
Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3443

July-August

EFFICIENCY, PERFORMANCE AND VIEW MATERIALIZATION IN
OBJECT-ORIENTED PARADIGM

Noreen Ashraf
#,*,1

, Salman Afsar
 #,*,2

, Muhammad Asam
 #,*,3

#,*,1 Department of Computer Science, National College of Business Administration And Economics, Lahore, Pakistan

#,*,2 Department of Computer Science, University of Agriculture, Faisalabad, Pakistan
#,*,3 Department of Computer Science, GC University, Lahore, Pakistan

Corresponding author: noreen.ashraf48@yahoo.com

ABSTRACT: Certain aspects of the incremental maintenance of MVs have been studied in detail for relational database

management systems (DBMSs) as well as in a deductive setting”.“Work on an object-based setting is significantly hard to find.

The solution to the incremental view maintenance problem presented here assumes as do all other solutions the availability of

the update event, the changes made to the database and the current materialized state of the view. . The VMOP (View

Materialization in Object-Oriented Paradigm) is an implementation to the solution to the IVM problem. The solution yields an

Incremental Maintenance Plan (IMP) algorithm for object based solution”. “The result of an experimental performance

evaluation of the VMOP provides solution to the incremental maintenance OQL views. So that it is easier to integrate the

solution into the kind of query processing frameworks that normal database management system depend on.”

Abstract- It’s a challenging task to develop socially interactive agents”.

Keywords: Materialized View, Incremental Maintenance Plan, VMOP, OQL .

1. INTRODUCTION
Extensive research has been dedicated to database

management systems during the last three decades. “The

main objective of that research was to develop abstract and

logical modals for specifying the structure of data stored in

database.[1] Views form the external level representing the

interest of database user groups. A view provides the means

for logical data independence. A view is a definition of a

derived relation the extent of which is determined by a query

expression. Every time a view is used in query its extents is

re-computed.”The term data independence appears in

ANSI/SPARC three schema architectures. Where views are

external level represents the interest of different user groups

[2]. “A view is a definition of a derived relation the extent of

which is determined by a query expression. Every time a

view is used in query its extents is re-computed. Sometimes

such views are referred as virtual. This research then provides

the bases for efficient techniques for query optimization,

indexing, searching, storage and retrieval. Query performance

can be still improved in DMBS [3].

The information requested by the user is assembled on-

demand. Research has been made to develop methods for

efficiently assemble such information whenever required

(Kuno 1996)[4]. After assembling the information it is then

provided to the user. If the information required is defined as

a view than a query over a view requires assembling the

extent of the view. That extent of the view is materialized and

than used in query answering. In that way it saves the cost of

assembling it each time. When the extent of the view is

materialized it is referred as materialized view. In MV there

is initial cost in assembling the information after that it is just

refreshed the MV whenever updates change the relations

from which the view is derived.

“MV is an important part of DBMS as improving the

performance of query processing.MV has gained a lot of

interest in the database community for their application in

online analytical processing (OLAP), data warehousing, data

integration and replication. A data ware house can be

considers as a collection of MVs over the data stored in

information sources and the problem of maintaining a data

warehouse can b seen as the problem of maintaining such

views.[1].”Actually through the system aspects of the data

base we can view or analyze the performance of incremental

view maintenance ,the size of the database updates or

refurnished and the size of the relation involve. Database

query optimizer is an appropriate components of the database

system to decide whether a view in maintained incrementally

or not. Because all the parameters that may affect that choice

are already in the knowledge of query optimizer. Incremental

views are little supported by experimentation to prove that

they are beneficial than non-incremental views. [5].

The usage of materialized objects oriented views in object

relational database warehousing system is most reliable .A

novel technique named hierarchical materialization is

proposed by us “for the materialization of method results in

object oriented views .This technique was implanted and

evaluated by a large number of people who were concerned

with the methods without input arguments and with input

arguments as well .The results showed the hierarchical

materialization reduces method re-computation time

.Materialization method with input arguments introduces only

a small time overhead [6].”To speed up queries ,the

Materialized views have been found very effective and these

are also supported a lot by commercial database and data

warehouse system. All these methods or ways need wel

organized methods to maintain Materialized views [7].

For data integration, application and high performance query

processing, view materialization is an efficient technique.

