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ABSTRACT: The one-way evolution of the black hole entropy towards a maximum can lead to truncation of the relevant 

operators to a subspace in a quantum theory of gravity. It is argued that the boundary Hilbert space in loop quantum gravity 

pertinent to the maximal entropy state of the horizon should lead to non-commutativity of the otherwise compatible area and 

volume operators. This may provide a clue towards understanding the black hole complementarity and the dimensional 

reduction inherent in the holographic principle.  
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 INTRODUCTION   
Loop quantum gravity (LQG) seems to be the sole theory 

that has produced results from first principles that 

geometrical quantities such as area and volume are quantized 

[1-3].  It uses spin networks as a basis for its Hilbert space. 

Spin networks are graphs with edges carrying spin labels 

 0,1/ 2,1,...j , i.e., the representations of SU(2) group 

which serves as the gauge group of the theory. When a set of 

edges labelled with spins ij  puncture a surface S , it 

acquires an area   
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which is an eigenvalue of the area operator .A  Since such 

areas lie at the boundaries of volumes, the eigenstates 

corresponding to the area operator also diagonalize the 

volume operator [1-3]. The theory, however, carries the 

burden of an unknown free parameter   in the predicted 

geometric spectra, called the Immirzi parameter [4]. No 

satisfactory physical explanation of this parameter is 

available till date, but its value is mainly fixed [5] by the 

requirement that the LQG computation produces the 

Bekenstein–Hawking entropy, 
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for a black hole with the horizon area A  [6]. 

There has been competing approaches in the literature to fix 

 , including some controversy over the true gauge of the 

theory and the counting of the true degrees of freedom living 

on the boundary, see for instance [7-11]. In this note, 

however, we wish to take the discussion to another angle that 

has not been considered yet. We argue that choosing the 

appropriate Hilbert space corresponding to the maximal 

entropy state of an isolated horizon will give rise to non-

commutativity of the of the otherwise commuting area and 

volume operators. This non-commutativity can be regarded 

as a result close to the black hole complementarity [12], 

which says that an observer can only detect the information 

at the horizon, or inside, but never both simultaneously. We 

recall that the black hole complementarity was proposed in 

response to the famous information loss problem, first 

realized by Hawking [13].  Our proposal is augmented by the 

strikingly similar example of the physics of the lowest landau 

levels (LLL) in the quantum Hall effect.  

 

Since our argument is linked with how the value of the 

Immirzi parameter is fixed, we first briefly review some of 

the relevant approaches to fixing the value of this parameter 

in section 2. In section 3, we present our argument. Section 4 

concludes this paper. 

BLACK HOLE ENTROPY AND THE IMMIRZI 

PARAMETER   
In LQG the entropy of a spherically symmetric horizon is 

determined via counting the states of the boundary Hilbert 

space. Considering a horizon as an isolated sphere 
2

S , the 

problem is reduced to counting the number of different ways 

the boundary can be punctured yielding the horizon area 

close to a given value [14-16]. The entropy of the horizon is 

measured as the logarithm of the dimension of the boundary 

Hilbert space 
boundary

H , i.e.,    

 ln dim ,
i

N
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where dim jH  is  2 1j for a puncture with spin j  and 

N is the number of edges puncturing the horizon. For large 

horizon area A  the leading contribution to the entropy 

comes from punctures with minimal spins min 1/ 2j   only. 

The maximum entropy can thus be approximated as 

1/2 ln 2S N .                                              (4) 

Here 1/2N  is the total number of spin-half edges puncturing 

the boundary.  Comparison of this result with the 

Bekenstein-Hawking formula fixes the Immirzi parameter at 

the value ln 2 / 3 .  

