 4N,

$;, ¢; 1[0,00) > [0,0), j=1?4 ,foreach

3.1- Existence of Unique Solutions:

Our main result is given by the following theorem:
Theorem 9:  Assume that (H1) holds and suppose that

4
| f (t’ X1 Xgr X X4)| <@ (t)[ ,—Z=:1¢i (”XJ H)}’ =12 0< A <1 . Then the problem (1)-(2) has a unique solution
on [0,1] .

Proof: The procedure is performed in two steps:
Step 1: We show that the operator W is contractive. So, we
take X;,Y; € X,,1=12.Then, foreach t €[0,1], we
| 1 < &k, have
and

| 2, | ngﬂz'

te[0,1] andforall X; € R such that

(H,): Thereexists y;, 7, € C'([0,1], R) and there exists
&,&,>0 .Foreach te[0,1]

|, (%, %, () = ¥, (yy, v, ) |

pt-o)** o r(E-s)” _
gle)lgl (z )If ) | Fa(s)—Fy ()] dsdz
1}(1—2')“1_1 L(r—s)“

* 2 ey O

|F1(s)—F,.(s)|dsdz

=2 SR CIICTIERCTEE

R QL GITIORMOILE
t(t—T)al_l . 11(1_2_)0:1—1 . y

+ |K1|[IW|91 (T)ldTJFEnggl (T)|j

[ 21 I (20) IF..(0)-F, ()| dr

(5@, (0)- 0" N, ) 1%, - y1(1>|}

—+

and
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00~ %y )0l < [P gr @I )9 s

B (ﬁl)ﬂll (ﬂz)ﬂ
+ —I(l (T)l) |9, (z (l)Ig(T (22; |F.,(s)—F,,(s)|dsdz
—J“ (”) 0, (D), (1) | %, () - ¥, () | d
: g%mf(r)nh(r)||x2<r)—yz(r>|dr
T Gk LGPV PG 3 (€ L J
v K |[O ) 9@ S 190
ﬂZ
{ g pd=os (;)) IF. () —F,,(0)|de
+ (95" )N, (0) - 95 O, ) 1 % Q) - v, @) ]
Using (H1), we obtain:
[, (%)= #(y5, ¥, )| < -—tsqugl (t)\
/|0, (@)
{Li(ﬂx Yill, +[%, - yzllxz)( a0 T et
L sy [KleronO-senw) |55
! Hleo F(a1+1) F(a1+1)
and
[, (%, %)=, (1, v, ), < —fﬁpzm\

K2/[9;' @)
{ (ol el.) (F(ﬂl 4, +1) T(5+ 113, +1)
4 4 h2
b v, { &.|(o:On,0 - o on) |30, ] }

r(s,+1) r(,+1)

Thus, it yields that

(taem) (vl bl )

(LA +8.) (- vl e -vl,)

Step 2: To facilitate the proof, we calculate D*\P,, i=1,2 . We have

IA

[, 06 )= W (v v ),

Also, we have

[, (%%, )= ¥ (¥, ¥ )

IA
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jw (7) Ew F,.(s)dsdr

Mo -0) o T(a)

I% 3 (T)dr|: (gl*l(O)hl(O) _ 9{1(1)h1(1)) %)

. g;l(l)gma,mdr} O g o e,

D % ‘Pl (Xl ’ X2 )(t)

[(a,) NGy
and
5 B (t z-)ﬂl 6,71 71 r(z._s)ﬁz—l
D \Pz(Xl,XZ)(t) = | I ﬂ(ﬂ; ) 2(T)£ F(ﬁz) Fx,z(s)deT
- K] (;(;)—_5) 0,'(0)dz [ (0,*O)h,(0) - 0;* W, )%, @
v g opt e o - g on o e

In the same manner of step 1, we can write:
HDgl\Pl(le Xz)_ Dﬁl\Pl(yll Y, XLO < ( L1M1 + N1 ) (”Xl - y1||x1 +||X2 - y2||x2)'
also

P, 00x)-0* v, < (LM N ) (b=l +he vl )

Consequently

||\P(X17 Xz)_\{j(ylf yzmx1 < [Li(Ai + Ml) + Bl + Nl ] (”Xl o yl”xl +”XZ a y2||x2)'

and

[ 06.%)-# (v, ), <[l (A +M. )+, + N ] (b - vl + -yl ).
It yields then that

”lP(le Xz)_ LP(yl’ yzl Xyx X, <A (”Xl - yl”x1 + ”XZ N y2||x2)'

4
We deduce that ‘¥ is contractive. Thanks to Banach contraction principle, we conclude that has a unique fixed point
which is the solution of (1)-(2).