Increment maintaining materialized views have very relevant

solution for all the problems. “So far, most work on this

problem has been confined to relational settings and solutions

have not been comprehensively evaluated [1].”Materlized

views present a complex and thoughtful process. to select the

“optimum set of materialized views a new algorithms is also

proposed. This new proposed algorithm sets this set based

utilization rate, relationship update rate cost calculation.[8]”

We come to across many major differences “between object-

oriented paradigms and relational that can be seen when

addressing the object-oriented view materialization problem”.

 Most of the work done on IVM is in a relational setting.

mailto:noreen.ashraf48@yahoo.com

3444 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

 A few proposals have addressed IVM in the context of

object oriented database systems.

 The study of MV shows that they are applicable in many

applications.

2. LITERATURE REVIEW
 “View materialization is known to be a valuable technique

for performance optimization in relational databases, and

much work has been done addressing the problem of

consistently maintaining relational views under update

operations. However, little progress has been made thus far

regarding the topic of view materialization in object-oriented

databases (OODBs). They demonstrated that there are several

significant differences between the relational and object-

oriented paradigms that can be exploited when addressing the

object-oriented view materialization”problem. They used the

subsumption “relationships between classes to identify

branches of classes to which we do not need to propagate

updates. Similarly, they used encapsulated interfaces

combined with the fact that any unique database property is

inherited from a single location to provide a

registration/notification service for optimizing incremental

view updates”.

“They “have successfully implemented all proposed

techniques in the MultiView system, which provides

updatable materialized classes and virtual schemata on top of

the GemStone OODBMS. They also reported results from the

experimental studies have run on the MultiView system

measuring the impact of various optimization strategies

incorporated into our materialization update algorithms

(Rundensteiner 1996)[4]”.”

“Selecting views to materialize is one of the most important

decisions in designing a data warehouse. This paper present a

framework for analyzing the issues in selecting views to

materialize so as to achieve the best combination of good

query performance and low view maintenance. They first

develop a heuristic algorithm which can provide a feasible

solution based on individual optimal query plans”. The

materialized view designs problem as 0-1 integer

programming problem, whose solution can guarantee an

optimal solution”.

“They “stated that there are two approaches towards

providing integrated access to multiple, distributed,

heterogeneous databases: (1) lazy or on-demand approach (2)

data warehousing approach. The specific contributions of

their paper are as: A framework is presented to highlight

issues of materialized view design in a distributed data

warehouse environment. This framework is based on the

specification of Multiple View Processing Plan (MVPP)

which is used to present the problem formally. They provide

two algorithms to generate MVPP(s): one can generate a

feasible solution expeditiously; the other can provide an

optimal solution by mapping the optimal MVPP generation

problem as an O-l integer programming problem. They have

addressed and designed algorithms for the materialized view

design problem.”The work presented is the outcome of the

first stage of research in Materialize View Design project.

Their focus on developing an analytical model for a multiple

view processing environment to simulate different scenarios

to evaluates the solutions for the materialized view design

problem [9]”.

 “Addressing the object-oriented view materialization

problem. They demonstrate that there “are several significant

differences between the relational and object-oriented

paradigms that can be exploited when addressing the object-

oriented view materialization problem. First, propose

techniques that prune update propagation by exploiting

knowledge of the subsumption relationships between classes.

Second, use encapsulated interfaces”, Third, introduce the

notion of hierarchical registrations.

“They “have successfully implemented all proposed

techniques in the MultiView system on top of the GemStone

OODBMS. Their paper also present a cost model for our

update algorithms and report results from the experimental

studies run on the MultiView system, measuring the impact

of various optimization strategies incorporated into our

materialization update” algorithms (Rundensteiner 1998)[10].

“An application is built, an underlying data model is chosen

to make that application effective. The naïve solution of

copying the underlying data and modeling is costly in terms

of storage and makes data maintenance and evolution

impossible. The technique enables applications to customize

shared data objects without affecting other applications that

use the same objects. they reduce the need to re-compute the

view and/or data being queried,they speed up the querying of

large amounts of data. Further, they provide a systematic way

to describe how to re-compute the data, maintenance and

evolution can be automated. Materialized views are

especially useful in data warehousing, query optimization,

integrity constraint maintenance, online analytical processing,

and applications such as billing, banking, and retailing (Gupta

1999)[11]”.

