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ABSTRACT: Partial differential equations (PDEs) can be used to model physical systems. Using direct methods to find 

solutions of PDEs are computationally expensive for large systems. However, Numerical solution of PDEs can be efficiently 

approximated by parallel computational techniques using iterative methods. In this paper a number of parallel iterative 

methods have been implemented and analyzed for Laplace and Poisson’s equations in higher dimensions using message 

passing interface (MPI) library. Furthermore, two large scale linear systems have also been analyzed using said methods. 

Some suggestions regarding selection of appropriate parallel iterative methods have been made based on computational 

experiments derived from scale ability and timing analysis. 
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INTRODUCTION 
Several large scale applications in field of scientific 

computing require simulating some physical phenomena 

whose behavior is governed by a set of partial differential 

equations (PDEs). These phenomenons are modeled by 

evaluating variables over grid covering the region of interest 

using discrete finite differences, resulting in large scale linear 

systems. While finding numerical solutions of partial 

differential equations the number of unknown variables may 

be 10
5 

or more  [1] and matrices involved are usually sparse 

with certain symmetry. Using direct methods to solve such 

problems is computationally expensive and hence iterative 

methods are utilized to solve both independent and PDE 

resultant linear systems. 

Iterative methods are un-avoidable tools to find some 

approximation of any exact solution. Most of the Iterative 

methods have a starting value set called vector. Then there 

exists a sequences of such vectors computed on base of initial 

vector. This sequence finally converges to the exact solution. 

There may be a check to stop the computation if adequate 

precision is achieved. In many cases iterative methods 

performs faster than direct methods. Parallel implementation 

of these methods is also not very exaggerated. Iterative 

methods also demand some condition or mathematical 

properties to be fulfilled by linear system of equations for 

guaranteed convergence to exact solution. [2] 

Iterative methods can be subdivided in two classes named 

stationary iterative methods (SIM) and non-stationary (also 

known as Krylov subspace methods)  [3].  SIM methods 

evolve as a part of engineering and mathematics. These were 

popular in 1960 and now a day also used sometimes. These 

are not the best methods lately but are used as pre 

conditioners for Krylov subspace methods. In this paper three 

SIMs namely the Jacobi method, the Gauss–Seidel method 

and the successive over-relaxation method (SOR), along with 

their parallel implementation are being discussed which can 

overcome the sluggishness of these methods. Among many 

Krylov subspace methods we consider only one most 

important method, the Conjugate Gradient (CG) method for 

solving symmetric positive definite systems of equations 

which develop while modeling PDEs used in this paper. The 

parallel implementation of the CG method is based on the 

algorithm  [2]. All algorithms discussed above have been 

implemented using Massage Passing Interface (MPI) library. 

With the advent of multi-core machines the performance of 

MPI programs is very difficult to predict. However, a 

statistical estimation may be used to foresee performance 

pattern of certain algorithms. 

The rest of this paper is structured as follows: Section II 

summarizes related work; section III describes the target 

architectures and execution environment used for 

performance evaluation; section IV reviews the basic 

concepts behind the individual iterative methods. Finally 

Section V presents experimental results for selected PDEs and 

large scale linear systems, then for the two large scale 

systems. Section V concludes the paper. 

RELATED WORK 
Parallel implementations of iterative methods have been 

studied extensively in the last three decades. Almost all 

textbooks on parallel computing discuss the iterative methods 

in detail. The classical references include [1-8]. Each of these 

texts usually presents a selected number of iterative methods, 

thus getting a unified picture about the performance of these 

algorithms is a bit difficult. A few other researchers have also 

discussed these topics, but they have highlighted different 

aspects of iterative methods such as: 

Ortega, James M et al.  [9] presented the status of numerical 

methods for partial differential equations on vector and 

parallel computers. They discuss both direct and iterative 

methods for elliptic equations for various available 

architectures at the time of writing. They have presented some 

experimental results.  