3.2- At least one solution via ORegan's Theorem:

Our second main result is based on Lemma 7. We have:
Theorem 10: Assume that the hypotheses (H2) and (H3) hold. Then, the problem (1)-(2) has at least a solution on  [0,1] .

Proof: For the forthcoming theorems proof, we split both (7) and (8) as follows:

e =9
(01,1(X1’X2)(t) = J(; F(Oll) 9, (T)i F(az) F..(s)dsdz

~ 11 (1_T)a1—l N T (T— S)az—l

Zg—r(%) 0, (r)g—r(%) F..(s)dsdz
t (t _ z_)al—l . 1 1 (1_2_)0:1—1 71

— Kl(gm 0, (T)dl'-i-—,[?al) 0, (T)dfj

07 0] =, (o

(0‘2)

X
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PO = LD oy, (ox, (r)de -] D" 4o o, (% ()
' 20 (al) (0‘1)
t(t_f)a1 (1 T) a 4
K{g ] 0@+ 3 o gl()j(gl Oh,(0)- ;" Oh, 1)), (1),

and

T N
b1\ X X () = I I—sz dsd
23 (X X )() l (ﬂl)ﬂll , (7) (ﬂz)ﬂ (s)dsdr

_ Ej ) 9, (r )I(T (Z; F, ,(s)dsdz

20 1( 1/;)11 N
— ( (t T) —1( )d += 5(1 2-) —l( )J

2o T
x (1)1(1 (2) F,.(0)dr,
A1 t o \A1
pale)y = DT D aom, (T)xz(f)df—f%g;l(r)hz(r)xz(f)df
t-o™ drs 1@ 9; j 1(0)h, (0) - g;* (W), (@) )x, (1
[g AR o] 20 T RAULA IO AR

where

LP(Xw X, )(t) =0 (X11 X2 )(t) + o, (X11 X, )(t)'
and
501()(1’ X, )(t) = (91,1()(1' X, )(t) + (92,1()(1’ X, )(t),

?, (Xl’ X, )(t) =0, (Xl )(t) +9,, (Xz )(t)
We build the demonstration in four steps:
Let us consider the following subset: Q. = [(Xl, X2) e X, xX, : ||(Xl, X, X| < I’] with

Sjo,0l(A+m.)| Zali)
r= 1-Y ’

9)

where

Y ::max{Bl+N1, BZ+N2}.

Step 1 : Our first claim is to prove that ¥ is uniformly bounded on 2.
Let (X,X,)€ Q . Then, by (H3), it follows that

[0 (%%, O] <@, O] | () + () + 4, |D*
By taking the norm, we can state that

o200 )] < 0, @] [ () + 2. )+ () + 4. (1) ]
Thus, we can write

2. (% % )O <@, O] [ () + 2.+ 4]+ 4 ]) 1A,

Moreover, we have:

x|) A,

x| )+ ¢.(D*
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om0 Tl .

and

D%, (3%, JO)| <@, (t)||{ 2¢ 0|r||)} M

Then, We deduce that:

2 4

2SO (A )| S - 00
i=1 j=1

Therefore, ¢, is uniformly bounded. In the same way, we obtain:

H(DM (t)H B +N ) ”Xl”

and
H(Dzz X, (t)H B +N ) ”Xz”
Therefore,

2 (%, %, )(t)”)(lxx2 <Yr.

Thus, @, isbounded.

||§01 (X11 X, )(t)

Consequently, ¥ is bounded, indeed

#0560, <210, 01(A + M) [ zﬂmrn)} +Tr<r

Step 2 : We shall show that ¢, is a contraction mapping.

Let X;,Y; € X,, 1=1,2.Then, foreach te[0,1] ,we have

I ()0 - 01,0, < (B+NL) e = vl

and

2206 )0 - 02y O] < (B2 +N.) b - vl

From the above inequalities, we get

2 (%1% X0 = 2 (¥, Y2 JO o, <Y (”Xl =Y+ [x - yz”)'
Then @, is contractive.

Step 3: Next, we need to show that ¢, is completely continuous.

3a : Since the functions fi ,1=1,2 are continuous by (H2), hence the operator ¢, isalso continuous, so this proof is

omitted.

