SOME COMMON RANDOM FIXED POINTS THEOREMS OF QUASI-CONTRACTION RANDOM OPERATORS IN METRIC SPACE AND RANDOM WELL-POSED

^{1*}Yusra Jarallah Ajeel, ²Osamah Hadi Mutlag, ²Halah Qahtan Hamdi

¹Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq.

²Department of Remote Sensing & GIS, College of Science, University of Baghdad, Baghdad, Iraq.

*Correspondence::Ysrajara@yahoo.com

ABSTRACT: Our aim in this paper is to prove the random coincidence points for two random operators under quasi contraction conditions in metric space. The random well-posed fixed-point problem is best studied by proving applications that are related to common random fixed-point results.

Keywords: Random well-posed; Common random fixed-points.

1. INTRODUCTION AND PRELIMINARIES:

In the 1950s, Špaček [1] and Hanš [2, 3] reported the first work on random fixed-point (RFP) theorems at the Prague School of Probabilities. Following the article published by Bharucha-Reid [4] in 1976, the *i*nterest in these problems grew tremendously. For instance, Chauhan [5] focused on the common fixed-point (CFP) theorem for 4 continuous random operators that satisfies some contractive criteria in Separable Hilbert space. In 2014, Ahmed [6] proved the existence of CFP for random mappings satisfying new type of rational contractive conditions in S-metric space.

In 2016, Abed and Ajeel [7] proved RFP theorem for Banach operator which is defined on separable closed subset of a complete p-normed space.

Rashwan & Hammed [8], in 2017, demonstrated a unique common RFP theorem for 4 loosely compatible mappings in cone random metric spaces based on an implicit relation. Abed et. at [9] focused on two continuous random operators to prove the common RFP theorem in complete p-normed space under quasi contraction condition.

This article focused on common RFP generation for two random operators under quasi contraction condition in metric space. Also studied was the well-posedness problem of RFPs.

In this article, X will be the metric space, $\emptyset \neq A \subseteq X$ be a closed, (Ω, Σ) will be the measurable space with Σ which is a sigma algebra of subsets of Ω . 2^X represents the classes of all X subsets, while CB(X) represents the classes of the whole bounded non-empty closed X subsets. RF(S,T) stands for the common RFPs of S & T and RC(S,T) is the set of random coincidence points of S & T. *We need the following definitions and facts:*

<u>Definition (1.1)</u>: [10]

"A mapping $F: \Omega \to 2^X$ is called measurable (respectively, weakly measurable) if, for any closed (respectively, open) subset B of, $F^{-1}(B) = \{\omega \in \Omega: F(\omega) \cap B \neq \emptyset\} \in \Sigma$." *Definition (1.2)*: [11]

<u>Definition (1.2)</u>: [11]

"A mapping $\delta: \Omega \to X$ is called a measurable selector of a measurable mapping $F: \Omega \to 2^X$ if δ measurable and $\delta(\omega) \in F(\omega)$ for each $\omega \in \Omega$."

<u>Definition (1.3)</u>: [12]

"A mapping $h: \Omega \times X \to X$ (or $G: \Omega \times X \to CB(X)$) is called a random operator if for any $x \in X, h(., x)$ (respectively G(., x) is measurable ."

Definition (1.4): [13]

"A measurable mapping $\delta: \Omega \to A$ is called random fixed point of a random operator $h: \Omega \times X \to X$ (or $G: \Omega \times X \to CB(X)$ if for every $\omega \in \Omega$, $\delta(\omega) = h(\omega, \delta(\omega))$ (respectively $\delta(\omega) \in G(\omega, \delta(\omega))$."

Definition (1.5): [14]

"A measurable mapping $\delta: \Omega \to A$ is called random coincidence point of a random operator $h: \Omega \times A \to A$ and $G: \Omega \times A \to A$ if for every $\omega \in \Omega$, $h(\omega, \delta(\omega)) = G(\omega, \delta(\omega))$."

Definition (1.6): [14]

"A measurable mapping $\delta: \Omega \to A$ is called common random fixed point of a random operator $h: \Omega \times A \to X$ and $G: \Omega \times A \to A$ if for every $\omega \in \Omega$

$$\delta(\omega) = h(\omega, \delta(\omega)) = G(\omega, \delta(\omega)).$$

Now, a new type of random operators will be defined.

