
Sci.Int.(Lahore),32(5),611-620,2020 ISSN 1013-5316; CODEN: SINTE 8  

September-October 

611 

THE EFFECT OF CLAHE TO LOG-GABOR FILTER UN-SHARP MASK FOR 
FINGER VEIN IMAGE ENHANCEMENT AND CLASSIFICATION 

Amir Hajian, Dzati Athiar Ramli
* 
and Shazeeda 

School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang 14300, Malaysia. 

amirhajian85@gmail.com, dzati@usm.my, shaju9009@gmail.com  

 

ABSTRACT. Finger vein biometrics have been considered as one of the promising authentication methods nowadays. 

However, the main problems of finger vein image are low contrast and poor sharpness qualities because the image is 

normally captured under uneven illumination. The use of Classical Un-sharp Mask (CUM) is capable to modify the contrast 

and sharpness of finger vein image, however, its halo effect and excessive sensitivity to noise are the inevitable 

consequences. Therefore, this paper proposes a novel algorithm to enhance contrast and sharpness qualities of finger vein 

image by integrating Contrast Limited Adaptive Histogram Equalization (CLAHE) technique with a modified version of Un-

sharp Mask (MUM) which is based on the Log-Gabor filter technique. The significance of this proposed algorithm is 

evaluated by quantifying the improvement of vein detection through the Modified Repeated Line Tracking (MRLT) feature 

extraction. For the performance assessment, the SDUMLA finger vein database containing 3816 finger images is utilized. 

The experimental results revealed that the tiny veins became significantly more pronounced and sharp with 6.28% Equal 

Error Rates (EER) performance compared to 9.22% and 16.66% EER of MUM and baseline performances, respectively. 

Thus, the findings of the current study demonstrate the significance of the proposed enhancement algorithm. 
 
Key Words: Finger vein, Contrast Limited Adaptive Histogram Equalization, Modified version of Unsharp Mask. 

 

1. INTRODUCTION 
The growth of data science and information system leads 
biometric technology to become one of the best solutions to 
secure the automated authentication and identification 
process, especially for border control and internet banking 
system [1, 2]. One of the excellent characteristics of finger 
vein compared to fingerprint [2], iris [3], voice [4] and face 
[5], is that it is a sort of internal and invisible modality 
which is located underneath the finger skin and unseen to 
human naked eyes. Therefore, the risk of replicating the vein 
pattern by hackers is more challenging compared to the other 
external and visible biometric traits [6]. Apart from that, as 
every person has generally ten fingers thus if an unforeseen 
incident happens to any of the fingers, other fingers are 
available for replacement during the authentication and 
identification process [7]. 
Generally, a typical biometric system based on finger vein 
modality has four important modules. The first module is the 
finger vein data collection process, followed by pre-
processing of the finger vein sample, finger vein feature 
extraction process, and finally, pattern matching for the 
authentication or identification [8], [9]. Figure 1 illustrates 
the four modules in the finger vein authentication system. 

Figure 1: Block diagram of the finger vein recognition system 

 
For the data acquisition device, near-infrared (NIR) light 
(760-850nm) is normally used for visualizing the finger 
vasculature. When the NIR light penetrates into the finger, 
the light is absorbed by the Deoxyhaemoglobin in venous 
blood and the vascular pattern is ready to be captured by the 
CCD sensor [10]. However, due to uneven illumination and 
different thickness of the fingers, the captured images 
contain irregular shadows that mixed up with the veins and 