“The development of techniques for supporting incremental

maintenance of materialized views has been an active

research area for over twenty years. They present the results

of an experimental performance analysis carried out in a

system that incrementally maintains OQL views in an ODMG

compliant object database.”The results indicate how the

effectiveness of incremental maintenance is affected by

issues such as database size, and the complexity and

selectivity of views. MV is an important part of DBMS as

improving the performance of query processing. So far, most

work on this problem has been confined to relational settings

and solutions have not been comprehensively evaluated. (Ali

2000)[1]”

“Materialized views are supporting to make view faster and

efficient in terms of quires and are being used by data

warehouses and other database systems. A framework was

developed to integrate multiple choices in an organized and

effective way. To maintain the workload of different queries

and updates these algorithms may also be used in

materialized views.”

“For the maintenance of set of materialized views they found

an efficient plan by utilizing common sub-expressions among

many view maintenance expressions. A framework was

developed that was utilized to integrate the multiples choices

in an effective and organized way. They evaluated by using

different techniques that many-fold improvement can be

made in view maintenance. To speed up workloads

Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3445

July-August

containing queries and updates these algorithms may also be

utilized in materialized views”.

They worked to find out the ways to reduce the cost of view

maintenance plans by utilizing transient materialization of

ordinary sub-expressions. To speed up maintenance of the

given views by additional expressions may be chosen. The

ways to determine the optimal maintenance plan for each

view were found.

A greedy heuristic was proposed which iteratively picks up

views to decrease the overall materialization cost by picking

up iteratively in order.“At present, there are less options

available for maintenance point of view in Data warehouses

and data marts as they maintain automatically. The aim is to

find best way to maintain the materialized views which has

its own importance. By applying different techniques on

existing optimizer, a performance study was conducted to

study their benefits. In another direction, to speed up a

workload of queries by selecting materialized view.

“A modification can be applied to the greedy algorithm as

follows: candidates would be intermediate/final results of

queries, and advantages to queries would be included when

computing advantages(Mistry 2001)[7].””Described that

multi-query optimization using heuristic is practical, and

provides major advantages. Three cost-based heuristic

algorithms were proposed: Volcano-RU and Volcano-SH, and

a greedy heuristic. Newly designed algorithms in this

research work can easily added to existing optimizers. A

performance study is presented by comparing the algorithms,

using workloads consisting of queries from the TPC-D

benchmark. Our implementation describes that the algorithms

can be added to an existing optimizers with a reasonably less

effort. This performance study, using queries based on the

TPC-D benchmark, express that multi-query optimization is

practical and gives significant benefits at a reasonable

cost.Multi-query optimization” was also demonstrated on a

real database system to check the advantages. As a result, it is

aimed that the groundwork have been laid for convenient use

of multi-query optimization, and multi-query optimization

will form a criticalpart of all query optimizers in the future.

(Roy 2000)[12]”

“In object-relational data warehousing systems is promising

in the application of materialized object-oriented views. In

object-oriented views, a technique was purposed for

materialization of method called hierarchical

materialization.When an object used to materialize the result

of method m is updated, and then m has to be recomputed.

This recomputation can utilized unaffected intermediate

materialized results of methods called from m, thus reducing

a recomputation time. It revealed in results that hierarchical

materialization reduces method recomputation time.

Moreover, materializing methods with input arguments of

narrow discrete domains introduces only a small time

overhead” (Bebel 2001)[6].

“Scalable and fastalgorithmis establish whether part or all of

a query can be computed from materialized views and

demonstrated how it can be incorporated in transformation-

based optimizers.They show an efficient view-matching

algorithm for SPJG views and described its integrated into a

transformation-based optimizer”. “They also show an index

structure, called a filter tree, which efficiently speeds up the

search for applicable views. On implementation in Microsoft

SQL Server, it found that obtained experimental results of the

algorithm are fast and scales to very large numbers of views.

In future work, plan is to extend the algorithm to cover a

broader class of views and substitute expressions” (Goldstein

and Larson 2001)[13].

“In the concept of materialized view is quite common and

significant in the environment of data warehouse

environment these days. It has clearly an objective efficiently

maintaining and supporting the processing of OLAP query

system. Most of the time, these materialized views are

derived from the select-project-join of a number of base

relations.”An efficient incremental view maintenance strategy

is given the name of “delta propagation.” This strategy can

minimize the total size of base relations by analyzing the

properties of the relations. The strategy contains the delta

expression and delta propagation tree which needs to be

defined. The algorithm which can find the optimal delta

expression is proposed since this algorithm is dynamic

programming carrier. Several experimental results show the

usefulness and efficiency of this strategy (Lee 2001)[14].