<u>Definition (1.7)</u>:

Let(*X*, *d*) be a metric space. Let $T, I: \Omega \times A \rightarrow A$ be two random operators. The random operator *T* is called *I*-quasi Contraction operator if we have:

 $d(T(\gamma, x), T(\gamma, y)) \leq$

$$k \max \begin{cases} d(I(\gamma, x), I(\gamma, y)), d(I(\gamma, x), T(\gamma, x)), d(I(\gamma, y), T(\gamma, y)) \\ d(I(\gamma, x), T(\gamma, y)), d(I(\gamma, y), T(\gamma, x)), \end{cases}$$
(1.1)

 $(, a(I(\gamma, x), T(\gamma, y)), d(I(\gamma, y), T(\gamma, x)),$ Where, $0 \le k < \frac{1}{2}$ For all $x, y \in A$.

Definition (1.8):

"Let A be a nonempty subset of a metric space X and let S and T be self-mappings of A the pair (S, T) is said to be:

1) Weakly compatible [15] if they commute at their coincidence points, i.e., STx = TSx for all x satisfying S(x) = T(x).

2) R-weakly commuting maps [16] if for all $x \in A$ there exists R > 0 such that d(STx, TSx) < Rd(Sx, Tx), if R = 1, then the maps are called weakly commuting."

These definitions was as captured by [15, 17], respectively:

Definition (1.9):

"A random operators $h, G: \Omega \times X \longrightarrow X$ are said to be R-weakly commute (or Weakly Compatible) if $h(\omega, .)$ and $G(\omega, .)$ are R-weakly commute (respectively weakly compatible) for each $\in \Omega$."

2. RANDOM COINCIDENCE THEOREMS

We prove that:

<u>Theorem (2.1)</u>:

