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ABSTRACT: The objective of this research is to estimate the true parameter of gamma distribution by using Maximum a 

Posterior approach, Bayes approach, Maximum Likelihood approach which are Maximum a Posterior estimator, Bayes 

estimator and Maximum Likelihood estimator, respectively. These estimators are compared with Mean Square Error for 

estimation of the true parameter when the data drown from a gamma distribution. In the case of the small sample size, the 

Maximum a Posterior estimator is quite well as compared with Bayes estimator and Maximum Likelihood estimator base on 

Mean Square Error. In another case of the sample size appear that Maximum a Posterior estimator and Bayes estimators are 

less Mean Square Error than Maximum Likelihood estimators. Our results suggest that Maximum a Posterior estimator for 

estimation of the true parameter of gamma distribution because Mean Square Error of Maximum a Posterior estimator is quite 

well when it is compared with Bayes estimator and Maximum Likelihood estimator. 
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1. INTRODUCTION 

Estimation parameter  is one of the statistical inferences that 

infer to population. Estimation  presents two ways as point 

estimator and interval estimator by using the sample drown 

from the population. A point estimator is focusing on a single 

value referred to population, and a point estimation is called 

an estimator . The popular approaches of estimation for the 

parameter  are the Maximum Likelihood (ML) approach 

and Bayes (BAY) approach which are called ML estimator 

and BAY estimator, respectively. ML estimator and BAY 

estimator are widely employed in the estimation of the 

parameter, for example, Jae [1] used an ML estimator on a 

tutorial exposition and [2] implement an ML estimator on 

stochastic volatility models by using Monte Carlo 

simulations. Moreover, Nilanjan et al. [3] proposed an 

alternative ML estimator of using information from external 

big datasets while building refined regression models based 

on an individual analytic study. Kirsty, Rebecca and Julian 

[4] used an inverse gamma prior distribution of variance in 

Bayesian meta-analysis which led to more accurate estimates 

as well as Ameera and Khawla [5] conducted with a BAY 

estimator for a variance by using inverse gamma prior on the 

one-way repeated measurements model as a mixed model. 
 

An indicator of the accuracy of parameter estimation is mean 

square error (MSE) which is a measure of the quality of an 

estimator. The MSE is defended as                                                                                                                            

 
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ˆ ˆMSE( ) E                              (1) 

In this research is focused on the gamma distribution. The 

gamma distribution is presented in the fields of engineering, 

science, and business. For example, Roding et. al [6] 

estimated the mean self-diffusion coefficient with the gamma 

distribution model as well as Ramman et al. [7] studied the 

estimated parameter of the gamma distribution for modeling 

lifetime data. In addition, Gregory, Jeol, and Chris [8] used 

the gamma distribution to represent monthly rainfall in Africa 

for drought monitoring applications. The probability density 

functions of gamma distribution with the two parameters as   

0 and 0   is 
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and it denoted by  ,Gamma   where the mean of X and the 

variance of X are  E X 
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The imported parameter of the gamma distribution is the true 

parameter  related to the parameter on Poisson distribution 

and exponential distribution. Poisson distribution has the 

parameter as  where it is the mean rate which is the number 

of successes that occur in a fixed interval of time. The 

exponential distribution is associated with gamma 

distribution in the average waiting time until successes for the 

first time.  

Estimation of the true parameter   of gamma distribution 

with the ML approach and BAY approach as follows. 
 

The ML estimator is well-known that it is a general approach 

for parameter estimation. This estimator is to research the 

maximize of likelihood function given the parameter 

 and . Let the data  1 2, ,..., nx x xx   drown from the 

gamma distribution of population, and the likelihood function 

of the gamma distribution   ,L x   is                                                                                                                                                                                               
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After that, the log-likelihood function of the gamma 

distribution is                                                                                                                                                               
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Next, the partial derivative of the log-likelihood function in 

(3) with respect to   is  

 
      

1 1

ln ,
ln ln 1 ln

n n

i i

i i

L
n n x x

 

   
      

   
 

x 
    

 
      

1

n

i

i

n
x



 

                                                     (5) 

Finally, setting in (4) is equal to zero given by                                                                                                                                                        
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Hence, the ML estimator is ˆ
MLE

x


  . 