Mathew, Tarek Poonithara Abraham  [10] have studied all 

iterative algorithms for the solution of partial differential 

equations, techniques for the discretization of partial 

differential equations on non-matching grids, and techniques 

for the heterogeneous approximation of partial differential 

equations of heterogeneous character. The divide and conquer 

methodology used is based on a decomposition of the domain 

of the partial differential equation into smaller sub-domains, 

and by design is suited for implementation on parallel 

computer architectures. However, even on serial computers, 

these methods can provide flexibility in the treatment of 
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complex geometry and heterogeneity in a partial differential 

equation. 

Balay, Satish et al. presents an overview of background for 

the numerical solution of PDEs, explains the challenges in 

parallel computations for PDE-based models. They have 

recommended use of PETSc software library and provided a 

brief overview of PDE-related software in high-performance 

computing community. They have additional 

recommendations for application scientists regarding software 

choices. 

Korfgen, Bernd and Inge Gutheil  [12] solve two problems of 

PDEs in parallel computer architecture using numerical 

methods. These problems include Poisson’s equation in 2-D 

and the physical process of vibration of a membrane. Simple 

Jacobi algorithm is used to solve the Poisson equation, also a 

suitable parallelization scheme is proposed. 2
nd

 case uses the 

ScaLAPACK library for calculation and the issue regarding 

data distribution is addressed. 

In summary, the existing papers or texts have following 

limitations: 

 It is difficult to get a unified picture of the performance 

of various parallel iterative algorithms using MPI. 

 There are only a few iterative algorithms have been 

implemented using MPI. 

 Analysis of comparatively modest size vectors and 

matrices is present in literature. 

In the nutshell, we believe that the paper will provide some 

extensions in theoretical background and practical 

implementation of parallel iterative algorithms. 

TARGET ARCHITECTURES AND EXECUTION 
ENVIORNMENT 
The two machines, a standalone machine and other computing 

cluster were used in experiments having the following 

architectures: 

SGI Virtue: 2 x Intel Xeon Processor E5440 @ 2.83 GHz 

with 12 MB cache, 4 cores and 4 GB memory. 

Computing Cluster: 

Head Node: 2 x Intel Xeon Processors E5504 @ 2.00 GHz 

with 4 MB cache, 4 cores and 16 GB memory, 

Cluster-Workers: 6 x Intel Core i5 Processors @ 2.67GHz 

with 8MB Cache, 4 cores and 4 GB memory 

each. 

These algorithms were executed repeatedly on above systems 

using MPI. SGI VIRTUE system has 8 processing cores on a 

single board, while the computing cluster system has 40 

processing cores out of which 32 utilized in the 

computational experiments carried out in this paper. These 

processing elements communicate with each other over 

Gigabit Ethernet network. 

REVIEWOF PARALLEL ITERATIVE METHODS FOR 
PDES 
As stated earlier that iterative methods are classified as SIM 

(stationary iterative methods) and Krylov subspace methods. 

Jacobi method, the successive over-relaxation method 

(SOR), the Gauss–Seidel method and symmetric successive 

over-relaxation method (SSOR) come under the umbrella of 

stationary iterative methods. Whereas Non-stationary 

Methods include Conjugate Gradient (CG), Generalized 

Minimal Residual (GMRES), Minimum Residual 

(MINRES), Quasi-Minimal Residual (QMR), Bi-Conjugate 

Gradient (BiCG) and Bi-conjugate Gradient Stabilized (Bi-

CGSTAB) etc  [3]. Parallel implementation of three 

stationary iterative methods including Jacobi method, the 

Gauss–Seidel method, and the successive over-relaxation 

method (SOR) and one non-stationary iterative method the 

Conjugate Gradient (CG) is discussed in this paper. 

It should be noted that the basic model implemented to solve 

all these PDEs is the solution of the system of linear 

equations represented as: 

 Ax b  (1) 

Assume 

( )k

x  is an approximation to the solution x of equation 

(1), Then 

 

( ) ( )

 +
k k

x x e  (2) 

Here

( )

 
k

e is called the error. Our objective in each iteration is 

to reduce the error according to some set criterion. 

