
Sci.Int.(Lahore),28(4),3575-3580, 2016 ISSN 1013-5316;CODEN: SINTE 8 3575

July-July

PARALLEL IMPLEMENTATION OF ITERATIVE METHODS FOR SOLVING
PDEs

Muhammad Naveed Akhtar, Muhammad Hanif Durad, Anila Usman
Department of Computer and Information Science (DCIS),

Pakistan Institute of Engineering & Applied Sciences (PIEAS)

Corresponding Author: naveed@pieas.edu.pk

ABSTRACT: Partial differential equations (PDEs) can be used to model physical systems. Using direct methods to find

solutions of PDEs are computationally expensive for large systems. However, Numerical solution of PDEs can be efficiently

approximated by parallel computational techniques using iterative methods. In this paper a number of parallel iterative

methods have been implemented and analyzed for Laplace and Poisson’s equations in higher dimensions using message

passing interface (MPI) library. Furthermore, two large scale linear systems have also been analyzed using said methods.

Some suggestions regarding selection of appropriate parallel iterative methods have been made based on computational

experiments derived from scale ability and timing analysis.

Keywords: Partial differential equations (PDEs); Parallel Iterative method; Laplace’s Equation; Poisson’s equation;

Message Passing Interface (MPI)

INTRODUCTION
Several large scale applications in field of scientific

computing require simulating some physical phenomena

whose behavior is governed by a set of partial differential

equations (PDEs). These phenomenons are modeled by

evaluating variables over grid covering the region of interest

using discrete finite differences, resulting in large scale linear

systems. While finding numerical solutions of partial

differential equations the number of unknown variables may

be 10
5

or more [1] and matrices involved are usually sparse

with certain symmetry. Using direct methods to solve such

problems is computationally expensive and hence iterative

methods are utilized to solve both independent and PDE

resultant linear systems.

Iterative methods are un-avoidable tools to find some

approximation of any exact solution. Most of the Iterative

methods have a starting value set called vector. Then there

exists a sequences of such vectors computed on base of initial

vector. This sequence finally converges to the exact solution.

There may be a check to stop the computation if adequate

precision is achieved. In many cases iterative methods

performs faster than direct methods. Parallel implementation

of these methods is also not very exaggerated. Iterative

methods also demand some condition or mathematical

properties to be fulfilled by linear system of equations for

guaranteed convergence to exact solution. [2]

Iterative methods can be subdivided in two classes named

stationary iterative methods (SIM) and non-stationary (also

known as Krylov subspace methods) [3]. SIM methods

evolve as a part of engineering and mathematics. These were

popular in 1960 and now a day also used sometimes. These

are not the best methods lately but are used as pre

conditioners for Krylov subspace methods. In this paper three

SIMs namely the Jacobi method, the Gauss–Seidel method

and the successive over-relaxation method (SOR), along with

their parallel implementation are being discussed which can

overcome the sluggishness of these methods. Among many

Krylov subspace methods we consider only one most

important method, the Conjugate Gradient (CG) method for

solving symmetric positive definite systems of equations

which develop while modeling PDEs used in this paper. The

parallel implementation of the CG method is based on the

algorithm [2]. All algorithms discussed above have been

implemented using Massage Passing Interface (MPI) library.

With the advent of multi-core machines the performance of

MPI programs is very difficult to predict. However, a

statistical estimation may be used to foresee performance

pattern of certain algorithms.

The rest of this paper is structured as follows: Section II

summarizes related work; section III describes the target

architectures and execution environment used for

performance evaluation; section IV reviews the basic

concepts behind the individual iterative methods. Finally

Section V presents experimental results for selected PDEs and

large scale linear systems, then for the two large scale

systems. Section V concludes the paper.

RELATED WORK
Parallel implementations of iterative methods have been

studied extensively in the last three decades. Almost all

textbooks on parallel computing discuss the iterative methods

in detail. The classical references include [1-8]. Each of these

texts usually presents a selected number of iterative methods,

thus getting a unified picture about the performance of these

algorithms is a bit difficult. A few other researchers have also

discussed these topics, but they have highlighted different

aspects of iterative methods such as:

Ortega, James M et al. [9] presented the status of numerical

methods for partial differential equations on vector and

parallel computers. They discuss both direct and iterative

methods for elliptic equations for various available

architectures at the time of writing. They have presented some

experimental results.