 The BAY estimator employed both the evidence 

contained in the data and the accumulated prior distribution 

of the true parameter  . The conjugate prior distribution of 

the true parameter   is the gamma distribution with the 

parameters a and b hence the density function of    is                                                            
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And the likelihood function is                                                                                                                                                                                        
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 Hence, the posterior distribution is                                                                                                      
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The posterior distribution has distributed in a class of gamma 

distribution as  ,gamma n a nx b   x .                                                                                                                                                                 

The estimator by using Bayes approach is                                                                                                                   
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Moreover, an interesting approach to estimating the true 

parameter  associated with the BAY approach is the 

Maximum a Posterior (MAP) approach, and it is used a 

process of BAY approach and ML approach. This estimator 

from the MAP approach is called the MAP estimator. The 

step of the MAP estimator is as follows. From the posterior 

distribution in (9), the maximum value of  the true parameter 

  is determined as                                                                                                                                                                             

                      ˆ arg max ln , , ,


  MAP p a bx .                   (11) 

In this research, we suggested the MAP approach for 

parameter estimation is an alternative of estimation for the 

true parameter  on the gamma distribution. The MAP 

estimator is compared with ML estimator and BAY estimator 

based on MSE which is a measure of the quality of an 

estimator. This research is organized as follows.  In section 2, 

the MAP estimator with gamma prior distribution is 

described. In section 3, simulation studies and the results 

were showed and section 4 the conclusion were presented. 

 

2. MAP estimator with Gamma Prior Distribution 

In this section, it presented the process of MAP estimator for 

estimating a rate parameter on gamma distribution as follows. 

Let   is distributed as gamma prior distribution with the 

scale parameter a > 0 and the rate parameter b > 0. Hence, the 

probability density function  is        

                         
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The posterior distribution in (9) of   is     
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The MAP estimator ̂MAP
is the maximum of 

 ln , , , p a bx respect  . 

The maximum of  ln , , , p a bx  respect to   is     
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From in (14) find ̂MAP
, we set 

1
0



 


   

n a
nx b  that is 

  
1

0


 


   

n a
nx b  

    
1

 


  

n a
nx b  

 
1

1


   n a nx b  

       
 

1

1 




 

nx b

n a
                                                                                                                                               

        
1


 




n a

nx b
.      (15) 

 

The result in (15) is the MAP estimator 

1ˆ 


 



MAP

n a

nx b
with 2a  and 1b . 

 

3. SIMULATION STUDY AND RESULTS  

In this section, the estimated value of the rate parameter  on 

gamma distribution by ML approach, BAY approach, MAP 

approach is ML estimator, BAY estimator, MAP estimator, 

respectively.  Further, the MSE of theses estimators is 

presented in Table I and II by Monte Carlo simulation. We 

performed a Monte Carlo simulation consisting of 100,000 

iterations to compute the estimated value of ML estimator, 

BAY estimator, MAP estimator, and compute MSE of ML 

estimator, BAY estimator, MAP estimator. We denoted that 

2,4  and sample sizes ranging from very small to 

moderate under 4,5,6,7,8  . 
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Table 1. The estimated value of  ML estimator, BAY estimator, 

MAP estimator, and MSE of ML estimator, BAY estimator, 

MAP estimator when 2  . 

  n ̂ML  ̂BAY  ̂MAP
 

MSE 

( ̂ML ) 

MSE 

( ̂BAY ) 

MSE 

( ̂MAP ) 

4 

5 2.1051 2.0852 1.9905 0.2572 0.1992 0.1750 

10 2.0506 2.0456 1.9969 0.1133 0.1011 0.0943 

15 2.0350 2.0327 2.0000 0.0722 0.0671 0.0639 

20 2.0256 2.0243 1.9996 0.0534 0.0506 0.0488 

30 2.0167 2.0162 1.9996 0.0346 0.0334 0.0326 

5 

5 2.0811 2.0685 1.9919 0.1946 0.1600 0.1441 

10 2.0405 2.0373 1.9981 0.0879 0.0804 0.0760 

15 2.0273 2.0258 1.9995 0.0572 0.0540 0.0520 

20 2.0194 2.0186 1.9988 0.0420 0.0403 0.0392 

30 2.0135 2.0131 1.9999 0.0276 0.0268 0.0263 

6 

5 2.0698 2.0608 1.9964 0.1594 0.1360 0.1241 

10 2.0330 2.0308 1.9981 0.0724 0.0673 0.0642 

15 2.0234 2.0224 2.0004 0.0476 0.0454 0.0439 

20 2.0175 2.0170 2.0004 0.0349 0.0337 0.0329 

30 2.0109 2.0107 1.9996 0.0229 0.0224 0.0220 

7 

5 2.0572 2.0508 1.9953 0.1314 0.1151 0.1065 

10 2.0291 2.0275 1.9993 0.0614 0.0577 0.0554 

15 2.0199 2.0192 2.0003 0.0403 0.0387 0.0376 

20 2.0135 2.0131 1.9989 0.0294 0.0285 0.0280 

30 2.0100 2.0098 2.0003 0.0196 0.0192 0.0190 

8 

5 2.0504 2.0455 1.9968 0.1131 0.1009 0.0942 

10 2.0258 2.0245 1.9999 0.0537 0.0509 0.0491 

15 2.0166 2.0160 1.9995 0.0348 0.0336 0.0328 

20 2.0135 2.0132 2.0008 0.0258 0.0251 0.0247 

30 2.0087 2.0085 2.0002 0.0170 0.0167 0.0165 

 
Table 2. The estimated value of  ML estimator, BAY estimator, 

MAP estimator, and MSE of ML estimator, BAY estimator, 

MAP estimator when 4  . 