these images are normally referred to as low contrast and 
poor sharpness images [11]. Therefore, a pre-processing 
stage will play an important role in ensuring the significant 
preservation of all essential vein information, as the feature 
extraction process will affect the quality of the extracted 
features of the finger vein. The low performance of the 
feature extraction technique will certainly affect the final 
classification output. Robust extraction of vein features 
should contain all the minute details of tiny veins which lead 
to the high accuracy of the recognition system. In the pre-
processing stage, the Region of Interest (ROI) is first 
detected and followed by image enhancement procedures 
[12]. 
So far, various image enhancement techniques have been 
implemented so as to improve the quality of finger vein 
features [13, 14, 15, 16, 17]. Yang et  al., [13], used the 
even-symmetric Gabor filter bank with eight orientations to 
exploit the vein information from the ROI. An image 
containing the integrated finger vascular was then generated 
by the image reconstruction procedure. However, since this 
method enhances the low-contrast areas of the ROI more 
than the other parts, the small details of vein from the low 
contrast area which carries important vein information are 
also eradicated by this enhancement process. Therefore, in 
order to solve this problem, Yang et al.,[14], then utilized a 
family of Gabor wavelets to enhance the sharpness of the 
low-contrast vascular region and the circular Gabor filter 
was used for reconstruction. However, the drawback of this 
approach is the halo effect which appears in the resulting 
image. Due to this, Yang et al., [15], then used a new 
anisotropic diffusion method with a standard deviation map 
constraint to estimate the local background illumination. The 
non-scatter transmission maps were then estimated by the 
gamma correction. However, the processing speed of this 
approach is significantly slow. A multi-scale matched filter 
technique was also applied in a study by Gupta and Gupta, 
[17], however, this technique is extremely sensitive to noise. 
In another research, Banerjee et al., [16], combined the fuzzy 
contrast enhancement technique with the CLAHE operator 

mailto:amirhajian85@gmail.com
mailto:dzati@usm.my


 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(5),611-620,2020 

September-October 

612 

to enhance the sharpness and contrast of the finger vein 
image for the authentication system. Although this technique 
enhances the contrast of the finger vein image to some 
extent, yet the enhancement of sharpness of the image was 
an undesirable performance in terms of solving the greyness 
ambiguity of the input image. 
From the previous study, it can be observed that several 
methods have been proposed by the researchers on pre-
processing so as to solve the low contrast and poor sharpness 
quality of the images. However, it is quite challenging to 
improve the contrast and sharpness of the images 
simultaneously. Therefore, the main focus of the current 
study was to improve the contrast and sharpness qualities of 
the images. 
The remainder of this paper is organized as follows. Section 
2 explains the details of the methodology, including the 
proposed image enhancement algorithm and followed by 
results and discussion in Section 3. Finally, the conclusion is 
given in Section 4. 

 
2. Methodology 
This section discusses the steps in developing the finger vein 
authentication system. The proposed enhancement algorithm 
which is the backbone of this study is comprehensively 
explained in section 2.3. 
2.1 Data Collection 
For the data acquisition device, near-infrared (NIR) light 
(760-850 nm) is normally used for visualizing the finger 
vasculature. When the NIR light penetrates into the finger, 
the light is absorbed by the Deoxyhaemoglobin in venous 
blood and then the vascular pattern is ready to be captured 
by the CCD sensor [10]. In this research, the SDUML-HMT 
finger vein database, consists of 106 subjects of male and 
female, is used for the experimental data [18]. The ring 
finger, middle finger, and index finger of both hands were 
stored in this database and the capturing process is repeated 
6 times for each of these fingers. In total, the database 
comprises of 3,816 finger vein image samples, each with 
320×240 pixels resolution in BMP file format and with a 
total size of 0.85G Bytes. A computer with Intel Core i5, 1.6 
GHz, and 4GB RAM is used to execute the programming for 
this study.  
2.2 Region of Interest (ROI) Detection 
The first step in the pre-processing stage is to detect the 
borders of the finger. The identification and highlighting 
specifically the finger area from its background are called 
ROI detection. The left and the right boundaries of finger 
image in the horizontal direction are determined by    and 
  , respectively. In this study, the values of the left side,   , 
and right side,    of the image with 320×240 pixels are 
experimentally defined as 10 and 38 pixels, respectively.  

Figure 2: Detection of left and right boundaries (a): Original 

image and, (b): Output image after detection. 

 

Figure 2 represents the left and right side boundaries.  
The finger vein image consists of a finger part with higher 
grey-level value, surrounded by a background with lower 
grey-level value as shown in Figure 2. The upper and lower 
boundaries of finger regions are detected by using two 4×20 
masks, as shown in Figure 3. 

 
Figure 3: The 4 x 20 masks for ROI detection (a): Mask for 

upper boundary (b): Mask for the lower boundary 

 

Since the background of the image has a lower grey-level 

value compared to the finger region, therefore the pixel 

values of finger boundaries in upper and lower parts of the 

finger became maximum, and the borders of the finger were 

detected. Figure 4 demonstrates the upper and lower 

boundaries that were detected as the ROI. 

