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ABSTRACT: The aim of this study is to develop the parameter estimation for the Fisher information "the Nile Problem." This 

paper will compare the new idea estimator in the sense of Bayesian estimation with Jeffreys's prior distribution and maximum 

likelihood method. This research simulates two independent data sets using the Mote Carlo Simulation. The results 

demonstrate that the proposed estimators show less mean squared error than maximum likelihood estimators. Monte Carlo 

simulations are illustrated to compare the efficiency of the estimators. 
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1. INTRODUCTION 
The Nile problem was prepared by Fisher [1] in content about 

statistical inference for a special curved exponential family if 

the minimal sufficient statistic is incomplete. The original 

statement of the problem in Fisher’s unique style is in Fisher: 

The agricultural land of a pre-dynamic Egyptian village is if 

unequal fertility. Given the height to which the Nile rise, the 

fertility of every portion of it is known with exactitude, but 

the height of the flood affects different parts of the territory 

unequally. It is required to divide the area, between the 

several households of the village, so that the yields of the lots 

assigned to each shall be in pre-determined proportion, 

whatever may be the height to which that portion of the river 

rises. 

For such a model the inferential structure is fully specified by 

three-element{ , , }S f , the sample { }S x , the parameter 

space { }  , and the probability function :f R . The 

importance of the Nile problem lies in the fact that inference 

 is based on the conditional distribution of the observations. 

There are many research papers written on this topic [2-6]. 

Let X Y  and be two independent random variables. When X  

is an exponential distribution with parameter Y  and is an 

exponential distribution with parameter1/ X Y ? So, and 

have a joint probability density function as: 
1( , : ) exp{ ( )}, 0, 0, 0f x y x y x y                   (1) 

Where,
1

/
n

i

i

x x n


  and
1

/
n

i

i

y y n


 . The pair ( , )x y of the 

sample means it is an incomplete sufficient statistic of . So 

this probability density function (PDF) was called the Nile 

problem [3]. In parameter estimation, the maximum 

likelihood estimator (MLE) is a solution for estimating the 

parameters of statistical inference. It is used with a popular 

statistical analysis, which is a method that finds the most 

likely value for the parameter based on the data set collected. 

The properties of MLE are consistent, if the data was 

generated by 0( ; )f x  and we have a sufficiently large 

number of observations, then it is possible to find the value of 

0 with arbitrary precision. For mathematics, this means that 

as observations go to infinity the estimator ̂ converges in 

probability to its true value 0
ˆ
MLE  : This MLE we created 

is called a likelihood function and is written as: 

1

( ) ( ; )
n

x i

i

L f x 


 .                                   (2) 

 For a likelihood function ( )L  , where   is an unknown 

parameter? Let 
e be a value of the parameter such that 

( ) ( )eL L  for all possible value of  . Th
e is called an 

MLE [7]. In this paper, we have the MLE of   for the Nile 

problem as follows: 

                               ˆ /MLE y x  .                                       (3) 

 Bayes' estimators differ from all traditional estimators 

studied so far in that they consider the parameters as random 

variables instead of unknown constants. It is based on Bayes' 

theorem for conditional probability. The Bayesian analysis 

starts with little to no information about the parameter to be 

estimated. Any data collected can be used to adjust the 

function of the parameter, thereby improving the estimation 

of the parameter. This process of refinement can continue as 

new data is collected until a satisfactory estimate is found. 

For events A and B, recall that the conditional probability is: 

( | ) ( ) ( ) ( | ) ( )P A B P B P A B P B A P A                  (4) 

or 

                   
( | ) ( )

( | )
( )

P B A P A
P A B

P B
                                   (5) 

Now, if it set
0{ }A     and { }B X x  , then 

0 0

0

( | } { }
{ , } .

{ }

P X x P
P X x

P X x

   
 

  
  


                 (6) 

If the appropriate density exists, then we can write Bayes’ 

formula as: 

         
| 0

| 0

| 0

( | )
( | ) ( ),

( | ) ( )

X

X

X

f X
f X

f X d


  

   







 
 
 
 

             (7) 

To compute the posterior density
| 0( | )Xf X

 as the product 

of the Bayes' factor and the prior density. One would often 

like to have a reference prior distribution, a roughly 

noninformative prior distribution against whose results 

inference, that is based on more subjective priors, can be   
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compared. Since its introduction by Aldric [8], the Jeffreys 

[9] prior has been one of the most intensively studied 

reference priors in Bayesian statistics and econometrics. The 

Jeffreys prior is defined in terms of the Fisher information 

matrix as: 