  n ̂ML  ̂BAY  ̂MAP  
MSE 

( ̂ML ) 

MSE 

( ̂BAY ) 

MSE 

( ̂MAP ) 

4 

5 4.2098 3.7960 3.6235 1.0297 0.5622 0.5161 

10 4.1038 3.8994 3.8066 0.4556 0.3360 0.3480 

15 4.0697 3.9341 3.8707 0.2927 0.2387 0.2436 

20 4.0521 3.9508 3.9026 0.2139 0.1837 0.1863 

30 4.0324 3.9653 3.9328 0.1397 0.1265 0.1278 

5 

5 4.1703 3.8398 3.6976 0.7886 0.4837 0.4162 

10 4.0825 3.9197 3.8444 0.3490 0.2736 0.2812 

15 4.0533 3.9454 3.8942 0.2267 0.1931 0.1964 

20 4.0395 3.9588 3.9200 0.1679 0.1490 0.1508 

30 4.0277 3.9740 3.9479 0.1103 0.1017 0.1024 

6 

5 4.1325 3.8600 3.7394 0.6202 0.4168 0.4107 

10 4.0697 3.9342 3.8707 0.2907 0.2372 0.2421 

15 4.0445 3.9547 3.9117 0.1895 0.1658 0.1680 

20 4.0319 3.9648 3.9323 0.1392 0.1261 0.1274 

30 4.0201 3.9755 3.9537 0.0907 0.0850 0.0856 

7 

5 4.1203 3.8860 3.7810 0.5288 0.3730 0.3608 

10 4.0574 3.9417 3.8869 0.2437 0.2052 0.2090 

15 4.0395 3.9626 3.9256 0.1593 0.1419 0.1434 

20 4.0264 3.9690 3.9410 0.1185 0.1090 0.1100 

30 4.0196 3.9813 3.9625 0.0781 0.0737 0.0741 

8 

5 4.1029 3.8986 3.8058 0.4539 0.3351 0.3273 

10 4.0525 3.9512 3.9030 0.2141 0.1837 0.1864 

15 4.0345 3.9672 3.9347 0.1399 0.1264 0.1275 

20 4.0264 3.9760 3.9515 0.1038 0.0962 0.0968 

30 4.0185 3.9850 3.9685 0.0683 0.0649 0.0651 

 

 According to Table 1, by observing the estimated value of 

the true parameter  2  and MSE of ML estimator, the 

BAY estimator and MAP estimator are showed as follows. 

The results indicated that for 4,5,6,7,8  and n = 5, MSE 

of BAY estimator, ML estimator, and MAP estimator are 

more than 0.1 but a case for MAP estimator less than 0.1 as n 

= 5 and 8  . Again by observing in case n = 5, the MAP 

estimator is quite well as compared with the BAY estimator 

and ML estimator under MSE. When n = 10, 15, 20, 30, the 

results indicated that the estimated value of ML estimator, 

BAY estimator, and MAP estimator is not different but the 

MSE of BAY estimator and MAP estimator appeared that 

were smaller than the MSE of ML estimator.  

Table 2 showed the estimated value of the rate parameter 

 4  and MSE of ML estimator, BAY estimator, and MAP 

estimator.  The results stated that the estimation of the rate 

parameter of ML estimator, BAY estimator, and MAP 

estimator were good performances for the estimated value of 

the rate parameter  4  . For MSE of ML estimator, BAY 

estimator, and MAP estimator, when n = 5, MSE of BAY 

estimator and MAP estimator are less than ML estimator 

under 4,5,6,7,8  . In cases n = 10, 15, 20 

and 4,5,6,7,8  , it can be observed that MSE of three 

estimators as ML estimator, BAY estimator, and MAP 

estimator were similar. Meanwhile, the estimated value of the 

rate parameter  4   of ML estimator, BAY estimator, and 

MAP estimator was not different.  

 

4. CONCLUSIONS 

In this research, we are interested in estimating the true 

parameter  of the gamma distribution base on MSE.  From 

the simulation study, when small sample size n = 5 and 

4,5,6,7,8  with the small true parameter 2  , the MAP 

estimator is the best estimator based on MSE of the estimator, 

and in other cases for 2  ,  both BAY estimator and  MAP 

estimator were good estimators based on MSE. For 4   and 

n = 5, MSE of BAY estimator and MAP  estimator was better 

than ML estimator, and the MAP estimator is a reasonable 

working approach as well as a BAY estimator based on MSE 

with cases n = 10, 15, 20 and 4,5,6,7,8  . 
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