 
Figure 4: Upper and lower boundary detection of finger image: 

(a) the original image, (b) binary image (c) detected upper and 

lower finger edges 

 
In contrast to other ROI detection methods, the upper and 
lower boundaries of the finger are not detached from the 
image [19, 20, 21]. In this study, the detected boundaries are 
used in the feature extraction stage, whereas the vein 
detection was performed based on the pixel values inside the 
boundaries. 
2.3 The proposed enhancement algorithm 
The advantage of using Classical Un-Sharp Mask (CUM) 
and its variation for sharpness and contrast enhancement in 
medical image has been evaluated in a study by Gurpreet 
(2013) [22]. For simplicity, the output of Classical Un-Sharp 
Mask algorithm,   can be given as    ( ) as in equation 
(1) below.  

     ( )      (1) 
Here,   and   refer to the result of a linear low-pass filter 
and gain which is a real scaling factor. Here,   is obtained 
by subtracting the input image signal,   with the result of a 
linear low-pass filter,  . In order to increase the sharpness, 
the signal,   is amplified by   (   ). However, this 
process amplifies the noise and enhance the under-shoots 
and over-shoots in the areas of sharp edges due to the 
smoothing process. In one of the studies [22], a filter that 
ideally enhances the details of the image without being 
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sensitive to noise and without smoothing the sharp edges 
was investigated using a modified version of CUM on the 
medical images. 
Subsequently, Hajian & Ramli, [23], implemented the 

modified version of CUM called as a modified un-sharp 

mask (MUM) by replacing the low pass filter with a log-

Gabor filter to enhance the contrast and sharpness of finger 

vein image. Although this method manages to visualize the 

smaller details of vein vasculature, yet it suffers from 

uneven illumination on the resulted image as shown in 

Figure 5. This is due to the sharper regions of finger image 

which is over enhanced compared to the regions of the lower 

dynamic range and this leads to the appearance of an 

unpleasant halo effect. Halo is unwilling bands of light that 

appears when the high-contrast edges, which are located in 

the higher grey-scale pixel regions of the image, are over 

enhanced [23].  

 

 
 

Figure 5: MUM algorithm and the unfavorable halo effect. 

 
According to the generalized linear system, the signal is 
decomposed into two parts. One part is the signal that fits 
into the particular model and another is the residual part [24, 
25, 26]. By referring to equation (1), the filtering output of   
is considered as the part of the image that fits into this model 
while   is defined as the detail signal or residual signal. 
Obviously, this mathematical model shows that the part of 
the image that needs to be sharpened is the residual part, 
while, another part executes the contrast enhancement, 
which can be done by executing certain processing 
algorithms such as histogram equalization.  
Since the MRLT algorithm operates based on the cross-
sectional profile of the image which can eliminate the halo 
effect, noise plays an important role in getting the most 
appropriate features from the tiny vein pattern. Therefore, 
this paper proposes an image enhancement algorithm that  

Figure 6: Block diagram of image modification in the pre-

processing stage of MRLT algorithm 

 
can improve the MRLT feature extraction by combining 
Contrast Limited Adaptive Histogram (CLAHE) and a 
modified version of Un-sharp Mask (MUM) which is based 
on Log-Gabor filter. These two techniques seem to 
complement each other in solving the low contrast and poor 
sharpness of tiny vein images specifically for the cross-
sectional profile image as in the case of the MRLT 
algorithm. 
Hence, the overall modification on image enhancement 
conducted in this study was the use of CLAHE and Log 
Gabor filter during the pre-processing phase. The overview 
of the study is shown in Figures 6 below.  
2.3 (a) Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

This method operates based on a local enhancement 

approach. The image is first partitioned into non-overlapping 

blocks with equal size regions called tiles [27, 28]. Each 

non-overlapping tile has size (   ) and it is categorized 

into three different types of tiles i.e. corner region (CR), 

border region (BR), and inner region (IR) as shown in Figure 

7.  

 
Figure 7: The organization of tiles in finger image 

CR regions are the 4 tiles at the image's corner, BR regions 

are the tiles of the border of the image and the rest of the 

tiles are considered as IR regions. As the size of ROI is 

272 240 pixels, the image is divided into 1,020 tiles in 

which each tile is composed of 8 8 pixels size. 

