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ABSTRACT: Our aim in this paper is to prove the random coincidence points for two random operators under quasi 

contraction conditions in metric space. The random well-posed fixed-point problem is best studied by proving applications 

that are related to common random fixed-point results.            
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1. INTRODUCTION AND PRELIMINARIES: 

In the 1950s, Špaček [1] and Hanš [2, 3] reported the first 

work on random fixed-point (RFP) theorems at the Prague 

School of Probabilities. Following the article published by 

Bharucha-Reid [4] in 1976, the interest in these problems 

grew tremendously. For instance, Chauhan [5] focused on 

the common fixed-point (CFP) theorem for 4 continuous 

random operators that satisfies some contractive criteria in 

Separable Hilbert space. In 2014, Ahmed [6] proved the 

existence of CFP for random mappings satisfying new 

type of rational contractive conditions in S-metric space. 

In 2016, Abed and Ajeel [7] proved RFP theorem for 

Banach operator which is defined on separable closed 

subset of a complete p-normed space. 

Rashwan & Hammed [8], in 2017, demonstrated a unique 

common RFP theorem for 4 loosely compatible mappings 

in cone random metric spaces based on an implicit 

relation. Abed et. at [9] focused on two continuous random 

operators to prove the common RFP theorem in complete 

p-normed space under quasi contraction condition. 

This article focused on common RFP generation for two 

random operators under quasi contraction condition in 

metric space. Also studied was the well-posedness 

problem of RFPs. 

In this article, X will be the metric space,       be a 

closed, (Ω,   will be the measurable space with   which is 

a sigma algebra of subsets of Ω.    represents the classes 

of all   subsets, while CB(   represents the classes of the 

whole bounded non-empty closed   subsets. 

  (     stands for the common RFPs of   &   and 

  (     is the set of random coincidence points of S & T. 

We need the following definitions and facts: 

Definition (1.1): [10]  

“A mapping  :      is called measurable (respectively, 

weakly measurable) if, for any closed (respectively, open) 

subset B of,    (         (          ” 

Definition (1.2): [11]  

“A mapping       is called a measurable selector of a 

measurable mapping  :Ω    if   measurable 

and  (    (   for each     ” 

Definition (1.3): [12]  

“A mapping        (or         (    is 

called a random operator if for any   
   (    (respectively G(.,    is measurable .” 

Definition (1.4): [13] 

“A measurable mapping       is called random fixed 

point of a random operator         (         

  (   if for every       (    (   (  ) 

(respectively (    (   (  ) ” 

Definition (1.5): [14]  

“A measurable mapping       is called random 

coincidence point of a random operator         and 

        if for every       (   (  )  

 (   (  ).” 

Definition (1.6): [14]  

“A measurable mapping       is called common 

random fixed point of a random operator       
  and          if for every     

 (    (   (  )   (   (  ) ” 

Now, a new type of random operators will be defined. 

Definition (1.7): 

Let( ,    be a metric space. Let            be two 

random operators. The random operator   is called  -quasi 

Contraction operator if we have: 
 ( (      (    )  

     {
 ( (      (    )  ( (      (    )  ( (      (    )

  ( (      (    )  ( (      (    ) 
}(1.1)   

Where, 0    

    
 For all      . 

Definition (1.8): 

“Let   be a nonempty subset of a metric space   and let   

and   be self-mappings of   the pair (   ) is said to be: 

1) Weakly compatible [15] if they commute at their 

coincidence points, i.e.,         for all   

satisfying (    (  . 

2) R-weakly commuting maps [16] if for all     

there exists     such that  (           (        if 
  =1, then the maps are called weakly commuting.” 

These definitions was as captured by [15, 17], 

respectively: 

Definition (1.9): 

“A random operators           are said to be R-

weakly commute (or Weakly Compatible) if  (     and 

 (     are R-weakly commute (respectively weakly 

compatible) for each    .” 

 

2. RANDOM COINCIDENCE THEOREMS 

We prove that: 

Theorem (2.1): 

Let       for fixed    , the mappings   
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   (         satisfy the condition (1.1) . If 

  ( (    )   (     and   ( (    ) is separable 

complete subspace of A. Then   (        

Proof: 

Let        be arbitrary measurable mapping.  

Then, a sequence of measurable maps        was 

constructed. 