The well known concept which has been quite sufficiently

addressed and established in literature and implemented in

database products as well is of “incremental view

maintenance”. This view is further implied upon all aggregate

functions in a form of well established mechanism. This

mechanism excludes those aspects and features which are not

distributive over all operations. The optimization of this view

is possible in two different ways.

The first way can be only the re-computing of the affected

groups and secondly, by extending the infrastructure of

incremental work. It is done to maintain and support those

functions that are algebraic in nature. The further

optimization computing is performed when multiple but

dissimilar in nature aggregate functions are computed under

the same view. The other important conflicting issues of

incremental views of maintenance are addressed which are

related to super aggregates. These include as well the

materialized OLAP cubes. The implementation of our

algorithm on the prototype of IBM DB2 UDB has proved the

validity of our approach with the help of an experimental

evaluation (Palpanas 2002)[15].

The effective and high processing of of query, data

integration and replication is possible with the technique of

view materialization. In the ODMG- compliant data bases,

the incremental maintenance of materialized OQL views are

solved with the help of MOVIE which is a complete,

evaluated and implemented solution of all the problems that

come in the way. In object data base, the IVM problems are

the best sort out. The main contribution of the paper can be

best synthesized as:

(1) Any update operation in ODMG language binding

can be best handled with the ODMG-compliant schemas

since these are the solutions to the problems of incremental

maintenance of materialized OQL views.

(2) The yielding of performance benefits under certain

circumstances can be understood by the experimental

evaluation of the implemented system (Ali 2003)[16].

“To compute the answers to the queries like the size of the

view-set on a given database, the solution must be found in

3446 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

advance. For conjunctive queries and their workload, the

decidability and complexity of the problem must be explored.

If the workload queries have self-joins, the result differ

significantly. The dynamic programming algorithm is

provided which finds the minimal size of disjunctive view-

sets without any self-joins. The discussion is also done on

heuristics about the efficiency of algorithm. Thus, efforts are

done for finding out the optimal solution (Chirkova

2003)[17].”

“Materialized views in the context of multidimensional

databases (MDDBs). A materialized view is a view whose

content is explicitly stored in the database. They proposed

efficient incremental maintenance techniques. MDDBs are an

ideal environment for materialized views because frequency

of updates is low, MDDB data models permit easy adoption

of incremental maintenance, and queries can be modeled in

such a way to allow an easy definition of the view selection

problem, i.e., the problem of selecting which query to

materialize in an MDDB. Hence present the problems of

choosing and maintaining materialized views with the

corresponding solutions” (Paraboschi 2003)[18].

“An efficient incremental maintenance for multiple joint

views. The delta propagation strategy to multiple views has

been extended. The shared common intermediate results

among views can be shown effectively by the recursive

property of this strategy”. “The whole process can be done by

first defining the multiple view maintenance problems and

then applying the heuristic algorithm which can find global

maintenance plan for the under consideration views” (Lee

2005)[19].

“The views stored in data base ware house must be kept

updated and current. It is necessary”. They have the ability to

develop change table technique in order to maintain

incremental views expressions by involving rational and

aggregate operators. “The change table technique performs

on previously proposed techniques by orders of magnitude.

The maintaining views expressions are effectively and

efficiently extended by developing framework for outer-join

operators. The developed change table technique has clearly

shown and proved that this is an optimal incremental

maintenance scheme for the given view expression under the

heading of reasonable assumptions Gupta 2006)[20].”

“The efficient selection of materialized views can be

achieved simply by three basic factors: By estimating the

query cost, by view maintenance cost, or by application of

heuristics. This approach is particularly helpful in some

cases”. In order to minimize query response time, it has been

proved that by deciding which set of views in the data cube

must be materialized. “The alternative ways of evaluating

multiple queries and views, sub expression and sharing can

be sort out by utilizing AND/OR DAG expressions. For the

better performance of the data warehouse, proposed approach

can be applied to optimize the views” Dhote 2007)[21].

“The issue that a data warehouse mostly integrates the

businesses information and data from inner and outer data

sources”. For this issue, a new algorithm has been proposed

in this paper for the efficient selection of optimum set of

materialized views. “This algorithm has been based upon

certain factors namely, utilization rate, relationship update

rate and calculation cost. For the real life application of this

algorithm, the development of this work was produced within

the domain of medical project. It was done in order to find

validity of this newly proposed algorithm” (Encinas 2007)[8].

