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ABSTRACT: In quantum field theory, unavoidable roles are having on the operation of micromechanical system. One of 

the quantum phenomena that have these roles is the Casimir effect ]1[. In present paper, we study a simple linear harmonic 

micro spring that is under the influence of the Casimir pressure/force. It is behaving as an anharmonic-nonlinear Casimir 

oscillator. Since the equation of motion of this nonlinear-micromechanical Casimir oscillator has no precise solvable 

solution and turning points of the system have no fixed points we consider the Laplace decomposition method  for 

obtaining series solutions of nonlinear oscillator differential equations. The equations are Laplace transformed and the 

nonlinear Casimir effect terms are represented by Adomian's polynomials. The results illustrate that Laplace 

decomposition method is an appropriate method in solving the highly nonlinear equations. 
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I- INTRODUCTION 

The Casimir effect, obtained by Casimir 1948, emerge from 

quantum fluctuations in the electromagnetic field [2,3]. As 

a result of the existence of these fluctuations, two 

uncharged parallel conducting plates, closely spaced, must 

experience an attractive force when the gap between 

opposing surface is less than a micrometer wide [4]. The 

magnitude of the attractive Casimir force per unit area     

   
  

   
  
    

  
 

 

where   the speed of the light,   is Planck constant    ⁄  

and   is the  plate separation.  

  The significance of the Casimir effect in Nano 

systems has been considered since about three decades ago. 

Because of the strong attractive Casimir force at small 

scales, moving parts of micromechanical system may stick 

to each other; this quantum phenomenon is called stiction, 

which is a troublemaker effect in micromechanical systems 

and can make them unstable [5].  

Several an approximate methods, such as homotopy 

analysis method [6,7], Adomian decomposition method 

]8,9[, homotopy perturbation method ]10-12[, differential 

transform method ]13  [ , variational iteration method ]14-

16[, Laplace decomposition method ]17,18[ and the 

homotopy perturbation transform method ]19[ were applied 

and introduced to get an approximate solutions. In this 

paper, we study a simple model of an oscillating system 

(micro spring ) under the act of the Casimir force; then, we 

try to estimate and approximate the solution of this 

anharmonic nonlinear system using the Laplace 

decomposition method. 

 

II- NONLINEAR CASIMIR OSCILLATOR 

MODEL 

The geometry of the nonlinear casimir oscillator is shown 

in Fig.(1) where we consider a simple configuration 

consisting of a spring obeying Hook's law connected 

between two parallel plates. One of them is fixed and the 

other is moving. In this figure,    denotes the normalized 

equilibrium position of the movable plate in the absence of 

the Casimir pressure, which represents the length of the 

spring with an elastic constant ( ). 

The moving plate is under the influence of two forces, one 

is the well-known restoring force of the spring and the 

other one is the effect of the Casimir pressure (force ). The 

differential equation of motion for a nonlinear Casimir 

oscillator in one dimension, just perpendicular to the area 

of the plate and parallel to the spring length, is  

 

 
Figure (1) : A micro spring connected between two parallel 

conducting plates 

  

  
      

   
 

 

 

  

  
 

 

 
       

     

     
                       

where   represents the mass of the unit area ( ) of the 

moving plate, and   is the possible damping spring's 

coefficient and it is good approximation to neglect it ( 

      ) at micro (Nano) world scales ; we get  

  
      

   
  

 

 
        

     

     
                                   

rewrite the last equation, we get a simple form  

 ̈   
 

  
        

     

      
                                             

 In the absence of the Casimir effect    , equation (3) 

reduces to the familiar linear harmonic oscillator which has 

well-known solutions. However, in the presence of the 

Casimir effect, it is a nonlinear differential equation which 

we will be solved by Laplace decomposition method.  