Mathew, Tarek Poonithara Abraham [10] have studied all

iterative algorithms for the solution of partial differential

equations, techniques for the discretization of partial

differential equations on non-matching grids, and techniques

for the heterogeneous approximation of partial differential

equations of heterogeneous character. The divide and conquer

methodology used is based on a decomposition of the domain

of the partial differential equation into smaller sub-domains,

and by design is suited for implementation on parallel

computer architectures. However, even on serial computers,

these methods can provide flexibility in the treatment of

mailto:naveed@pieas.edu.pk

3576 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(4),3575-3580, 2016

July-July

complex geometry and heterogeneity in a partial differential

equation.

Balay, Satish et al. presents an overview of background for

the numerical solution of PDEs, explains the challenges in

parallel computations for PDE-based models. They have

recommended use of PETSc software library and provided a

brief overview of PDE-related software in high-performance

computing community. They have additional

recommendations for application scientists regarding software

choices.

Korfgen, Bernd and Inge Gutheil [12] solve two problems of

PDEs in parallel computer architecture using numerical

methods. These problems include Poisson’s equation in 2-D

and the physical process of vibration of a membrane. Simple

Jacobi algorithm is used to solve the Poisson equation, also a

suitable parallelization scheme is proposed. 2
nd

 case uses the

ScaLAPACK library for calculation and the issue regarding

data distribution is addressed.

In summary, the existing papers or texts have following

limitations:

 It is difficult to get a unified picture of the performance

of various parallel iterative algorithms using MPI.

 There are only a few iterative algorithms have been

implemented using MPI.

 Analysis of comparatively modest size vectors and

matrices is present in literature.

In the nutshell, we believe that the paper will provide some

extensions in theoretical background and practical

implementation of parallel iterative algorithms.

TARGET ARCHITECTURES AND EXECUTION
ENVIORNMENT
The two machines, a standalone machine and other computing

cluster were used in experiments having the following

architectures:

SGI Virtue: 2 x Intel Xeon Processor E5440 @ 2.83 GHz

with 12 MB cache, 4 cores and 4 GB memory.

Computing Cluster:

Head Node: 2 x Intel Xeon Processors E5504 @ 2.00 GHz

with 4 MB cache, 4 cores and 16 GB memory,

Cluster-Workers: 6 x Intel Core i5 Processors @ 2.67GHz

with 8MB Cache, 4 cores and 4 GB memory

each.

These algorithms were executed repeatedly on above systems

using MPI. SGI VIRTUE system has 8 processing cores on a

single board, while the computing cluster system has 40

processing cores out of which 32 utilized in the

computational experiments carried out in this paper. These

processing elements communicate with each other over

Gigabit Ethernet network.

REVIEWOF PARALLEL ITERATIVE METHODS FOR
PDES
As stated earlier that iterative methods are classified as SIM

(stationary iterative methods) and Krylov subspace methods.

Jacobi method, the successive over-relaxation method

(SOR), the Gauss–Seidel method and symmetric successive

over-relaxation method (SSOR) come under the umbrella of

stationary iterative methods. Whereas Non-stationary

Methods include Conjugate Gradient (CG), Generalized

Minimal Residual (GMRES), Minimum Residual

(MINRES), Quasi-Minimal Residual (QMR), Bi-Conjugate

Gradient (BiCG) and Bi-conjugate Gradient Stabilized (Bi-

CGSTAB) etc [3]. Parallel implementation of three

stationary iterative methods including Jacobi method, the

Gauss–Seidel method, and the successive over-relaxation

method (SOR) and one non-stationary iterative method the

Conjugate Gradient (CG) is discussed in this paper.

It should be noted that the basic model implemented to solve

all these PDEs is the solution of the system of linear

equations represented as:

 Ax b (1)

Assume

()k

x is an approximation to the solution x of equation

(1), Then

() ()

 +
k k

x x e (2)

Here

()

k

e is called the error. Our objective in each iteration is

to reduce the error according to some set criterion.