Let $\emptyset \neq A \subseteq X$ for fixed $\gamma \in \Omega$, the mappings

Sci.Int.(Lahore), 32(5), 557-56S0, 2020

558 $T, I(\gamma, .): A \rightarrow A$ satisfy the condition (1.1) . If $cl(T(\gamma, A)) \subseteq I(\gamma, A)$ and $cl(T(\gamma, A))$ is separable complete subspace of A. Then $RC(T, I) \neq \emptyset$. **Proof:** Let $\delta_{\circ}: \Omega \to A$ be arbitrary measurable mapping. Then, a sequence of measurable maps $\delta_n: \Omega \to A$ was constructed. Since $cl(T(\gamma, A)) \subseteq I(\gamma, A)$, then we can find $\delta_1: \Omega \to A$ such that $T(\gamma, \delta_{\circ}(\gamma)) = I(\gamma, \delta_{1}(\gamma)).$ A sequence of measurable mappings $\delta_n: \Omega \to A$ was constructed such that $T(\gamma, \delta_{2n-1}(\gamma)) = I(\gamma, \delta_{2n}(\gamma))$ (2.1)Hence, the sequence of functions for $\gamma \in \Omega$, $\{y_n(\gamma)\}$ can be defined such that $y_{2n}(\gamma) = T(\gamma, \delta_{2n}(\gamma)) =$ (2.2) $I(\gamma, \delta_{2n+1}(\gamma))$ $d(y_{2n}(\gamma), y_{2n+1}(\gamma)) = d(T(\gamma, \delta_{2n}(\gamma)), T(\gamma, \delta_{2n+1}(\gamma)))$ $\leq k \max\{d\left(I(\gamma,\delta_{2n}(\gamma)),I(\gamma,\delta_{2n+1}(\gamma))\right),d\left(I(\gamma,\delta_{2n}(\gamma)),T(\gamma,\delta_{2n}(\gamma))\right),$ $d\left(I\left(\gamma,\delta_{2n+1}(\gamma)\right),T\left(\gamma,\delta_{2n+1}(\gamma)\right)\right),d\left(I\left(\gamma,\delta_{2n}(\gamma)\right),T\left(\gamma,\delta_{2n+1}(\gamma)\right)\right),$ $d\left(I\left(\gamma,\delta_{2n+1}(\gamma)\right),T\left(\gamma,\delta_{2n}(\gamma)\right)\right)\}$ $= k \max\{d\left(T(\gamma, \delta_{2n-1}(\gamma)), T(\gamma, \delta_{2n}(\gamma))\right), d\left(T(\gamma, \delta_{2n-1}(\gamma)), T(\gamma, \delta_{2n}(\gamma))\right),$ $d\left(T\left(\gamma,\delta_{2n}(\gamma)\right),T\left(\gamma,\delta_{2n+1}(\gamma)\right)\right),d\left(T\left(\gamma,\delta_{2n-1}(\gamma)\right),T\left(\gamma,\delta_{2n+1}(\gamma)\right)\right),$ $d\left(T(\gamma,\delta_{2n}(\gamma)),T(\gamma,\delta_{2n}(\gamma))\right)$ Using triangle inequality, we get $\leq k \max\{d\left(T(\gamma,\delta_{2n-1}(\gamma)),T(\gamma,\delta_{2n}(\gamma))\right),d\left(T(\gamma,\delta_{2n}(\gamma)),T(\gamma,\delta_{2n+1}(\gamma))\right),$ $d\left(T\left(\gamma,\delta_{2n-1}(\gamma)\right),T\left(\gamma,\delta_{2n}(\gamma)\right)\right)+d\left(T\left(\gamma,\delta_{2n}(\gamma)\right),T\left(\gamma,\delta_{2n+1}(\gamma)\right)\right)$ $= k[d(T(\gamma, \delta_{2n-1}(\gamma)), T(\gamma, \delta_{2n}(\gamma))) + d(T(\gamma, \delta_{2n}(\gamma)), T(\gamma, \delta_{2n+1}(\gamma)))]$ $= k[d(y_{2n-1}(\gamma), y_{2n}(\gamma)) + d(y_{2n}(\gamma), y_{2n+1}(\gamma))]$ Hence, $d(y_{2n}(\gamma), y_{2n+1}(\gamma)) \le \lambda d(y_{2n}(\gamma), y_{2n-1}(\gamma))$ Where $\lambda = (k/1 - k) < 1$. In general $d\big(y_n(\gamma),y_{n+1}(\gamma)\big) \leq \lambda d\big(y_n(\gamma),y_{n-1}(\gamma)\big)$ Therefore, $d(y_n(\gamma), y_{n+1}(\gamma)) \le \lambda d(y_n(\gamma), y_{n-1}(\gamma))$ $\leq \lambda^2 d(y_{n-1}(\gamma), y_{n-2}(\gamma))$ $d(y_{n+1}(\gamma), y_n(\gamma)) \leq \lambda^n d(y_0(\gamma), y_1(\gamma))$ for all $\gamma \in \Omega$.

Now, it is time to prove that for $\in \Omega$, $\{y_n(\gamma)\}$ is a Cauchy sequence. For each positive integer p, for $\gamma \in \Omega$

 $d\left(y_n(\gamma), y_{n+p}(\gamma)\right) \le d\left(y_n(\gamma), y_{n+1}(\gamma)\right) + d\left(y_{n+1}(\gamma), y_{n+2}(\gamma)\right) + \dots$ $+ d\left(y_{n+p-1}(\gamma), y_{n+p}(\gamma)\right)$ $\leq (\lambda^n + \lambda^{n+1} + \dots + \lambda^{n+p-1}) d(y_0(\gamma), y_1(\gamma))$ $=\lambda^n \left(1+\lambda^1+\,\ldots\,+\lambda^{p-1}\right) d\big(y_0(\gamma),y_1(\gamma)\big)$ $\leq (\lambda^n/1 - \lambda)d(y_0(\gamma), y_1(\gamma))$ for all $\gamma \in \Omega$.

This implies

 $\gamma \in \Omega$. $d(y_n(\gamma), y_{n+p}(\gamma)) \to 0$ as $n \rightarrow \infty$ for (2.3)

It also means that for $\in \Omega$ { $y_n(\gamma)$ }, is a Cauchy sequence in $T(\gamma, A).$

Since $cl(T(\gamma, A))$ is a complete subspace of A, the sequence $\{y_n\}$ has a limit $t: \Omega \to A$ there exists $t(\gamma) \in cl(T(\gamma, A))$ such that $y_n(\gamma) \to t(\gamma)$ as $n \to \infty$.