                                     
1

2( )I                                      (8) 

where the Fisher information ( )I   is given by 

                           
2

2

log ( | )
( )

d p X
I E

d







 
   

 
.                  (9) 

 Example of the Jeffrey prior, suppose X  was binomially 

distribution: ( , ),0 1X Bi n     and X  had probability 

mass function as 

                      ( | ) (1 )x n xn
f x

x
    

  
 

                           (10) 

They choose a prior    that is invariant under 

reparameterizations. So they saw previously that a flat prior 

  1   does not have this property. Let’s derive a Jeffreys 

prior for . Ignoring terms that don’t depend on , we have 

              log | log ( ) log(1 )p x x n x        

        log ( | )
1

d x n x
p x

d


  


 


     

      
2

2 2 2
log ( | )

(1 )

d x n x
p x

d


  


  


                                (11) 

Since  E X n   under ( , )Bi n  , we have 

                       
2

2

log ( | )
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d p x
I E

d
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




 
   
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2 2(1 )
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 


  

                              
1
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n

 



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(12) 

Therefore 

1 1 1

2 2 2( ) ( ) (1 ) ,J I    
 

   which is the form of 

a Beta
1 1

,
2 2

 
 
 

 density. Jeffreys priors work well for single 

parameter models, but not for models with multidimensional 

parameters. A lot of research has been conducted on 

estimating the parameter  of the Nile Problem and presented 

several estimation methods. Abram and Yaakov [6] displayed 

the existence of uniformly minimum variance unbiased 

estimators in the models Eq.(1) as an open problem. Van der 

Geer [10] showed to find two estimators that Minimum Risk 

Scale Equivariant (MRE) to give the least risk function which 

the estimator as:  

                            1

2

(2 )ˆ ˆ
(2 )

MRE MLE

K u

K u
  ,                              (13) 

where
0

( ) exp{ ( )} ,r

r

v
K v t t dt r

t



       u xy  and.   

And Bayes’ Estimator within the prior distribution was the 

inverses gamma function which prior distribution was 

      
1 /

, ( ) , 0, 0,
( )

c w c

c w

e w
w c I

c


  

  
   


.                 (14) 

And Posterior Distribution of   obtained 

     
,

,

0

( ) ( , | )
( | , )

( ) ( , | )

c w MLE

MLE

c w MLE

g u
h u

g u d

   
 

    






.                    (15) 

Hence Bayes's estimators were 

           ˆ ˆ( , ) ( | , )B MLEc w E u              
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A comparison of both methods, like mean square error 

(MSE). Joshi and Nabar [11] displayed a linear estimator 

which is an unbiased projection to construct in the form of a 

linear equation. Let 1

1

( 1) /
n

i

i

Z n x


   and 2

1

n

i

i

Z y


  was 

unbiased estimators of . Then them estimators were:  

                 1 2
ˆ (1 )JN Z Z                                             (17) 

They calculated the coefficients that made the minimum 

error. After that compared the MSE between the linear 

estimator and maximum likelihood estimator (MLE). The 

results have been found not significant from MSE. Nayak and 

Singha invented a new theory of estimator by minimum 

variance unbiased estimator (MVUE). The Jeffreys prior 

distribution Joshi and Nabar [3] constructed the prior 

distribution for unknown distribution by: 

              
2

2

ln ( )
( ) ,

L
I E






 
   

 
                                      (18) 

where
1

( ) ( ; )
n

i

i

L f x 


 . 

We present the new proposed estimator with Bayes' method 

by using Jeffreys's prior distribution function. Then the 

estimated values are compared with the MLE by minimum 

MSE criteria. 

 

2. PARAMETER ESTIMATION 
We find the estimator using the Bayes’ theory. By providing 

prior distribution function as the distribution of Jeffrey. 

Estimates are proposed as follows. 

Step 1: To compute the Jeffreys prior to the equation 

                       
2

2

ln ( )
( )

d L
E

d


 


                                 (19) 

And the MLE  can be found such that 

                       
1

( ) ( , | )
n

i i

i

L f x y 


 .                               (20) 
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When 1( , : ) exp{ ( )}f x y x y       th ( )L  is is 

                      
1 1

( ) exp( ( / ))
n n

i i

i i

L x y  
 

    .               (21) 

So logarithm of  Eq.(21) is 

                  
1 1

ln ( ) /
n n

i i

i i

L x y  
 

                                (22) 

We calculate Eq.(22) with respect to   lead to 

             
2

1

2 3

2
ln ( )

n

i

i

y
d L

d



 
 


.                                          (23) 