Jacobi Method

Jacobi method is also known as the simultaneous

displacement method as it treats each equation independently

for finding the values. It can be represented in the matrix form

as:

() (1)
-1 -1 =D () + D b

k k

x L U x


 (3)

Where the matrices D, L and U represent the diagonal, the

strictly lower-triangular, and the strictly upper-triangular parts

of A, respectively. [13]

For implementing Jacobi method in MPI environment it takes

the input from a file and allocates the memory using memory

allocation functions, initializes processes and sends data to

them. Processes then compute the given set of data and

perform their computations independently. After they have

finished first iteration, they again broadcast their result so that

each process gets the updated values. When any of the

stopping criteria is met, iterations stop and the result are

displayed.

Gauss Seidel Method

Gauss- Seidel method is obtained by a little modification in

the Jacobi method. The difference is that the equations are

examined at a time in sequence, and the obtained results are

used in next steps as soon as they become available. This

method is also called as a method of successive

displacements. In matrix form this method can be represented

as:

() (1)
-1 =(D) (+ b)

k k

x L U x


 (4)

In above relation D, L and U are matrices representing

diagonal, the strictly lower-triangular, and the strictly upper-

triangular parts of system matrix A, respectively [13].

For implementing Gauss Seidel Method in MPI environment

it takes the input from a file and allocates the memory using

memory allocation functions, initializes processes and sends

data to them. Processes then compute the given set of data and

perform their computations independently. After they have

finished first iteration, they again broadcast their result so that

each process gets the updated values. When any of the

stopping criteria is met, iterations stop and the result are

Sci.Int.(Lahore),28(4),3575-3580, 2016 ISSN 1013-5316;CODEN: SINTE 8 3577

July-July

displayed. In this method, processes depend for their

computation on the data from the other processes. Therefore,

there is a lot of data dependency. Due to this reason the

parallel execution time is more than the serial execution time.

Successive Over-Relaxation Method (SOR)

Gauss-Seidel converges more rapidly by using successive

over-relaxation (SOR). It uses step to next Gauss-Seidel

iteration as search direction with a fixed search parameter

called w .

In matrix form Gauss Seidel method can be represented as:

() (1)

 =(1)
k k k

GS
x w x w x



  (5)

Here the

k

GS
x represents Gauss Seidel approximation. Value of

w determines the convergence rate. w >1 means over-

relaxation; w <1 shows under-relaxation and w =1 means

Gauss-Seidel method [13].

MPI implementation of SOR method is the same as Gauss-

Seidel method except that relaxation parameter is pre-

calculated for specific system.

Conjugate Gradient (CG) Method

The Conjugate Gradient method performs better for

symmetric positive definite systems. This method generate

vectors with successive approximations leading to the

solution, residuals corresponding to the each iteration

performed and the search directions which are used as base of

further iterations and residuals computation [13].

Updated scalars are computed in each iteration, by using two

inner products. These scalars are used to make the sequences

satisfy certain orthogonal conditions.

The parallel implementation of the CG method is based on the

algorithm [2] each iteration step of this algorithm is based on

the basic vector and matrix operations but in an efficient way.

EXPERIMENTAL RESULTS
A unified performance analysis for said parallel iterative

methods has been performed for two PDEs namely Laplace’s

equation, Poisson’s equations; and two large scale systems

using target architectures. The results are presented in this

section. Similar trends were observed for both hardware

systems; however, we present results for our computing

cluster.

Laplace 2D

The following equation has been taken from [14]. Consider

the problem of determining the steady-state heat distribution

in a thin square metal plate using Laplace’s equation model is

as:

0

0 , 1

xx yyu u

x y

 

 
 (6)

The boundary conditions are:

(0,) (,0) 0

(1,) 400 ; (,1) 400

u y u x

u y y u x x

 

 

And the exact solution is:

  , 400u x y xy

Fig. 1shows the execution time for said iterative methods

using eight processing elements.

Fig. 1Execution time for iterative methods

Fig. 1 depicts that the conjugate gradient is the fastest and

Gauss–Seidel method is the slowest. The results are excepted

as conjugate gradient uses proper search direction while

Gauss–Seidel method involves heavy communication

between processing elements. The Jacobi method is second

in speed since it involves much less communication between

processing elements from present iteration to next iteration.

Fig. 2 shows no. of processing elements versus execution

time keeping the no. of grid points constant = 3600.

Fig. 2No. of processing elements versus execution time

Fig. 2 shows execution time decreases with increasing

processing elements until processor count reaches to eight.