 

III- LAPLACE DECOMPOSITION METHOD 

The Laplace transform is considered an elementary, but 

useful technique for solving linear ordinary differential 

equations that are widely used by scientists and engineers 

for obstruction linearized models. In fact, the Laplace 

transform is one of only a few techniques that can be 

applied to linear systems. Although the Laplace transform 

is great usefulness in solving linear problems, it is totally 

incapable of handling nonlinear differential equations 

because of the difficulties that are caused by the nonlinear 

terms. This paper considers the effectiveness of the Laplace 
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decomposition method in solving nonlinear Casimir 

oscillator differential equations. The equation will be 

transformed using Laplace algorithm, and the nonlinear 

will be represented by the Adomian's polynomials.  

Many papers introduced this method to solve a various 

nonlinear partial differential equations. Khuri ]20[ used this 

method for the approximate solution of a class of a 

nonlinear ordinary differential equations. Handibag and 

Karande ]21[ applied this method for the solution of the 

linear and nonlinear heat equation. Elgazery ]22[ exploited 

this method to solve Falkner-Skan equation. The Laplace 

decomposition method was employed in ]23[ to get 

approximate analytical solutions of the linear and the 

nonlinear fractional diffusion-wave equations.  

    To illustrate the idea of the Laplace decomposition 

method, we consider the nonlinear ordinary differential 

equation in general form as:  

                                                         
where G represents a nonlinear differential operator. The 

method consists of decomposing the linear part of G in 

L+R , where L is an operator that have inverse L
-1

 , and R 

is the remaining part . denote the nonlinear term by N. the 

first step in Laplace decomposition method is the applying 

of Laplace transform on both sides of equation (4), we get 

                                                            

The second step represents the key of this technique, the 

nonlinear term N in equation (4) is decomposed into 

particular series of polynomials as follows: 
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The first five Adomian polynomials ]24[ for the variable 

Nu=f(u) are given by:  
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In the next section, the Laplace decomposition method will 

be introduced to obtain an approximate solution for 

equation (3) and the      will be plotted. It is important 

point to mention the constant    that is included in the 

problem will be in micro(Nano) scales and to be able to 

apply the simple Casimir force, the area ( ) should be 

much larger than the second power of the separation 

distance (      
  ) . 

 

IV- METHOD OF SOLUTION AND 

DISCUSSION 

To apply the Laplace decomposition method we consider 

equation (3) in a simple form with initial conditions given 

by:  

 ̈                               
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according to the Laplace decomposition method, taking 

Laplace transform of both sides of equation (9): 

   {    }             
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The initial conditions imply  
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Following the technique, if we assume an infinite series 

solution of the form  

     ∑  

 

   

                                                                 

We obtain  
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where the nonlinear operator          is decomposed as 

in (6) in terms of the Adomian polynomials  

 

     
                    

             

       
       

   
             

         
           

  

     
   

                 
Take the inverse Laplace transform of equation (14) .  

∑    

 

   

   
 

 
  

    {
 

  
 {∑    

 

   

}

    {
 

  
 {∑  

 

   

}}}             

Upon using the linearity of Laplace transform then 

matching both sides of (14), results in iteration scheme  
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In general 
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So, the first few terms of the solution will be  
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and so on …  

Therefore the approximate solution is: 

                                  
                                                           

or  

    

   
 

 
      

  

  
     

  

  
   

  

  
       

  

  

    
  

  
      

  

  
       

  

  
               

  

  
                                                                                             

V- CONCLUSION 

In this paper we considered a model of nonlinear Casimir 

oscillator consisted of linear harmonic oscillator, which is 

under the influence of Casimir effect. The equation of the 

model was solved using a powerful and successive method 

which is known as Laplace decomposition method. We 

decomposed the nonlinear terms of the problem to the 

Adomian polynomials. The obtained approximate solution 

has a form of a series. Some figures were plotted to 

construct the effect of the Casimir force on the 

micromechanical system of the linear harmonic oscillator. 

It was noted that the tool found the solutions without any 

discretization or restrictive assumptions. The scheme 

described in this paper is expected to be further employed 

to solve most of the nonlinear problems in science. 
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