Jacobi Method 

Jacobi method is also known as the simultaneous 

displacement method as it treats each equation independently 

for finding the values. It can be represented in the matrix form 

as: 

 

( ) ( 1)
-1 -1 =D ( ) + D b

k k

x L U x


  (3) 

Where the matrices D, L and U represent the diagonal, the 

strictly lower-triangular, and the strictly upper-triangular parts 

of A, respectively. [13] 

For implementing Jacobi method in MPI environment it takes 

the input from a file and allocates the memory using memory 

allocation functions, initializes processes and sends data to 

them. Processes then compute the given set of data and 

perform their computations independently. After they have 

finished first iteration, they again broadcast their result so that 

each process gets the updated values. When any of the 

stopping criteria is met, iterations stop and the result are 

displayed. 

Gauss Seidel Method 

Gauss- Seidel method is obtained by a little modification in 

the Jacobi method. The difference is that the equations are 

examined at a time in sequence, and the obtained results are 

used in next steps as soon as they become available. This 

method is also called as a method of successive 

displacements. In matrix form this method can be represented 

as: 

 

( ) ( 1)
-1 =(D ) ( + b)

k k

x L U x


  (4) 

In above relation D, L and U are matrices representing 

diagonal, the strictly lower-triangular, and the strictly upper-

triangular parts of system matrix A, respectively  [13]. 

For implementing Gauss Seidel Method in MPI environment 

it takes the input from a file and allocates the memory using 

memory allocation functions, initializes processes and sends 

data to them. Processes then compute the given set of data and 

perform their computations independently. After they have 

finished first iteration, they again broadcast their result so that 

each process gets the updated values. When any of the 

stopping criteria is met, iterations stop and the result are 
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displayed. In this method, processes depend for their 

computation on the data from the other processes. Therefore, 

there is a lot of data dependency. Due to this reason the 

parallel execution time is more than the serial execution time. 

Successive Over-Relaxation Method (SOR) 

Gauss-Seidel converges more rapidly by using successive 

over-relaxation (SOR). It uses step to next Gauss-Seidel 

iteration as search direction with a fixed search parameter 

called w . 

In matrix form Gauss Seidel method can be represented as: 

 

( ) ( 1)

 =(1 )
k k k

GS
x w x w x



   (5) 

Here the 

k

GS
x represents Gauss Seidel approximation. Value of 

w determines the convergence rate. w >1 means over-

relaxation; w <1 shows under-relaxation and w =1 means 

Gauss-Seidel method  [13].  

MPI implementation of SOR method is the same as Gauss-

Seidel method except that relaxation parameter is pre-

calculated for specific system. 

Conjugate Gradient (CG) Method 

The Conjugate Gradient method performs better for 

symmetric positive definite systems. This method generate 

vectors with successive approximations leading to the 

solution, residuals corresponding to the each iteration 

performed and the search directions which are used as base of 

further iterations and residuals computation  [13]. 

Updated scalars are computed in each iteration, by using two 

inner products. These scalars are used to make the sequences 

satisfy certain orthogonal conditions. 

The parallel implementation of the CG method is based on the 

algorithm  [2] each iteration step of this algorithm is based on 

the basic vector and matrix operations but in an efficient way.
 

EXPERIMENTAL RESULTS 
A unified performance analysis for said parallel iterative 

methods has been performed for two PDEs namely Laplace’s 

equation, Poisson’s equations; and two large scale systems 

using target architectures. The results are presented in this 

section. Similar trends were observed for both hardware 

systems; however, we present results for our computing 

cluster. 