After that execution time starts increasing gradually because

more network communication is involved.

Laplace 3D

The following equation has been extended to 3-D by the

authors. Consider the problem of determining the steady-state

heat distribution in a thin cube metal plate using Laplace’s

equation model is as:

0

0 , , 1

xx yy zzu u u

x y z

  

 
 (7)

The boundary conditions are:

3578 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(4),3575-3580, 2016

July-July

(0, ,) (,0,) (, ,0) 0

(1, ,) 800

(,1,) 800

(, ,1) 800

u y z u x z u x y

u y z yz

u x z xz

u x y xy

  







And the exact solution is:

  , , 800u x y z xyz

Fig. 3 shows the execution time for said iterative methods

using eight processing elements.

Fig. 3 Execution time for iterative methods

Fig. 3for 3D Laplace depicts almost same trends as shown in

Fig. 1.

Fig. 4 shows execution time versus no. of processing

elements keeping the no. of grid points constant=3600.

Fig. 4 No. of processing elements versus execution time

It can be seen from Fig. 4, the trend is similar to Fig. 2 though

problem dimension has increased.

Poisson 2D

The following equation has been taken from [14]. Consider

the problem of determining the steady-state heat distribution

in a thin square metal plate using Poisson’s equation model is

as:

0 , 1

y

xx yyu u xe

x y

 

 
 (8)

The boundary conditions are:

(0,) 0 , (1,)

(,0) , (,1)

y

x

u y u y e

u x x u x e

 

 

And the exact solution is:

  , yu x y xe

Fig. 5shows the execution time for said iterative methods

using eight processing elements.

Fig. 5 Execution time for iterative methods

Fig. 5 depicts the same trend as for Fig. 1 showing no

difference between the results of Poisson and Laplace

equations.

Fig. 6shows no. of processing elements versus execution

time keeping the no. of grid points constant = 3600.

Fig. 6 No. of processing elements versus execution time

Fig. 6 shows the similar trend as Fig. 2.

Poisson 3D

The following equation has been extended to 3-D by the

authors. Consider the problem of determining the steady-state

heat distribution in a thin cube metal plate using Poisson’s

equation model is as:

3

0 , , 1

x y z

xx yy zzu u u e e e

x y z

  

 
 (9)

The boundary conditions are:

(0, ,) , (1, ,) .

(,0,) , (,1,) .

(, ,0) , (, ,1) .

y z y z

x z x z

x y x y

u y z e e u y z e e e

u x z e e u x z e e e

u x y e e u x y e e e

 

 

 

Sci.Int.(Lahore),28(4),3575-3580, 2016 ISSN 1013-5316;CODEN: SINTE 8 3579

July-July

And the analytical solution is:

  , , x y zu x y z e e e

Fig. 7 shows the execution time for said iterative methods

using eight processing elements.

Fig. 7 Execution time for iterative methods

Fig. 7 depicts the same trend as for Fig. 1 showing no change

in overall trend with increase in problem dimension.

Fig. 8shows execution time versus no. of processing

elements keeping the no. of grid points constant.

Fig. 8 No. of processing elements versus execution time

It can be seen from Fig. 8, the trend is similar to Fig. 2 though

problem dimension has increased.

Large Scale System I

This system was derived by authors to compare the results;

we need to have a standard problem set through which we

can verify the results effectively and efficiently. For this

reason following matrix was chosen due to its high degree of

stability and convergence.

Let n be an even integer and consider the n × n matrix A

with ‘3’ on main diagonal, ‘-1’ on the super and sub

diagonals, and ‘1/2’ in the (i, n+1-i) position for all i = 1 to n

except for i = (n/2) and (n/2) +1. The vector b is defined as

b= [2.5, 1.5…1.5, 1.0, 1.0, 1.5 …1.5, 2.5]. In this vector,

there are n - 4repetitions of 1.5 and 2 repetitions of 1.0.The

exact solution of this system is a vector x containing all ones.

All iterative methods are tested by using suggested large

scale system. The results are shown below in Fig. 9. This

figure shows the execution time for said iterative methods

using eight processing elements.

Fig. 9Execution time for iterative methods

Fig. 9 depicts the same trend as for Fig. 1 showing no change

in overall trend with increase in problem dimension.

Fig. 10 shows execution time versus no. of processing

elements keeping the no. of grid points constant.