3b: Via the inequality (10), ¢, is uniformly bounded.

3c: We will show that ¢, s equicontinuous.

Let t,t, €[0,1] with t <t,. Thisyields
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ty t— -1 -~ T —5 a,-1
b)) -euler)l = [ gr@ TR e
2
t o —l ay,-1
f(t- T) g ((z—s)"
- — s)dsd
£ F(Oll) , (7 )j (052) x,l( ) T

[ ;" (V)] %Fx,l(r)dr] |,

sup 16O 1|, ) [ > 4( | H)} ftoore e )
I'oy+a,+1)
ARRCIXC ISP ENERCOI SRS

+ ’ '
[, +1)

IN

| (/’1,1()(1’ X, )(tz) - €01,1(X11 X, )(tl) |

and

s 1070 110,01 S0, (b)) (2 -6%)
te[0,1] =1

|(02,1(X1,Xz)(tz)_¢2'1(xl,x2)(tl)| < o
bl | gzl(t)|||CDZ(t)||[ é@(HX;Hﬂ 190 -t)
’ r(p,+1) .

In a similar manner, we can find that
S 4
D%, 00X Dok Xl = s a0l Sl

e —t) | K le @1 —t)
(o, +a, +1-35,) [, +1-8,) )

and

4
00,5, 1)) - D (kXX S 8 (501 ||q>2<t>||[ £l
e I AL RO
F(ﬁ1+ﬂ2+1_52) l—‘(1314'1 5)
The right hand sides of (a), (b), (c) and (d) are independent of the pair (Xl, X2) and tend to zeroas T, —1t, . Therefore, ¢,

is an equicontinuous operator.
As a consequence of the previous steps and thanks to Arzela-Ascoli theorem, we conclude that ¢, is completely continuous.

Step 4: We suppose that there exists A € [0,1] and there exists the pair (X;,X,) € 8Q suchthat (X, X,)=A¥(X,X,) |

then (X, X,)

wxx, = . Thankstostep 1, we get
1XA2

<300l (am.)| Sl .

thus we obtain
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<§MNW(A+M)[§¢WM

1-7Y
Which is clearly contradicted to (9) consequently, we have proved that the operators the operator ¥ has at least one fixed point.
Therefore, the problem (1)-(2) has a solution on [0, 1] .

4- Ulam-Hyers-Mittag-Leffler stability:
In this section, we provide results regarding Ulam-Hyers-Mittag-Leffler stability for (1)-(2) .
We consider the following inequalities:

D [g, ©)D* +h, () [x, (1) — , (t, X, (), X, (t), D%, (t), D% X, (t)) |s &E, (t), O<t<l,
| D% [g, (t)D% +h, ()%, () - f,{t. %, (), X, (t). DX, (t), D, (1)) |s £,E, (t%), 0<t<l

where E, (1) and E, (-) represent the Mittag-Lefler function defined by:

[oe]

()"

Eq, ()= Z 1_,7,

=1 (kay +1)

o OF
Eg,() = Z T (kB + 1)

=1 kB +1)

(.) € Re(ay), Re(Bz) > 0.
Definition 11: The problem (1)-(2) is Ulam-Hyers-Mittag-Leffler stable with respect to E77 (t” ) if there exists C, > 0
such that for each & >0 and each solution (Y,,Y,) € X; x X, of the inequalities (15), there exists a solution
(X,,X,) € X, x X, of the problem (1)-(2) with
(20 ¥2) = (%) oy, 6,26, (t7) te[0].

Next, Ulam-Hyers-Mittag-Leffler stable results will be provided.
Theorem 12: Assume that the hypotheses of Theorem 9 are valid and (H4) holds. Then, (1)-(2) is generalized
Ulam-Hyers-Mittag-Leffler stable.

Proof. Lety;,Y, be solutions of (15), and we suppose that

Y (s KN T peo
O = e O S Raesde ] e g On e ()ds

- %i& gl‘l(r)(f)w F,,(s)dsd 7 + %iM 2(2)h,(7)x,(r)d

F(al) F(az) r(al)
(S L 11@-0)""
_ K{({ng (r)dr+5£W91 (T)]><

{g;l(l) | (1‘(—)) F,u(n)d7 + (6" O, 0) - 6" O ) (1)}

G R
M) &% 1w,

x.(s)dsdz =1,,

and
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o - [ 1(&%Fy,z(s>dsdr—:{%g;l(r)hz(r)xz(r)dr

- 25(1 (T)ﬂ; ()g(r (ﬁ)ﬂ; y,z(s)dsdr+1}(t;(f—ﬂ)ﬁ;lg;(r)h2(r)x2(r)dz
_ L)~ O B o L ]X
([5G oo S e

{ 1 p =0T (Tﬂ)) y,z(r)dr+(g;(0)h2(0>—g;(l)hz(l))xz(l)}

j(t T)ﬂ1 I(T 5)”
) Y T,

+ X.(s)dsdz =1,.