Laplace 2D  

The following equation has been taken from  [14]. Consider 

the problem of determining the steady-state heat distribution 

in a thin square metal plate using Laplace’s equation model is 

as: 

 
0

0 , 1

xx yyu u

x y

 

 
 (6) 

The boundary conditions are: 

 
(0, ) ( ,0) 0

(1, ) 400 ;  ( ,1) 400

u y u x

u y y u x x

 

 
 

And the exact solution is: 

  , 400u x y xy  

Fig. 1shows the execution time for said iterative methods 

using eight processing elements. 

 
Fig. 1Execution time for iterative methods 

 

Fig. 1 depicts that the conjugate gradient is the fastest and 

Gauss–Seidel method is the slowest. The results are excepted 

as conjugate gradient uses proper search direction while 

Gauss–Seidel method involves heavy communication 

between processing elements. The Jacobi method is second 

in speed since it involves much less communication between 

processing elements from present iteration to next iteration.  

Fig. 2 shows no. of processing elements versus execution 

time keeping the no. of grid points constant =  3600. 

 
Fig. 2No. of processing elements versus execution time 

Fig. 2 shows execution time decreases with increasing 

processing elements until processor count reaches to eight. 

After that execution time starts increasing gradually because 

more network communication is involved. 

Laplace 3D  

The following equation has been extended to 3-D by the 

authors. Consider the problem of determining the steady-state 

heat distribution in a thin cube metal plate using Laplace’s 

equation model is as: 

 
0

0 , , 1

xx yy zzu u u

x y z

  

 
 (7) 

The boundary conditions are: 
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(0, , ) ( ,0, ) ( , ,0) 0

(1, , ) 800

( ,1, ) 800

( , ,1) 800

u y z u x z u x y

u y z yz

u x z xz

u x y xy

  







 

And the exact solution is:  

  , , 800u x y z xyz  

Fig. 3 shows the execution time for said iterative methods 

using eight processing elements. 

 
Fig. 3 Execution time for iterative methods 

 

Fig. 3for 3D Laplace depicts almost same trends as shown in 

Fig. 1. 

Fig. 4 shows execution time versus no. of processing 

elements keeping the no. of grid points constant=3600. 

 
Fig. 4 No. of processing elements versus execution time 

It can be seen from Fig. 4, the trend is similar to Fig. 2 though 

problem dimension has increased. 

Poisson 2D   

The following equation has been taken from  [14]. Consider 

the problem of determining the steady-state heat distribution 

in a thin square metal plate using Poisson’s equation model is 

as: 

 
0 , 1

y

xx yyu u xe

x y

 

 
 (8) 

The boundary conditions are: 

 
(0, ) 0 , (1, )

( ,0) , ( ,1)

y

x

u y u y e

u x x u x e

 

 
 

And the exact solution is: 

  , yu x y xe  

Fig. 5shows the execution time for said iterative methods 

using eight processing elements. 

 

 
 

Fig. 5 Execution time for iterative methods 

 

Fig. 5 depicts the same trend as for Fig. 1 showing no 

difference between the results of Poisson and Laplace 

equations. 

 

Fig. 6shows no. of processing elements versus execution 

time keeping the no. of grid points constant =  3600. 

 
Fig. 6 No. of processing elements versus execution time 

 

Fig. 6 shows the similar trend as Fig. 2. 

Poisson 3D  

The following equation has been extended to 3-D by the 

authors. Consider the problem of determining the steady-state 

heat distribution in a thin cube metal plate using Poisson’s 

equation model is as: 

 
3

0 , , 1

x y z

xx yy zzu u u e e e

x y z

  

 
 (9) 

The boundary conditions are: 

 

(0, , ) , (1, , ) .

( ,0, ) , ( ,1, ) .

( , ,0) , ( , ,1) .

y z y z

x z x z

x y x y

u y z e e u y z e e e

u x z e e u x z e e e

u x y e e u x y e e e

 

 

 

 



Sci.Int.(Lahore),28(4),3575-3580, 2016 ISSN 1013-5316;CODEN: SINTE 8 3579 

July-July 

And the analytical solution is:  

  , , x y zu x y z e e e  

Fig. 7 shows the execution time for said iterative methods 

using eight processing elements. 