Fig. 10 No. of processing elements versus execution time

It can be seen from Fig. 10, the trend is similar to Fig. 2

though problem dimension has increased

Large Scale System II

This problem has been taken from Matrix Market [15]. This

matrix is just used a linear system as given in equation (1):

Its solution was also varied verified using MATLAB®. The

results are shown as below.

Fig. 11 shows the execution time for said iterative methods

using eight processing elements.

Fig. 11 Execution time for iterative methods

3580 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(4),3575-3580, 2016

July-July

It can be observed Conjugate Gradient performed worse

because matrix involved in this system is not positive definite.

The matrix ‘A’ didn’t have symmetry and could not avoid a

fill-in of the matrix with non-zero elements [2] , increasing

communication overhead. Thus in this case Conjugate

Gradient performed worse.

Fig. 12 Execution time for iterative methods

Fig. 12 shows execution time versus no. of processing

elements keeping the no. of grid points constant=4096.

The results are similar to Fig. 12 as given below with same

reasoning as suggested:

Fig. 13 No. of processing elements versus execution time

SUMMARY AND FUTURE WORK
In this paper we have analyzed most of the parallel iterative

algorithms using MPI for two different architectures. It is very

difficult to find a single paper implementing all these iterative

algorithms methods in altogether. Our findings from

computational experiments performed in this regard are listed

as:

1. There is a general decrease in execution time with

increase in no of processing elements, and a general

increase in execution time with increase in data size is

observed if there is no network communication involved

for all the iterative methods.

2. In most of the cases Conjugate Gradient method could be

best choice for parallel PDE solution.

3. Performance of Gauss-Seidel, Jacobi and SOR is

significantly affected over the network.

4. Conjugate Gradient could perform worse if the system

matrix is not positive definite.

We are planning to extend this work in future by:

1. Implementing Red Black Gauss-Seidel and Multi-grid

methods.

2. Implementing the generated matrices in compressed

format to reduce communication time.

In short, we consider that this paper has contributed to a few

extensions in practical implementation of parallel iterative

algorithms.

REFERENCES

[1] Shonkwiler, Ronald W., and Lew Lefton. An

Introduction to Parallel and Vector Scientific

Computation. Vol. 41. Cambridge University Press,

2006.

[2] Rauber, Thomas, and Gudula Rünger. Parallel

programming: For multicore and cluster systems.

Springer Science & Business, 2013.

[3] O'Leary, Dianne P. Scientific computing with case

studies. SIAM, 2009.

[4] Foster I., Designing and Building Parallel Programs,

Addison-Wesley, 1995.

[5] Petersen, Wesley P., and Peter Arbenz. Introduction to

parallel computing. No. 9. Oxford University Press,

2004..

[6] Wilkinson B., Michael A., Parallel Programming:

Techniques and Applications Using Networked

Workstations and Parallel Computers , 2
nd

 ed.,

Prentice Hall, 2003.

[7] Bisseling, Rob H. Parallel scientific computation.

Oxford University Press, 2004.

[8] Quinn, M. J., Parallel Programming in C with MPI

and OpenMP, McGraw-Hill, 2004.

[9] Ortega, James M., and Robert G. Voigt. Solution of

partial differential equations on vector and parallel

computers. Siam, 1985.

[10] Mathew, Tarek Poonithara Abraham. Domain

decomposition methods for the numerical solution of

partial differential equations. Vol. 61. Berlin:

Springer, 2008.

[11] Balay, Satish, et al. "Software for the scalable solution

of partial differential equations." Sourcebook of

parallel computing. Morgan Kaufmann Publishers

Inc., 2003.

[12] Korfgen, Bernd, and Inge Gutheil. "Parallel Linear

Algebra Methods." Computational Nanoscience: Do it

Yourself 31.1: 507, 2006.

[13] Heath, Michael T. Scientific computing. McGraw-

Hill, 2001.

[14] Burden, Richard L., and J. Douglas Faires. Numerical

analysis. Thomson Brooks/Cole, 2005.

[15] http://math.nist.gov/MatrixMarket/data/NEP/matpde/

matpde.html

http://math.nist.gov/MatrixMarket/data/NEP/matpde/matpde.html
http://math.nist.gov/MatrixMarket/data/NEP/matpde/matpde.html