The histogram of each tile is calculated using Cumulative 

Density Function (CDF) with the help of the following 

equation: 

    ( )  
(   )

 
  ∑     

 
   ( )         (2) 

where   and   are considered as the number of pixels for 

each tile,     ( ) is the histogram of pixel   and    

             . 

The clip limit value (  ) is determined by the following 

equation: 

  
 

 
(  

 

   
(      ))                                                             

(3) 

where   is the clip factor and it can be between 0 and 100. 

The maximum allowable is      that can be between 1 

and     , and   and   are the tile dimensions. The 

histogram of each independent tile is modified based on the 

obtained clip limit. In other words, the histogram of each tile 

that exceeds the value of the clip limit is limited to   and 

retains the histograms that are lesser than or equal to 

      . This process is repeated until the entire histogram 

values of tiles become lesser than or equal to the clip limit 

value. 
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After clipping and redistribution of histograms, the 

calculation of new pixel values with the mapping function is 

done based on redistributed histograms. Three different 

mapping functions are used for mapping new pixels values 

according to three different types of tiles. 

Mappings of te four nearest neighbors are used for IR type 

tiles in order to determine the mapping of each quadrant in 

the region. Figure 8 demonstrates the specified pixel in 

quadrant 1 of (   ) region. Depend on vertical and horizontal 

distances of this pixel from the centers of (   ) (  
   ) (       ), and (     ), the new value for this 

pixel is calculated using the following equation. 

 

     
 

   
(

 

   
         (    )  

 

   
      (    ))  

 
 

   
(

 

   
      (    )  

 

   
    (    ))                (4) 

  

Where     ( ) is a cumulative distribution function, and 

       and   are the specified distances as shown in Figure 

8. The new pixel values of other quadrates (2, 3, 4) are 

computed the same way. 

 

 
Figure 8: The IR tile. (a) The bordering regions. (b) The center, 

P and the four nearest regions 

Subsequently, the condition of BR type tiles is demonstrated 

in Figure 9. The calculation of new pixel value in quadrant 1 

or 3 is similar to that of the IR type, while the calculation of 

new pixel value for quadrant 2 or 4 is calculated as follows: 

     
 

   
       (    )  

 

   
    (    )         (5) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The BR tile. (a) The bordering regions. (b) The 

center, P and the four nearest regions 

Finally, Figure 10 shows the condition of a CR type tile. The 

neighborhood situation of quadrants 2 and 3 are similar to 

BR type tile and the neighboring organization of quadrant 4 

is similar to IR type tile. Therefore, the new pixel values of 

these quadrants in the corner position are computed with BR 

and IR equations. The new pixel value of pixel   in quadrant 

1 of (   ) in corner tile is computed by the following 

equation, 

         (    )                  (6) 

Figure 11 demonstrates the contrast enhancement of finger 

images before and after implementing the CLAHE method. 

 

 

 
Figure 10: The CR tile 

 

 

 
 

Figure 11: Original image (A) and CLAHE enhancement (B), 

respectively 

 
2.3 (b) Log Gabor filter design 
The Log-Gabor filter is constructed in terms of two main 

components, radial, and angular components. The frequency 

band of the filter is controlled by the radial component and 

orientation directions of the filter are controlled by the 

angular component. In order to improve the contrast of the 

image in the Log-Gabor filter, both the radial and the 

angular components are multiplied together. The transfer 

function of the Log-Gabor filter is given by the equation (7) 

below 

     (       )  

   ( 
 

 
(

     

  
)

 

)    ( 
 

 
(

      

  
)

 

)            (7) 

where (   ) represents the log-polar coordinates (     scale 

demonstrates the filters organized in octave scale),   and   

are orientation and scale, respectively. The pairs (      ) 

correspond to angular and radial bandwidths.  

The filter bandwidth is set by a parameter which is the ratio 

of standard deviation in the log frequency domain to the 

center frequency of the filter. The value of 0.65 for this 

A B 
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parameter obtains a bandwidth of roughly 2 octaves. The 

maximum and minimum frequencies of the Log-Gabor filter 

are determined by the wavelength of the smallest scale and 

the wavelength of the larger scale of the filter, respectively. 