Since   ( (    )   (      then we can find        

such that 

 (    (     (    (   .  

A sequence of measurable mappings        was 

constructed such that  

 (       (     (     (                                       (2.1) 

Hence, the sequence of functions for    ,    (    can 

be defined such that  

   (    (     (  )  

 (       (  )                                                                                             (2.2) 

 (   (        (  )   ( (     (  )  (       (  )) 

       ( (     (  )  (       (  ))   ( (     (  )  (     (  ))  

 ( (       (  )  (       (  ))   ( (     (  )  (       (  ))  

 ( (       (  )  (     (  ))  

       ( (       (  )  (     (  ))   ( (       (  )  (     (  ))  

 ( (     (  )  (       (  ))   ( (       (  )  (       (  ))  

 ( (     (  )  (     (  ))      

Using triangle inequality, we get 

       ( (       (  )  (     (  ))   ( (     (  )  (       (  ))  

 ( (       (  )  (     (  ))   ( (     (  )  (       (  ))   

    ( (       (  )  (     (  ))   ( (     (  )  (       (  ))  

    (     (      (  )   (   (        (  )  

Hence,  (   (        (  )    (   (         (  )  

Where  (    ⁄    . 

In general 

 (  (       (  )    (  (       (  ) 

Therefore, 

 (  (       (  )    (  (        (  ) 

                                     (    (       (  ) 
. 

. 

 (    (     (  )      (  (     (  ) for all     . 

Now, it is time to prove that for   ,    (    is a Cauchy 

sequence. For each positive integer  , for     

 (  (       (  )    (  (       (  )   (    (       (  )     

  (      (       (  )

  (                      (  (     (  ) 

               (                 (  (     (  ) 

              (    ⁄     (  (     (  ) for all     . 

This implies 

 (  (       (  )    as     for                                                                       

(2.3) 

It also means that for       (   , is a Cauchy sequence in 

 (      

Since   ( (    ) is a complete subspace of  , the sequence 

     has a limit       there exists  (     ( (    ) such 

that    (     (    as     . 

Obtained a mapping       such that  (   (  )   (  . 

Thus we have  
 (                    (     (  )         (       (  )  

Using (2.2) and  (1.1), we have  

 (   (    (   (  ))   ( (     (  )  (   (  ))  

         ( (     (  )  (   (  ))   ( (     (  )  (     (  ))   

 ( (   (  )  (   (  ))   ( (     (  )  (   (  ))  

  ( (   (  )  (     (  ))   

taking limit as     , we get  

 ( (    (   (  ))          ( (    (   (  ))   ( (    (  )   

 ( (   (  )  (   (  ))   ( (    (   (  ))   ( (   (  )  (  )  

From  (    (   (  ), we have 

 ( (    (   (  ))     ( (    (   (  ))     

This implies, (     ( (    (   (  ))    

Hence  ( (    (   (  ))     (    (   (  )   (   (  )          

       (2.4) 

Therefore   (        

Theorem (2.2): 

Let           ( (    ) as in theorem (2.1) .If the pair 

       is R-weakly commuting (or weakly compatible), 

then   (     (   is a unique singlton element. 

Proof: 

Theorem 2.1 proves that existence of a random 

coincidence point 

      of   and   such that  (   (  )   (   (  ) for 

all      

If the pair       is weakly compatible, then  

 (   (   (     (   (   (    from (2.4), we have 

 (   (     (   (                                 (2.5) 

From (2.4) , (1.1)  and (2.5), we have 

 ( (    (   (   )   ( (   (  )  (   (   )  

        ( (   (  )  (   (   )  

 ( (   (  )  (   (  ))   ( (   (  )  (   (   )  

 ( (   (  )  (   (  ))   ( (   (  )  (   (   )  

   max  ( (   (  )  (   (  ))  

 ( (   (  )  (   (  ))   ( (   (  )  (   (   )  

   max  ( (   (  )  (   (  ))  

 ( (   (  )  (   (  ))   ( (   (  )  (  )  

   

max  ( (    (   (  ))   ( (    (   (  ))   ( (   (  )  (  )  

Then, (     ( (    (   (  ))     (    (   (  ) 

From (2.5) we have  

 (    (   (  )   (   (  )                                       (2.6) 

Thus,  (   is a common RFP of  and  . 