We obtain the expectation of Eq. (23) from 

       
2

2 3

ln ( ) 2
( ) ( )
d L n

E E y
d



 
                                            (24) 

Substituting 
2

2

ln ( )
( )
d L

E
d




in Eq.(24), it can be written as 

follows 

                    
2

2 2
( ) ( )

n n
 


    .                              (25) 

Step 2: To calculate posterior distribution of    as follows 

                        

,

0

2 exp( ( / )) /
( | )

2 exp( ( / )) /

n x y
h x y

n x y d

  


   


 


 

 

 
            (26) 

So Bayes’ estimator ˆ( )bayes  is 

       ˆ [ | , ]bayes E x y   
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3. NUMERICAL ANALYSIS AND SIMULATION 
This research has simulated two independent data set by the 

R program. Consider 1( ,..., )nX X X 1( ,..., )nY Y Y  and 

where X as an exponential with parameter  Y and has an 

exponential distribution with parameter1/ , respectively. 

We set parameter 0.1, 0.3 and 0.5 and A sample size (n) is 10, 

20, 30 40 and 50. We estimate the parameter from the data 

obtained 1,000 times to calculate MSE. Of each estimator 

compare MSE of the estimator. The results are shown in 

TABLE 1-3 and Fig.1-3 below  

Table 1. The mean square error between the estimator and 

sample size when 0.1   

Estimato

r 

Sample size ( 0.1  ) 

10 20 30 40 50 

MLE  
1.43E-

06 

1.43E-

07 

4.67E-

07 

2.69E-

08 

3.53E-

08 

ˆ
bayes  

9.69E-

07 

2.17E-

08 

3.52E-

07 

1.43E-

07 

2.38E-

08 

 

Fig (1) MSE of ˆ
MLE  and ˆ

BAYES  when  0.1   

From Table 1. and Fig. 1. on above for 0.1  , we see that 

when sample size increases, MSE of both ˆ
Bayes  and ˆ

MLE  are 

decreased to zero. It shows that the sample size influences all 

estimation methods. In addition, when the sample size is 

small, the MSE ˆ
BAYES is less than ˆ

MLE . 

 
Table 2. The mean square error between the estimator and 

sample size when 0.3   

Estimato

r 

Sample size ( 0.3  ) 

10 20 30 40 50 

MLE  
2.83E-

06 

1.23E-

07 

1.69E-

07 

3.52E-

09 

1.72E-

06 

ˆ
bayes  

2.14E-

06 

4.53E-

08 

1.55E-

07 

2.14E-

08 

1.69E-

06 

 

 Fig (2) MSE of ˆ
MLE  and ˆ

BAYES  when  0.3   

 

From Table 2. and Figure. 2. Above,  for 0.3  , we found 

that when sample size increased, MSE of both ˆ
Bayes  and ˆ

MLE  
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are decreased, except for sample size 50. In addition, when 

the sample size is small, the MSE ˆ
BAYES is less than ˆ

MLE  

 
Table 3. The mean square error between the estimation and 

sample size when 0.5   

Estimato

r 

Sample size ( 0.5  ) 

10 20 30 40 50 

MLE  
9.31E-

06 

1.95E-

05 

1.61E-

05 

1.56E-

06 

5.07E-

07 

ˆ
bayes  

1.12E-

06 

1.80E-

05 

1.75E-

05 

1.35E-

06 

6.28E-

07 

 

 
Fig (3) MSE of ˆ

MLE  and ˆ
BAYES  when  0.5   

 

From Table 3, and Figure. 3 above, for 0.5  , the sample 

size set, it was found that sample size 20 had an MSE higher 

than that of the other sample. 

In addition,, when the sample size is small, the MSE ˆ
BAYES is 

less than ˆ
MLE . In these figures we simulated data when the 

parameters were 0.1, 0.3 and 0.5, it was found that ˆ
BAYES has 

the lowest MSE at a sample size of 10 and 20 but when the 

sample size increases, the MSE is similar 

4. CONCLUSION 

The results show that Bayes’ estimator ˆ( )bayes  using 

Jeffreys's prior distribution function which is the estimator 

from Eq.(17). The minimum mean square error is achieved 

when the sample size is 10 or 20 at all levels, The Bayes’ 

Method is used but when the sample increases, the best 

approximation will depend on the sample size and the 

parameters. When the sample size is 30, 40, and 50, it is 

difficult to determine which method is the most accurate 

because it is due to both the sample size and parameter 

values. In this article, we are not interested in the features of 

the very estimated. The criteria we use are MSE. We just 

want to get new ideas for estimating parameters so that the 

values are close to the very parameters. 
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