Thanks to (H4), we have

& E. (t)

|y1(t>—ll|ssup|g (t)|m, 0<t<1
") (26)

y,(0) -1, <sup 9, (t) ﬁ—z O<t<l.

| i | 19 Ol e,
By theorem 9, the problem (1)-(2) has a unique solution (Xl, X2) . Then, using (16) and (H1), we get

E,, (%)

lve=x], S(|—1A1+Bl) (||Y1_X1 x1+||y2—X2||X2)+Sup |9, (t)|l“(+—az+1)
and
Iyl = (L8 ) (el +va -l )+ s 15 (t)|ﬂ—z(ﬂ2)
2 2o 2 2 1 1llx, 2 2lIx, o] F(ﬂl ,Bz 1)
also

1 B, (1)
I, +a, +1—51)'

HDQY1 - D(slxluoo < ( L1M1 + N1 ) (”yl —X

Similarly, we get

oAyl ) + s 1o

, Eﬁ2 (tﬂz)

oy, ~p] < (LM +N, ) (Il 1y =l ) + s 1674001

Therefore,
(20 ¥2) = (005, <646, (t7) te[01],

where,

e —mocee, b

E, t”) = max{ E,, (t*).E, (t/’Z)},
sup | g, " (1) sup | g, (1) | sup | g," (1) | sup | g," (1) |
te[0,1] te[0,1] tef[0,1] te[0,1]
Iy +a,+l) T'(B+p6,+1) T(oy+a,+1-06) I(B+p,+1-5,)
T 1-A '
Thus, problem (1)-(2) is Ulam-Hyers-Mittag-Leffler stable.
5- Example:

We consider the following problem:

January-February
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(D[, (t)D™ +hy (%, (t) = F,(t, X, (1), X, (£), D*x, (), D™ x, (1), 0<t<1,

D”[g,(t)D” +h, ()]x, (t) = f,(t, X, (t), X, (£), DX, (t), D% X, (t)), 0<t<1,

X (0)+x,@1) =0, D“x,(0)+D*x,(1) =0,
L X,(0)+x,(1) =0, D*x,(0)+D*x,(1)=0.
Here, we have

(17)

2] S = Xl(t) Xz(t)
fo(t %, (1), X, (1), DX, (1), D* X, (1)) = 9X12(t)+2 Xzz(t)(5+t)2
D;'x, (t)sin * (at) , Dy, (t)cos? ()
(@) 4+
and
N , ~ X, () X, ()
Fa (6%, (1), X, (1), D%, (1), D™ x, (1)) = (X2(t)+2)(6-1)> (7, (t)+3)?

D, x, (t)cos® (2t) . DX, (t)sin > (2xt)

19

Also

g =t +1 g,(t)=t’+2, h(t)=

t+2
5(t+1)

hz (t) =

(5-1)°

t+2
At+3)

a, =09, a,=08 B =085 A, =075 & =01 & =01

K, =1.2486,

K, = 2.8235.

Clearly, forall (X, Y, 2, W,), (X5, ¥,,2,,W,) € R* ,and te[0,1] by Taylor's formula, we have:

1 1 1 1
| fl(tlxl’yl’zl’wl)_ f(t,XZ,yZ,ZZ,W2)| < _|X1_y1|+E|X1_y1|+4_3|X1_y1|+E|X1_y1 |!

9

1
| £, %, Y0 2o W) — T (6%, Y5, 2,,W,) | < =%

36

consequently,

1 1 1
_y1|+?|Xl_y1|+E|X1_y1|+§|X1_y1|l

A =10.5314, A, =47.4814, B, =-0.3630, B,=-2.8809,
M,=7.3701, M,=32.7561, N,=-0.1068, N, =-1.9081,
For A <0.9533, itfollows by Theorem 9 that problem (17) has a unique solution on  [0,1].
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