Uniqueness: 

Let  (   be another common RFP of  and   ,then by using 

(1.1), we have 

 ( (    (  )   ( (   (  )  (   (  ))  

        ( (   (  )  (   (   )  

 ( (   (  )  (   (  ))   ( (   (  )  (   (   )  

 ( (   (  )  (   (  ))   ( (   (  )  (   (   )  

         ( (    (  )  ( (    (  )  ( (    (  )  

 ( (    (  )  ( (    (  )  

This implies (     ( (    (  )     (    (   . 

Assume that       is R-weakly commuting and  (   is a 

random coincidence point of   and  , it follows that  
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 ( (   (   (     (   (   (   )  

  ( (   (    (   (     , thus  

 (   (   (     (   (   (   , 

Hence, the pair       is said to be loosely compatible. 

Following similar steps as above, it can be shown that   is 

a unique common fixed point of   and  .  

Consequently, we will arrive at the following: 

Corollary (2.1): 

If     and    as in theorem (2.1) and for each    ,  

 (         is (qcr) operator, then   (   is a unique 

element. 

Proof: 

 ( (      (    )       {
 (      (   (    )  (   (    )

  (   (    )  (   (    ) 
}   

                             (2.7)  

where , 0    

    
 For all      . 

Put  (       ( the identity random mapping ) for 

all     in theorem (2.1), then the corollary (2.1) stems 

from theorem (2.1).   

Corollary (2.2): 

Let           ( (    ) as in theorem (2.1) .If the pair 

      meets one of the following criteria: 

1.  ( (      (    )  

        ( (      (    )  ( (      (    )  ( (      (    )    

2.  ( (      (    )          ( (      (    )  ( (      (    )    

3.  ( (      (    )  

        ( (      (    ) 
 

 
[ ( (      (    )  

 ( (      (    )]  ( (      (    )  ( (      (    )  

4.  ( (      (    )  

        ( (      (    ) 
 

 
[ ( (      (    )  

 ( (      (    )] 
 

 
  ( (      (    )   ( (      (    )   

For all             ⁄  .Then   (     (   is singleton. 

Corollary (2.3): 

Let           ( (    ) as in corollary (2.2) .If the pair 

      is weakly compatible, then,   (     (   is a 

unique singlton element. 

 

3. RANDOM WELL-POSED PROBLEM 

Definition (3.1):  

Assume (     as a metric space while          is 

a random operator; then, the RFP problem of   will be 

considered well- posed if: 

i.   has a unique RFP       ; 

ii. For any measurable    (    Sequence of 

mappings in   such that  

iii.        ( (    (  )   (      , we 

have        (  (    (      . 

Definition (3.2): 

Assume (     as a metric space while the set of random 

operators in   be represented as  . Then, the RFP of   

will be considered well-posed if : 

i.    has a unique RFP       ; 

ii. for any measurable sequence    (    of mappings 

in   such that        ( (    (  )   (      

,      . we have        (  (    (       

Theorem (3.1): 

If     ,   and   are as in theorem (2.2), then, the common 

RFP for the random operators       is considered well-

posed. 

Proof: 

Following Theorem (2.2), it is assumed that   and   have a 

unique common RFP       . Assume     (    to be a 

sequence of measurable mappings in   such that: 

   
   

 ( (    (  )   (  )     
   

 ( (    (  )   (  )

   

By the triangle inequality, (2.2) ,( 2.5) and (2.6), we have  

 ( (     (  )   ( (   (  )  (    (  ))   ( (    (  )   (  ) 

         ( (   (  )  (    (  ))  

 ( (   (  )  (   (  ))   ( (    (  )  (    (  ))  

 ( (   (  )  (    (  ))   ( (    (  )  (   (  ))  

  ( (    (  )   (  ) 

  * ( (    (  )  (  )   ( (    (    (  ))+

  ( (    (  )   (  ) 

  * ( (    (  )   (  )   (  (    (  )   ( (     (  )

  (  (    (    (  ))+

  ( (    (  )   (  ) 

   ( (    (  )   (  )     (  (    (  )  ( 

    (  (    (    (  )) 

(      ( (     (  )

   ( (    (  )   (  )  ( 

    (  (    (    (  )) 

Thus, we have,        ( (     (  )   , meaning 

that the common RFP for          is well-posed.  
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