Obtained a mapping $u: \Omega \to A$ such that $I(\gamma, u(\gamma)) = t(\gamma)$. Thus we have

 $t(\gamma) = \lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} T(\gamma, \delta_{2n}(\gamma)) = \lim_{n \to \infty} I(\gamma, \delta_{2n+1}(\gamma))$

Using (2.2) and (1.1), we have $d\left(y_{2n}(\gamma), T(\gamma, u(\gamma))\right) = d\left(T(\gamma, \delta_{2n}(\gamma)), T(\gamma, u(\gamma))\right)$ $\leq k \max\{d\left(I(\gamma,\delta_{2n}(\gamma)),I(\gamma,u(\gamma))\right),d\left(I(\gamma,\delta_{2n}(\gamma)),T(\gamma,\delta_{2n}(\gamma))\right),$ $d(I(\gamma, u(\gamma)), T(\gamma, u(\gamma))), d(I(\gamma, \delta_{2n}(\gamma)), T(\gamma, u(\gamma))),$ $d\left(I(\gamma, u(\gamma)), T(\gamma, \delta_{2n}(\gamma))\right)\}$ taking limit as $n \to \infty$, we get $d\left(t(\gamma), T(\gamma, u(\gamma))\right) \le k \max\{d\left(t(\gamma), I(\gamma, u(\gamma))\right), d\left(t(\gamma), t(\gamma)\right), d\left(t$ $d\left(I(\gamma, u(\gamma)), T(\gamma, u(\gamma))\right), d\left(t(\gamma), T(\gamma, u(\gamma))\right), d\left(I(\gamma, u(\gamma)), t(\gamma)\right)\}$ From $t(\gamma) = I(\gamma, u(\gamma))$, we have $d\left(t(\gamma), T(\gamma, u(\gamma))\right) \le k d\left(t(\gamma), T(\gamma, u(\gamma))\right)$ This implies, $(1 - k)d(t(\gamma), T(\gamma, u(\gamma))) \le 0$ Hence $d(t(\gamma), T(\gamma, u(\gamma))) = 0 \Rightarrow t(\gamma) = T(\gamma, u(\gamma)) = I(\gamma, u(\gamma))$ (2.4)

Therefore $RC(T, I) \neq \emptyset$.

<u>Theorem (2.2)</u>:

Let X, A, T, I, $cl(T(\gamma, A))$ as in theorem (2.1). If the pair $\{T, I\}$ is R-weakly commuting (or weakly compatible), then $RF(T) \cap RF(I)$ is a unique singlton element.

Proof:

Theorem 2.1 proves that existence of a random coincidence point $u: \Omega \to A$ of T and I such that $T(\gamma, u(\gamma)) = I(\gamma, u(\gamma))$ for all $\gamma \in \Omega$. If the pair $\{T, I\}$ is weakly compatible, then $T(\gamma, I(\gamma, u(\gamma)) = I(\gamma, T(\gamma, u(\gamma)) \text{ from } (2.4), \text{ we have}$ $T(\gamma, t(\gamma)) = I(\gamma, t(\gamma))$ (2.5)From (2.4), (1.1) and (2.5), we have $d(t(\gamma), T(\gamma, t(\gamma))) = d(T(\gamma, u(\gamma)), T(\gamma, t(\gamma))) \le$ $k \max\{d(I(\gamma, u(\gamma)), I(\gamma, t(\gamma))),$ $d(I(\gamma, u(\gamma)), T(\gamma, u(\gamma))), d(I(\gamma, t(\gamma)), T(\gamma, t(\gamma))),$ $d\left(I(\gamma, u(\gamma)), T(\gamma, t(\gamma))\right), d\left(I(\gamma, t(\gamma)), T(\gamma, u(\gamma))\right)\}$ $= k \max\{d(I(\gamma, u(\gamma)), I(\gamma, t(\gamma))),$ $d\left(I(\gamma, u(\gamma)), T(\gamma, t(\gamma))\right), d\left(I(\gamma, t(\gamma)), T(\gamma, u(\gamma))\right)\}$ $= k \max\{d(I(\gamma, u(\gamma)), T(\gamma, t(\gamma))),$ $d\left(I(\gamma, u(\gamma)), T(\gamma, t(\gamma))\right), d\left(T(\gamma, t(\gamma)), t(\gamma)\right)\}$ = k $\max\{d(t(\gamma), T(\gamma, t(\gamma))), d(t(\gamma), T(\gamma, t(\gamma))), d(T(\gamma, t(\gamma)), t(\gamma))\}$ Then, $(1-k)d(t(\gamma), T(\gamma, t(\gamma))) \le 0 \Rightarrow t(\gamma) = T(\gamma, t(\gamma))$ From (2.5) we have $t(\gamma) = T(\gamma, t(\gamma)) = I(\gamma, t(\gamma))$ (2.6)Thus, $t(\gamma)$ is a common RFP of T and I. Uniqueness: Let $z(\gamma)$ be another common RFP of T and I, then by using (1.1), we have $d(t(\gamma), z(\gamma)) = d(T(\gamma, t(\gamma)), T(\gamma, z(\gamma))) \le$ $k \max\{d(I(\gamma,t(\gamma)),I(\gamma,z(\gamma))),$ $d\left(I(\gamma,t(\gamma)),T(\gamma,t(\gamma))\right),d\left(I(\gamma,z(\gamma)),T(\gamma,z(\gamma))\right),$ $d\left(I(\gamma,t(\gamma)),T(\gamma,z(\gamma))\right),d\left(I(\gamma,z(\gamma)),T(\gamma,t(\gamma))\right)\}$ $= k \max\{d(t(\gamma), z(\gamma)), d(t(\gamma), t(\gamma)), d(z(\gamma), z(\gamma)),$ $d(t(\gamma), z(\gamma)), d(z(\gamma), t(\gamma))$ This implies $(1 - k)d(y(\gamma), z(\gamma)) \le 0 \Rightarrow y(\gamma) = z(\gamma)$. Assume that $\{T, I\}$ is R-weakly commuting and $u(\gamma)$ is a random coincidence point of T and I, it follows that

September-October

Hence, the pair $\{T, I\}$ is said to be loosely compatible. Following similar steps as above, it can be shown that y is a unique common fixed point of T and $I.\blacksquare$

Consequently, we will arrive at the following:

Corollary (2.1):

If A, X and T as in theorem (2.1) and for each $\gamma \in \Omega$, $h(\gamma, .): A \to A$ is (qcr) operator, then RF(T) is a unique element.

Proof:

$$d(T(\gamma, x), T(\gamma, y)) \leq k \max \begin{cases} d(x, y), d(x, T(\gamma, x)), d(y, T(\gamma, y)) \\ , d(x, T(\gamma, y)), d(y, T(\gamma, x)), \end{cases}$$

$$(2.7)$$

where , $0 \le k < \frac{1}{2}$ For all $x, y \in A$.

Put $I(\gamma, x) = x$ (the identity random mapping) for all $\gamma \in \Omega$ in theorem (2.1), then the corollary (2.1) stems from theorem (2.1).

Corollary (2.2):

Let $X, A, T, I, cl(T(\gamma, A))$ as in theorem (2.1) .If the pair $\{T, I\}$ meets one of the following criteria:

 $\mathbf{1.}\,d\big(T(\gamma,x),T(\gamma,y)\big) \leq$

$$k \max\{d(I(\gamma, x), I(\gamma, y)), d(I(\gamma, x), T(\gamma, x)), d(I(\gamma, y), T(\gamma, y))\}$$

2. $d(T(\gamma, x), T(\gamma, y)) \le k \max\{d(I(\gamma, x), T(\gamma, x)), d(I(\gamma, y), T(\gamma, y))\}$

 $3.d(T(\gamma, x), T(\gamma, y)) \leq$

$$k \max\{d(I(\gamma, x), I(\gamma, y)), \frac{1}{2}[d(I(\gamma, x), T(\gamma, x)) +$$

 $d(I(\gamma, y), T(\gamma, y))], d(I(\gamma, x), T(\gamma, y)), d(I(\gamma, y), T(\gamma, x))\}$

 $4.d(T(\gamma, x), T(\gamma, y)) \leq$

 $k \max\{d(I(\gamma, x), I(\gamma, y)), \frac{1}{2}[d(I(\gamma, x), T(\gamma, x)) +$

 $d(I(\gamma, y), T(\gamma, y))], \frac{1}{2}[d(I(\gamma, x), T(\gamma, y)) + d(I(\gamma, y), T(\gamma, x))]\}$ For all $x, y \in X; 0 < k < 1/2$. Then $RC(I) \cap RC(T)$ is singleton.