“The view that to speed up entire data ware housing process

which is constrained by storage and issues of cost

consideration, this newly proposed algorithm can help in

selecting efficient and proper set of materialized views. For

the efficient gain and loss metrics, a cost model for data

warehouse query and maintenance along with efficient view

selection algorithms has been derived. The most important

aspect of this paper is the process of speeding up the

materialized views. This will in return, reduce the overall cost

of data ware house and maintenance issues”(Hung 2007)[22].

“If the strategy of materializing views is based upon cache, it

further reduces the cost of views refreshment on the basis of

greedy and dynamic selection algorithms. For the suitability

of variety of queries, the application of views refreshment is

more appropriate in contrast to greedy algorithm. The

efficiency of views in materialized set can be low if there is

frequent substitution. This can be avoided by preferring the

cache- updating system over dynamic selection algorithm”

(Yin 2007)[23].

“Materialized views can be speed up by processing of the

query greatly. But it must be considered that they have to be

kept up to date and useful. They have represented a very

innovative and novel way to maintain the materialized views

which are responsible of relieving the updates of this

overhead. It is proposed by this approach that maintenance

can be postponed until the system has free cycles or the view

has been reference by a query”.

(1) While ensuring that that the queries will only see up

to date views, they introduced a new approach for

maintaining materialized views that relieves the updates of

view maintenance.

(2) To obtain simple and efficient maintenance

expressions, they have exploited new versions.

(3) By merging multiple maintaining tasks for a view

and by eliminating redundant updates of the same row, they

reduced the cost of view maintenance.

(4) They have used low priority background jobs for

exploiting the system free cycles to maintain views. The view

is turned immediately up to date when the query demands it.

(5) For the demonstration of the feasibility and benefits

of this approach, a prototype implementation in SQL Server

2005 has been proposed with extensive experiment (Zhou

2007)[24].

“In large database specifically in distributed database, query

response time plays an valuable role as timely access to

information and it is the basic requirements of successful

business application. A data warehouse uses multiple

materialized views to efficiently process a given set of

queries”. “A speedy response time and appropriateness are

important factors in the success of any database. It is

impossible the materialization of all views because of the

space constraint and maintenance cost constraint. Choosing

of materialized view is one of the most important decisions in

designing in data warehouse for optimal efficiency. Choosing

a suitable set of views that minimizes the total cost associated

with the materialized views and is processing”. This paper

Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3447

July-August

gives the results of proposed tree based materialized view

selection algorithm for query processing .In distributed

environment where database ID distributed over the nodes on

which query should get executed and also plays an important

role .this paper also proposes mode selection algorithms for

fast materialized view selection in distributed environment

.And finally it is found that the proposed methodology

performs better for query processing as compared to other

materialized view selection strategies (Mr. P. P. Karde

2010)[25].”

“A speedy response time and appropriateness are important

elements in the success of any database .in large database

specifically in distributed database”. Query response plays an

valuable role as timely access to information and it is the

basic needs of successful business application . “A data

warehouse uses multiple materialized views to efficiently

process a given set of queries .it is impossible ,the

materialization of all views because of the space constraint

and maintained cost constraint . materialized view selection is

one of the critical decisions in designing a data warehouse for

optimal efficiency. Choosing a accurate set of views that

minimizes the total cost associated with the materialized

views is the key parts I data warehousing. Materialized views

are found useful for query processing. This paper gives an

overview of various techniques that are implemented in past

recent for selection of materialized view. The issues related to

maintaining the materialized view are also discussed in this

paper” (Mr. P. P. Karde 2010)[26].

“A lot of different views can be made and materialized from

data warehouses per the user requirements specified in the

queries being generated against the information contained in

the warehouses. Choosing views to be materialized is one of

the most important decisions in designing a warehouse.

Because the two change in user needs and constraints aver

time. View definitions stored in a data warehouse are

dynamic in nature.

This paper specified on the issue of materialized views in

data warehousing to enable efficient information

management. This carries selection maintained and updating

of materialized views and how these issues create on impact

in business scenarios (G. Prabagaran 2013)[27].”