 
Fig. 7 Execution time for iterative methods 

 

Fig. 7 depicts the same trend as for Fig. 1 showing no change 

in overall trend with increase in problem dimension. 

Fig. 8shows execution time versus no. of processing 

elements keeping the no. of grid points constant. 

 
Fig. 8 No. of processing elements versus execution time 

 

It can be seen from Fig. 8, the trend is similar to Fig. 2 though 

problem dimension has increased. 

Large  Scale System I 

This system was derived by authors to compare the results; 

we need to have a standard problem set through which we 

can verify the results effectively and efficiently. For this 

reason following matrix was chosen due to its high degree of 

stability and convergence. 

Let n be an even integer and consider the n × n matrix A 

with ‘3’ on main diagonal, ‘-1’ on the super and sub 

diagonals, and ‘1/2’ in the (i, n+1-i) position for all i = 1 to n 

except for i = (n/2) and (n/2) +1. The vector b is defined as 

b= [2.5, 1.5…1.5, 1.0, 1.0, 1.5 …1.5, 2.5]. In this vector, 

there are n - 4repetitions of 1.5 and 2 repetitions of 1.0.The 

exact solution of this system is a vector x containing all ones. 

All iterative methods are tested by using suggested large 

scale system. The results are shown below in Fig. 9. This 

figure shows the execution time for said iterative methods 

using eight processing elements. 

 

 
Fig. 9Execution time for iterative methods 

 

Fig. 9 depicts the same trend as for Fig. 1 showing no change 

in overall trend with increase in problem dimension. 

Fig. 10 shows execution time versus no. of processing 

elements keeping the no. of grid points constant. 

 
Fig. 10 No. of processing elements versus execution time 

 

It can be seen from Fig. 10, the trend is similar to Fig. 2 

though problem dimension has increased 

Large  Scale System II 

This problem has been taken from Matrix Market  [15]. This 

matrix is just used a linear system as given in equation (1): 

Its solution was also varied verified using MATLAB®. The 

results are shown as below. 

Fig. 11 shows the execution time for said iterative methods 

using eight processing elements. 

 
Fig. 11  Execution time for iterative methods 
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It can be observed Conjugate Gradient performed worse 

because matrix involved in this system is not positive definite. 

The matrix ‘A’ didn’t   have symmetry and could not avoid a 

fill-in of the matrix with non-zero elements  [2] , increasing 

communication overhead. Thus in this case Conjugate 

Gradient performed worse. 

 
Fig. 12 Execution time for iterative methods 

Fig. 12 shows execution time versus no. of processing 

elements keeping the no. of grid points constant=4096. 

The results are similar to Fig. 12 as given below with same 

reasoning as suggested: 

 
Fig. 13 No. of processing elements versus execution time 

 
SUMMARY AND FUTURE WORK 
In this paper we have analyzed most of the parallel iterative 

algorithms using MPI for two different architectures. It is very 

difficult to find a single paper implementing all these iterative 

algorithms methods in altogether. Our findings from 

computational experiments performed in this regard are listed 

as:  

1. There is a general decrease in execution time with 

increase in no of processing elements, and a general 

increase in execution time with increase in data size is 

observed if there is no network communication involved 

for all the iterative methods. 

2. In most of the cases Conjugate Gradient method could be 

best choice for parallel PDE solution. 

3. Performance of Gauss-Seidel, Jacobi and SOR is 

significantly affected over the network. 

4. Conjugate Gradient could perform worse if the system 

matrix is not positive definite. 

We are planning to extend this work in future by: 

1. Implementing Red Black Gauss-Seidel and Multi-grid 

methods. 

2. Implementing the generated matrices in compressed 

format to reduce communication time. 

In short, we consider that this paper has contributed to a few 

extensions in practical implementation of parallel iterative 

algorithms. 
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