Although the smallest value of wavelength is the Nyquist 

wavelength of 2 pixels; but for restricting the aliasing 

problem; the minimum value is set to 3 pixels in Log-Gabor 

design in order to obtain the maximum frequency. The 

minimum frequency implicitly defined by 

                   
                ⁄     (8)                                            

 

Small wavelengths lead to the high frequencies at the corner 

of FFT and make FFT with uneven coverage. The uneven 

coverage may depress the normalization process during 

phase congruency computation. In order to solve this 

problem and produce FFT with uniform coverage in all 

directions, a low-pass filter (as large as possible) is 

multiplied with the filters.  

The angular component of the Log-Gabor filter controls the 

resolution of orientation information. The angular interval 

between filter orientations of Log-Gabor is fixed by the 

number of filter orientations. In this study, the optimum 

filter orientation was chosen by analyzing 6 different 

orientations of the filter. By taking the inverse Fourier 

Transform of the filter, the real part of the result (even-

symmetric component) and the imaginary part of the result 

(odd-symmetric component) are obtained. Figure 12 (a) and 

(c) show the even-symmetric component and Figure 12 (b) 

and (d) demonstrated the odd-symmetric component of the 

filter. 

 

 
 

Figure 12: Log-Gabor Filter design: (a) and (c) are the even-

symmetric component while (b) and (d) are the odd-symmetric 

component of the filter. 

 

2.3 (c) Summary of the proposed image enhancement 

algorithm  

The architecture of the overall method proposed for image 

enhancement as presented in Figure 6 is summarised into 

Algorithms 1, 2, 3 as given below. The effect of finger vein 

image enhancement to the feature extraction stage will be 

discussed in the next part of the paper. 

Algorithm 1: ROI detection 

Input: (a)                        
(b)         and          

(c)                ,                

Output: (a) The detected ROI image            
Algorithm: 

Step1: Determine the left and right boundaries of the input 

image 
The value of the left boundary (  ) set to 10 pixels and the 

value of the right boundary (  ) set to 282 pixel   

The new   value for the input image is considered to 

determine by the formula           
Step2: Detect the upper and lower boundaries of the input 

finger 

 The height of the input image is divided into the 

same size, upper and lower regions. 

 Construct masks by filtering the upper half and the 

lower half of the images. 

 Filter both halves of the image using these masks 

 Determine the pixels which are in the upper and 

lower borders of the resulting binary image. 

2.4 Feature Extraction by Modified Repeated Line Tracking 

(MRLT)  

Feature extraction is one of the important processes in a 

finger vein authentication system. It transforms the raw input 

data into a set of salient information, namely, features. It 

involves a data selection process and finally facilitates the 

process of dimension reduction. There are various 

algorithms and filters used in precisely extracting the vein 

features from the raw finger image. These methods are 

classified into three main categories which are vein pattern-

base [29], dimensionality reduction-based [30], and local 

binary-base [31] methods. Modified Repeated Line Tracking 

(MRLT), the algorithm that was used in this study, belongs 

to the vein pattern-base category [32]. This algorithm 

operates based on a vein image cross-sectional profile and it 

has an ability to extract the salient information from the vein 

images. 

The minutiae algorithm, Repeated Line Tracking (RLT), 

developed by Miura and Nagasaka, [11], to resolve the 

problem of precise detection of finger vascular pattern from 

the dark and shadowy image, whereas, MRLT method is the 

improved version of the RLT algorithm and it detects the 

vein pattern according to cross-section profile of finger 

image [23, 32]. The cross-sectional profile of the vein has a 

valley shape and the depth of the valley indicates the pixel 

with the darkest intensity value as shown in Figure 13 

below. 

 
Algorithm 2: CLAHE 
 

Input:                               

Output: Histogram equalization according to clip 

limit for all non-overlap tiles  
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Algorithm:  

Step1: Partitioned the image into non-overlap tiles 

      

The image [272×192] is divided into 816 tiles in which 

each tile has a 4 4 pixel size 

Step2: Histogram equalization  

The histogram equalization of each tile is calculated by the 

Equation (2)  

Step3: Calculation of the clip limit value and mapping new 

value for each pixel 

The clip limit of each tile ( ) is calculated by the Equation 

(3) 

The new value for each pixel is calculated according to the 

type of each tile by the Equation (4), Equation (5), and 

Equation (6). 