“In order to fulfill the user’s requirement in the dynamically

changing data warehouse environment materialized view

evolve. So that, evaluation approach of materialized view

focuses on selecting materialized views in the design process

of data ware houses or in response to data changes or to data

sources changes and sometimes to keep a check on the DW

quality under schema evolution .although this materialized

view evolution problem for evolving an appropriate set of

views is addressed by few researches. In order to identify

their advantages and disadvantages, none of the surveys

provides a classification of materialized view evolution

approaches. This survey tries to fill this gap .the present paper

provides a review of model based materialized view

evolution methods by identifying the three main dimensions

namely (i) Model/Design Model (ii) Architecture (iii)

Framework (Anjana Gosain 2015)[28].

3. MATERIALS AND METHODS
3.1. The OO7 Database Schema
The OO7 benchmark schema is designed to be indicative of

many complex application domain like “computed aided

design, computer aided manufacturing and computer aided

software engineering(Ali 2000)[1]”. It is designed for

evaluating different aspects of database system performance

and has been widely used in performance analysis of

ODBMs. That is why we have chosen the OO7 database

schema to be used throughout for illustrating different

features of ODMG standard, the lambda-Db system and for

performance evaluation of the VMOP system (Colby

1996)[29]. Among the performance characteristics tested by

OO7 are:

 The speed of many different kinds of pointer traversal

including traversal over cached data, traversals over disk

resident date, spare updates, updates of cached data and the

creation and deletion of objects.

 The performance of the query processor on several

different types of queries.

Fig 1.OO7 Modal in UML

There are three sizes of the OO7 benchmark, small, medium and

large.

Table 2. Parameters of OO7
Parameter Small Medium Large

Number of atomicparts per

compositePart

20 200 200

Numberof connection per

AtomicPart

3,6,9 3,6,9 3,6,9

Document Size 2000 20000 20000

Manual size 100KB MB 1MB

Number of composite parts per

Modules

500 500 500

3448 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

Number of Assemblies per

complesAssembly

3 3 3

Number of Assembly at each level 7 7 7

Number of CompositeParts per

Assembly

3 3 3

Number of Modules 1 1 10

4. 3.2. THE OBJECT-ORIENTED DATABASE
(OODB) MODEL
“Object-oriented database systems, which can be considered

fifth-generation database technology, began developing in the

mid-80’s out of a necessity to meet the requirements of

applications beyond the data processing applications, which

characterized relational database systems (fourth-generation

database technology)”. “Attempts to use relational database

technology for advanced applications like computer aided

design (CAD), computer aided manufacturing (CAM),

software engineering, knowledge-based systems, and

multimedia systems, quickly exposed the shortcomings of

relational database systems. The need to perform complex

manipulations on existing databases and a new generation of

database applications generated a need that would be better

satisfied by object-oriented databases (OODBs)(Chirkova

2003)[17]”.

“Many definitions of object orientation and object-oriented

databases have been developed over the years but object

oriented databases as databases that integrate object

orientation with database capabilities. Object orientation

allows a more direct representation and modeling of real

world problems, and database functionality is needed to

ensure persistence and concurrent sharing of information in

applications. Most current OODBs are still not full-fledged

database systems comparable to current relational database

systems RDBs Object-oriented database systems evolved

from a need to satisfy the demand for a more” appropriate

representation and modeling of real world entities, so OODBs

provide a much richer data model than relational databases

(Lee 2001)[14]. “The OODB paradigm is based on a number

of basic concepts, namely object, identity, class, inheritance,

overriding, and late binding. In the object-oriented data

model (OODM), any real world entity is represented by only

one modeling concept – the object”. “An object has a state

and a behavior associated with it. The state of an object is

defined by the value of its properties attributes (Chirkova

2003)[17]. Properties can have primitive values (like strings

and integers) and nonprimitive objects. A nonprimitive object

would in turn consist of a set of properties. Therefore objects

can be recursively defined in terms of other objects. The

behavior of an object is specified by methods that operate on

the state of the object. Each object is uniquely identified by a

system-defined identifier (OID)”.