Dreyer [7] arrived at a different value, ln 3 / 2 2  , by 

exploiting the quasi-normal mode (QNM) spectrum of a 

Schwarzschild black hole [17]. But at the same time his 

approach also suggested that the dominant contribution 

should come from edges with min 1j   and that the true 

gauge group of the theory should therefore be considered as 

(3)SO  rather than (2)SU . However, it was argued that 

one should be restricted to (2)SU  if Fermions were to be 

accommodated in the theory [9]. Based on a combinatoric 

formulation of the black hole entropy, it was claimed that 
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contribution from all positive half-integer values of j  

should be taken into account, thereby, resulting yet in a 

different value of   [8]. However, this proposal also 

received significant criticism. For instance, it was argued that 

admitting arbitrary distribution of spins over the punctures 

may result in an arbitrarily complicated geometry, and that 

spherical symmetry of the horizon in the continuum limit 

would be hard to achieve [10].  It was also put forth that 

since a black hole, even if initiated by an excited state, will 

always evolve to a state of equilibrium with the maximal 

entropy, one should therefore be restricted to only minj edges 

from the very beginning. Punctures by higher j  edges could 

be thought as representing locally excited states of the black 

hole without spherical symmetry. See also reference [11], for 

arguments in favor of  minj edges puncturing the horizon.  

BLACK HOLE OMPLEMENTARITY IN LQG   
In light of the above discussion, we are now able to present 

the main argument of this paper. Ordinarily, the LQG area 

and volume operators commute, but the fate of these 

operators in the environment of a black hole remains 

unexplored. It is of utmost importance to embark on such a 

question because we have a convincing concept of black hole 

complementarity on the table from other tentative theories of 

quantum gravitation [12], according to which the boundary 

and the bulk degrees of freedom of a black hole are 

incompatible. If the area and volume operators of LQG were 

to commute for a black hole too, it would make possible 

simultaneous measurements of the boundary and the bulk 

degrees of freedom---a clear violation of the black hole 

complementarity. We argue that the one-way evolution of the 

boundary Hilbert space to the space of minimal spins would 

cause the area and volume operators to no longer commute. 

This is an inevitable outcome that has been bypassed in the 

earlier literature. The guiding principle in favor of the 

argument is that two commuting matrices in a full Hilbert 

space need not commute upon their truncations to a 

subspace. Thus, restriction of the horizon Hilbert space to a 

subspace would cause the area and volume operators to 

become non-commuting whence, in theory, they are 

diagonalized by a common set of eigenstates. A concrete 

example of such an effect is provided by the physics of the 

infinitely degenerate lowest Landau levels (LLL) in the 

quantum Hall effect. Electrons confined to a plane at 

extremely low temperature and high transvers magnetic field 

occupy only the degenerate ground level. In this process the 

problem is essentially reduced to a one-dimensional problem, 

where the X and Y coordinates, which are commuting by 

postulate, become a canonically conjugate pair. Such an 

effect of a black hole could also provide a mechanism behind 

the dimensional reduction intrinsic to the holographic 

principle.   

 

It remains to work out the exact commutator of the area and 

volume operators in the black hole environment. A constant 

commutator would turn these operators into a canonical pair 

that could be conjectured as the LQG version of the black 

hole complementarity [12], according to which information 

could be detected only at the horizon or in the bulk inside the 

horizon, but never both simultaneously.  

 

CONCLUSION 
We have pointed out that truncations of the area and volume 

operators to a subspace at the horizon would cause these 

operators to become non-commuting. This non-

commutativity is not imposed from the outset, but rather 

emerges as a result of the one-way evolution of a black hole 

to the state of maximal entropy, which may be regarded as 

the mechanism behind the black hole complementarity and 

the dimensional reduction inherent in the holographic 

principle [18]. 

Complementarity of the area and volume degrees of freedom 

would cause them to no longer communicate. This will 

suggest revisiting the Gauss‟s constraint because punctures 

on the horizon would cease to join edges in the bulk.  

Finally, choosing the minimal spins seems to be the only way 

to achieve non-commutativity of the area and volume 

operators. Therefore, the many-spin hypothesis advocated in 

[8] can be ruled out.  
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