Algorithm 3: log Gabor filter 

 

Input: (a)                         

 (b) Log-Gabor filter with     (filter 

orientations) and   =5 (filter scales) 

 (c)     

Output: (a) MUM image               

  

Algorithm:  

Step1: Apply log-Gabor filter to CLAHE image 

                                      

             

Step2: Determine the detail signal ( ) of the image  

The residual or detail signal is given by      . 

Step3: Multiply the Gain value ( ) by the detail signal 

 (   ) 

Step4: Determine the result of the MUM algorithm 

The result of the MUM algorithm is obtained by the 

Equation (1):     (   ) 

 

Figure 13: The relation of Current Tracking Point (CTP) on 

the cross-sectional profile [23] 

 

The following equation is the line evaluation that detects the 

dark veins. 

 

      (     )    { (  

           
   

 ⁄          

           
   

 ⁄      )

   (             
   

 ⁄          

           
   

 ⁄      )

   (              

         )}                          ( ) 

 

Where the distance between the cross-sectional profile and 

the CTP is mentioned by  , the angle between line segments 

(     )  (     ) and (     )  (       ) is shown by   ,  

    is the width of profile,     is the radius and (     ) is the 

point at  . In this extraction algorithm,     and     are 

considered as 10 and 1, respectively. 

       
     

 (     )
  (     )

  
 

 ⁄
                                   (  ) 

 

       
     

 (     )
  (     )

  
 

 ⁄
                                  (  ) 

The line tracking operates for all pixels of the image and the 

dark pixels of the image will be detected. The detection 

process of the entire pixels is repeated   times. The total 

number of times that each pixel of the input image is tracked 

as the dark point will be recorded. This dark point is termed 

as locus space. A higher number of elements of locus space 

is being repeatedly tracked indicating the higher probability 

of that location being the vein pixel.  

In our case, the MUM algorithm can modify the sharpness 

and contrast of the image without any halo effect in the light 

region of the image [23]. The small and tiny veins in the 

enhanced image with the MUM algorithm are detectable, 

however, implementing the local contrast enhancement 

(CLAHE) at the initial stage before applying the MUM 

algorithm results in a more robust in-depth detection for the 

very tiny veins in the bright regions of the image. Thus 

better vein extraction is observed as shown in Figure 14. 

 

 
 

Figure 14: Cross-sectional profiles of the A-B line in MUM 

algorithm alone (a) and CLAHE before MUM algorithm 

applied (b) 
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Figure 14 shows the results of (a) MUM enhanced image 

and (b) proposed an enhanced image. From the observation, 

it is clear that both methods are viable in enhancing the 

sharpness of the images in the bright regions without any 

unpleasant halo effect. However, in terms of detection of the 

very tiny veins in the brightest part of the image, the 

CLAHE operator has shown significantly increased contrast 

of the tiny details. The advantage of the proposed method 

(CLAHE then MUM) can be observed by the cross-sectional 

profiles of a vertical line (A-B line) in the bright region as 

depicted in Figure 14. Here, the MRLT feature extraction 

algorithm works onto MUM enhancement image, which is 

not able to detect the depth of two branches of tiny veins in 

cross-sectional profile while the two valley shape points,     

and     are able to be detected by the proposed enhanced 

algorithm (CLAHE then MUM). By using the local contrast 

enhancement method (CLAHE) before sharpness 

enhancement (MUM), the intensity of sharpness 

enhancement of the vein image was increased drastically and 

the tiny veins have become more detectable.  

3. RESULTS AND DISCUSSION 

In this section, the performances of extracted vein feature of 

the three different images: baseline image (without any 

modification), MUM enhancement image, and proposed 

enhancement method (CLAHE then MUM) image are 

validated. In this study, a Support Vector Machine (SVM) 

classifier was employed for the authentication of finger vein 

image [33]. 

3.1 Results of Image Enhancement and Feature Extraction 

Figure 15 shows the baseline images, and the modified 

images by the MUM algorithm, and the proposed 

enhancement method (CLAHE and MUM) of an individual 

in the database. The index, ring, and middle fingers of both 

hands were captured for each subject in this database. As 

observed, the proposed enhancement technique can modify 

the contrast and sharpness of the finger image without any 

halo effect. Subsequently, the extracted vein pattern of the 

corresponding fingers is shown in Figure 16. 