“Objects with the same properties and behavior are grouped

into classes. An object can be an instance of only one class or

an instance of several classes. Classes are organized in class

hierarchies”. “A subclass inherits properties and methods

from a superclass, and in addition, a subclass may have

specific properties and methods”. In some systems, a class

may have more than one superclass (multiple inheritance),

while in others it is ’ restricted to only one superclass (single

inheritance). “Most models allow for overriding inherited

properties and methods. Overriding is the substitution of the

property domain with a new domain or the substitution of a

method implementation with a different one

(Chirkova2003)[17]”. Achievements of the object oriented

model are following:

 OODBs allow users to define abstractions

 OODBs facilitate development of some relationships

 OODBs eliminate need for user defined keys

 Development of equality predicates

 OODBs reduce need for Joins

 Performance gain using OODBs

“Besides the achievements of the OODBS there is still some

weakness of the OODB, like, Minimal query optimization,

Lack of standard query algebra, Lack of query facilities,

Limited support for consistency constraints in OODB, Little

support for complex objects. The main weakness of the

OODB is that it does not provide support for views. Although

there have been several proposal there is little agreement as to

how a view mechanism should operate in OODBs (Mumick

1997)[3]. The development of an object-oriented view

capability is complicated by such model features as object

identity. What are the identities of the objects in a view? On

the other hand, there has also been the argument that data

encapsulation and inheritance make explicit view definitions

unnecessary.”

3.3. An Overview of ODMG Model
“The ODMG is a group of vendors and interested parties that

work on specifications for object database and object-

relational mapping products. ODMG embodies vendor’s

efforts to standardize ODMBS. The standardization of

database schemas, programming languages bindings and

query language open the way for portable applications. The

powerful ODMG effort has given the object database industry

a jump start toward standards that would otherwise have

taken many years. ODMG enables many vendors to support

and endorse a common object database interface to which

customers write their applications. (Chirkova 2003)[17]”.

The programmer writes declaration for the application

schema using either a PL (Programming Language) or ODL

and provides a source program to implement the application

(Urbano 2003)[2]. The source program is written in one of

the supported PLs using special libraries to provide object

manipulation language capabilities. Source programs can be

written in other manipulation language to access and

manipulate the same database. The declarations and source

program are then complied and linked with the runtime

libraries of an ODMG compliant ODBMS to produce the

running application. The major components of the ODMG

standard are the OM , ODL, OQL and programming language

bindings.”

3.3.1. OBJECT MODEL

 “Refers to the collection of concepts used to describe

objects, in a particular object-oriented language,

specification, or analysis and design methodology, and

corresponds closely to the use of the term data model in the

relational data model (Urbano 2003)[2]”.The common data

model supported by ODMG implementations’ is based on the

OMG Object Model.
“The OMG core model was designed to be a common

denominator for object request brokers, object database

Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3449

July-August

systems, object programming languages, and other

applications. In keeping with the OMG Architecture, a profile

has been designed for their model, adding components (e.g.,

relationships) to the OMG core object model to support the

ODMG needs”. “

 “Fig 2.ODBMS Architecture

The basic concepts are objects, types, operations, properties,

identity and sub typing. Objects: “Objects are instances of a

type, and as such have state, behavior and identity. All

objects are of type Denotable Object”. “An object can be

mutable (instance of type "object") or immutable (instance of

type "literal").Objects and literals can be atomic or structured.

The identity of objects is represented by OIDs; typically

literals are identified by their value”. Properties: “State is

modeled by the properties of an object. A property can be an

attribute or a relationship. The attributes and relationships of

an object are defined as part of the type interface. Attributes

take literals as their values; relationships can only be defined

between two non literal’ object types.”Operations:

Operations are defined on types. The interface of a type

includes operation signatures: argument names and types,

possible exceptions, result types. The first argument of an

operation is distinguished.

3.3.2. Object Definition Language

“The Object Definition Language is a specification language

used to define the specifications of object types that conform

to the ODMG Object Model. ODL is used to support the

portability of database schemas across’ conforming ODBMSs

(Urbano 2003)[2]”.

Several principles have guided the development of the ODL,

including:

 “ODL should support all semantic constructs of the

ODMG Object Model”.

 “ODL should not be a full programming language, but

rather a definition’’ language for object specifications”.

 “ODL should be programming-language independent”.

 “ODL should be compatible with the OMG's Interface

Definition Language (IDL)”.

 “ODL should be extensible, not only for future

functionality, but also for physical optimizations”.

 “ODL should be practical, providing value to application

developers, while being supportable by the ODBMS

vendors within a relatively short time frame after

publication of the specification”.

“ODL is intended to define object types that can be

implemented in a variety of programming languages.