Corollary (2.3):

Let $X, A, T, I, cl(T(\gamma, A))$ as in corollary (2.2) .If the pair $\{T, I\}$ is weakly compatible, then, $RF(T) \cap RF(I)$ is a unique singlton element.

3. RANDOM WELL-POSED PROBLEM

Definition (3.1):

Assume (X, d) as a metric space while $T : \Omega \times X \longrightarrow X$ is a random operator; then, the RFP problem of T will be considered well-posed if:

i. T has a unique RFP $\delta : \Omega \to X$;

ii. For any measurable $\{\delta_n(\omega)\}$ Sequence of mappings in X such that

iii. $\lim_{n\to\infty} d(T(\omega, \delta_n(\omega)), \delta_n(\omega)) = 0$, we have $\lim_{n\to\infty} d(\delta_n(\omega), \delta(\omega)) = 0$.

Definition (3.2):

Assume (X, d) as a metric space while the set of random operators in *X* be represented as \mathcal{T} . Then, the RFP of \mathcal{T} will be considered well-posed if :

- i. \mathcal{T} has a unique RFP $\delta : \Omega \longrightarrow X$;
- **ii.** for any measurable sequence $\{\delta_n(\omega)\}$ of mappings in *X* such that $\lim_{n\to\infty} d(T(\omega, \delta_n(\omega)), \delta_n(\omega)) = 0$, $\forall T \in \mathcal{T}$. we have $\lim_{n\to\infty} d(\delta_n(\omega), \delta(\omega)) = 0$.

<u> Theorem (3.1):</u>

If A, X, T and I are as in theorem (2.2), then, the common RFP for the random operators $\{T, I\}$ is considered well-posed.

Proof:

Following Theorem (2.2), it is assumed that *T* and *I* have a unique common RFP $\delta: \Omega \to A$. Assume { $\delta_n(\gamma)$ } to be a sequence of measurable mappings in *A* such that:

$$\lim_{n \to \infty} d\left(T(\gamma, \delta_n(\gamma)), \delta_n(\gamma)\right) = \lim_{n \to \infty} d\left(I(\gamma, \delta_n(\gamma)), \delta_n(\gamma)\right)$$
$$= 0$$

By the triangle inequality, (2.2), (2.5) and (2.6), we have $d(\delta(\gamma), \delta_n(\gamma)) \le d\left(T(\gamma, \delta(\gamma)), T(\gamma, \delta_n(\gamma))\right) + d\left(T(\gamma, \delta_n(\gamma)), \delta_n(\gamma)\right)$ $\leq k \max\{d(I(\gamma,\delta(\gamma)),I(\gamma,\delta_n(\gamma))),$ $d\left(I(\gamma,\delta(\gamma)),T(\gamma,\delta(\gamma))\right),d\left(I(\gamma,\delta_n(\gamma)),T(\gamma,\delta_n(\gamma))\right),$ $d\left(I(\gamma,\delta(\gamma)),T(\gamma,\delta_n(\gamma))\right),d\left(I(\gamma,\delta_n(\gamma)),T(\gamma,\delta(\gamma))\right)\}$ $+d\left(T(\gamma,\delta_n(\gamma)),\delta_n(\gamma)\right)$ $\leq k \left[d \left(I(\gamma, \delta_n(\gamma)), \delta(\gamma) \right) + d \left(\delta(\gamma), T(\gamma, \delta_n(\gamma)) \right) \right]$ + $d\left(T(\gamma,\delta_n(\gamma)),\delta_n(\gamma)\right)$ $\leq k \left[d \left(l \left(\gamma, \delta_n(\gamma) \right), \delta_n(\gamma) \right) + d \left(\delta_n(\gamma), \delta(\gamma) \right) + d \left(\delta(\gamma), \delta_n(\gamma) \right) \right]$ $+ d\left(\delta_n(\gamma), T(\gamma, \delta_n(\gamma))\right)$ + $d\left(T(\gamma,\delta_n(\gamma)),\delta_n(\gamma)\right)$ $= Kd\left(I(\gamma,\delta_n(\gamma)),\delta_n(\gamma)\right) + 2Kd(\delta_n(\gamma),\delta(\gamma)) + (1$ + K) $d\left(\delta_n(\gamma), T(\gamma, \delta_n(\gamma))\right)$ $(1-2K)d(\delta(\omega),\delta_n(\omega))$ $\leq Kd(I(\gamma, \delta_n(\gamma)), \delta_n(\gamma)) + (1$ +K) $d\left(\delta_n(\gamma), T(\gamma, \delta_n(\gamma))\right)$