As observed, more details of tiny veins are detected in 

extracted vein feature using the proposed enhancement 

algorithm than compared to that of the baseline image 

extraction and MUM image extraction. Table 1 compares the 

number of white pixels (detected vein) for each extracted 

pattern of subjects that were shown in Figure 16.  

 

 
 

Figure 15: The baseline image, enhanced by MUM and 

proposed enhancement (CLAHE then MUM)  

.  
Table 1: Number of white pixels (extracted vein pattern) for 

each enhancement method 

 Baseline 

Image 

MUM Proposed 

Enhancement 

Right 

Hand 

Index 575 712 921 

Ring 595 743 883 

Middle 503 828 999 

Left 

Hand 

Index 642 761 962 

Ring 629 801 1011 

Middle 512 820 987 

 

3.2 Results of system performance  

In this study, three ROC curves were plotted by GAR 

(Genuine Acceptance Rate) against the FAR (False 

Acceptance Rate) graph and the performances of the 

authentication system were evaluated for whole database 

according to the different numbers of training data with 

before and after image enhancement algorithm. 
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Figure 16: The extracted vein patterns of baseline images, and 

the images enhanced by MUM and proposed enhancement 

(CLAHE then MUM) 

 

Figures 17, 18, and 19 show the performances of the 

authentication system based on one, two, and three training 

data, respectively. The baseline image (without any 

modification), the image enhanced by the MUM technique, 

and the image enhanced by the proposed algorithm are 

compared in these figures. 

 

 

 
 

 
Figure 17: Performances of the system with different 

enhancement methods with one training data 

 

 

 
 

Table 2: Genuine Acceptance Rates (GAR), Equal Error Rates 

(EER), and the number of images for each mode of data 

training according to the different types of image modification. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Performances of the system with different 

enhancement methods with two training data 

 

 
Figure 19: Performances of the system with different 

enhancement methods with three training data 

 

By increasing the numbers of training data, the Genuine 

Acceptance Rate (GAR) of the system increases. The 

greatest GARs on one, two, and three data training are 56%, 

70%, and 92%, respectively, which belong to the proposed 

image enhancement method. By increasing the numbers of 

training data, the Equal Error Rates (EERs) of the system 

decrease. The lowest EERs on one, two and three training 

data are 23.32%, 16.82%, and 6.28%, respectively, which 

also belong to the proposed image enhancement method. 

Table 2 shows the GARs, EERs, and the number of images 

used in each mode of training according to the types of 

image modifications. 

Baseline MUM Proposed 

Method 

No. of 

Training 

No. of 

Images 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

EER 

(%) 

1 to train 636 
47 26.63 54 26.39 56 23.32 

5 to test 3,180 

2 to train  1,272 
53 26.64 63 21.59 70 16.82 

4 to test 2,544 

3 to train  1,908 
68 16.66 78 9.22 92 6.28 

3 to test 1,908 
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The performance of Genuine Accuracy Rate (GAR) and 

Equal Error Rate based on three training data are 92% and 

6.28%, respectively, which show a good improvement 

compared to Banerjee et al. (2018) and Hajian et al. (2018). 

The overall comparison results are illustrated in Table 3. 
Table 3: Comparison with Previous Related Studies 

 

4. CONCLUSION 

In this paper, the pre-processing stage in the finger vein 

authentication system has successfully been modified and 

evaluated. The Modified Repeated Line Tracking (MRLT), a 

robust finger vein feature extraction technique that operates 

based on image cross-sectional profile, was employed and 

the Support Vector Machine was used as a classifier for the 

authentication system. The proposed image modification 

technique significantly enhanced the sharpness and contrast 

of the finger image in such a way that small and tiny veins 

have become detectable by the MRLT processing method. 

The experimental results indicate that the importance of the 

CLAHE technique to be integrated with the MUM image 

enhancement approach in order to improve the contrast and 

sharpness of the finger vein image. Further investigation is 

warranted to improve the accuracy and performance of the 

finger vein verification system using more effective and 

robust valley detection approaches for feature extraction 

technique.  
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