Thus, we have, $\lim_{n\to\infty} d(\delta(\omega), \delta_n(\omega)) = 0$, meaning that the common RFP for *T* and *I* is well-posed.

REFERENCES

- 1. Špaček, A., "Zufallige Gleichungen", *Czechoslovak Mathematical Journal*. 5(80): 462-466 (1955).
- Hanš, O. "Random operator equations", Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., University of California, II(I): 185-202(1961).
- **3.** Hanš, O. "Reduzierende zufallige transformationen". *Czechoslovak Mathematical Journal.* 7(82):154-158 (1957).
- **4.** Bharucha-Reid, A.T. "Fixed point theorems in probabilistic analysis", *Bull. Amer .Math .Soc.* 82(5), (1976).
- Chauhan, S.S. "Common Fixed Point Theorem For Four Random Operators In Hilbert Space", J. Advances in Applied Science Research, 4(2): 219-222(2013).
- Ahmed, T.S. "Some Common Random Fixed Point Theorems Of Random Mappings With New Type Of Rational Contractive Conditions In S-Metric Space", *J.AL-Mustansiriyah J. Sci*, 25(3):65-76(2014).
- 7. Abed, S.S., and Ajeel, Y.J. "On invariant Random best approximations", *International Journal of Recent Scientific Research*, 7(3): 9530-9533(2016).

- 8. Rashwan, R.A., and Hammad, H.A. "Random Fixed Point Theorem For Weakly Compatible Mappings Under Implicit Relation In Cone Random Metric Spaces", J. Universal Journal of Computational Mathematics, 5(1):8-16(2017).
- **9.** Abed, S.S., Ajeel, Y.J., and Alsaidy, S.K. "Results on Quasi Contraction Random Operators", *J. International Journal of Science and Research*, 6(3):607-610(2017).
- **10.** Shrivastava, R., Nashine, H.K., and Dewangan, C.L. "Invariant random approximation in non-convex domain", *J. Indones. Math. Soc. (Mihmi).*, 15(2): 69-77(2009).
- 11. Rashwan, R.A., and Albaqeri, D.M. "Random coincidence and fixed point theorem for hybrid maps in separable metric spaces", *Int. J. Open Problems Compute.Math.*, 6(1):103-114(2013).
- **12.** Jhadd, P. K., and Salua, A.S. "On random coincidence and fixed points for a pair of multi-valued and single-valued mappings". *Int. J. Anal. Appl.* 4(1):26-35(2014).

- **13.** Shahzad, N., and Latif, A. "Note a random coincidence point theorem", *J. Math. Anal. Appl.*, 245:633-638(2000).
- 14. Beg, I., Jahangir, A., and Azam, A. "Random coincidence and fixed points for weakly compatible mappings in convex metric spaces", *Asian-European J. Math.* 2(2):171-182(2009).
- **15.** Beg, I., and Abbas, M. "Common random fixed points of compatible random operators", *J. Mathematics and Mathematical Science*. 2006(1):1-15(2006).
- 16. Hussain, N., and Rhoades, B.E. " C_q commuting maps and invariant approximations", *J. Fixed Point Theory And Application*, 2006:1-9(2006).
- **17.** Nashine, H.K. "Common random fixed point and random best approximation in non-starshapeddomain of q-normed spaces", *Math.Moravica*. 14(1):89-99(2010).