Therefore, ODL is not tied to the syntax of a particular

programming language. Users can use ODL to define schema

semantics in a programming language independent”.

way. A schema specified in ODL can be supported by any

ODMG-compliant ODBMS and by mixed-language

implementations. ODL provides a degree of insulation for

applications against the variations in both programming

languages and underlying ODBMS products. Example of

ODL is:

class Person

(extent people) {

private:

 Attribute String name;

 Attribute Set<Person> spouse;

 Attribute Set <Person> children;

 Attribute List <Person> parents;

public:

 Person(char *name);

 void birth(Person child);

 void marriage(Person spouse);

 String get_name() { return name;}

 List<Person> get_children() {return children;};

}; 3.3.3. Object Query Language

“This is a declarative (nonprocedural) language for querying

and updating objects. It can be used in two different ways

either as an embedded function in a programming language

or as an ad-hoc query language (Urbano 2003)[2]. Object

Query Language, is Declarative query language (SQL-like).

It can be optimized Syntax based on SQL. Queries can return

a collection of objects, an object, a collection of literals, a

literal. The following are the some features of OQL”:

 “OQL is closed and complete under ODMG object model”

 “It can be used interactively as well as embedded in other

programming languages”

 “OQL is not computationally complete”

 “OQL can be invoked from within programming languages

for which an ODMG binding is defined. In addition though

often not in practice OQL can invoke operations

programmed in these languages”.

 “Although OQL does not provides explicit update

operators. It can invoke operations on object that may

cause updates”.

 “Being functional language operators in language can be

freely composed. OQL includes arithmetical, logical,

aggregation, sorting, and grouping operators. In addition it

also provides operators for creating collections”.

Example of OQL is: List the name and address of Guests

with reservations for more than one day.

 select struct(x.GuestName, x.StreetNr, x.City)

 from x in Guest, y in x.has_Reservation’

 where y.NrDays > 1

Is there a reservation for the Kennedy room on 13 May?

 exists x in Reservation : x.ArrivalDate = “13 May”

3450 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

 and x.is_for_Room.RoomName = “Kennedy”

For each room, list the cities and arrival dates of guests with

reservations.

 select struct(x.RoomName,

 (select struct(y.ArrivalDate, y.is_for_Guest.City’

 from y in x.is_reserved_in_Reservation))

 from x in Room

Example 2 of OQL query

select struct (E: e.name, D:d.name)

from e in Employees, d in Departments

where e.dept = d;

define workFor() as

select struct (E: e.name, D:d.name)

from e in Employees, d in Departments

where e.dept = d;

3.3.4. Programming Language Binding
A languages binding is an integration of the ODMG, OM,

OML, ODL and OQL with an OOPL. An OOPL together the

ODMG binding provides full fledged database programming

languages (Urbano 2003)[2].

The application access the database creates objects retrieves

objects, manipulation objects starts transaction commits or

rollback transaction. The language bindings for different

OOPLS are quite different from each other in their style and

strengths but they serve one common purpose to provide an

OOPL with database capabilities.

3.4. Difference of OODB with Relational Model
Those aspects of the OODB standard are compared with its

relational counterpart that influence the way materialized

view can be incrementally maintained. The reason for such a

comparison is to identity key difference between the IVM

problem in the context of ODBs and RDBs and to distinguish

work from comparable work on materialized view

maintenance in RDBs (Ali 2000)[1].

In ODBs and OODB standard objects are uniquely identified

through OIDs. While in RDBs each tuples in a relation is

uniquely identified using a set of attributes values known as

the primary key. Any modification to the values of such

attributes change identify of the tuples. In contrast an OID is

system generated and is independent of the stare of object.

Through OID and primary key serve a simpler purpose, they

are fundamentally different and should not be treated as a

same thing. It is possible in MV in RDBMs to give the same

primary key as the relation from which it is derived. It is not

possible in OODB context to create new objects with the

same OIDs as existing objects which means that objects in

the MV might have the same stare as that of the base objects

but different identities.

In OODB Om relationships are implemented using reference

objects. Relationships are bi-directional and could be

collection valued. In contrast relationships in RDBs are

implemented using foreign keys and are uni-directional and

single valued. Bi-directionality of relationship makes IVM

more difficult because of the derived updated.

There are many different Updates operations in OODB OM

where they are only three types of updates in relational model

that is insert, delete, and update. One update operation might

have several updates associated with it. The RDBS an update

affects only one relation with the exception when updates are

cascaded due to referential integrity enforcement. Such

updates can be seen as derived updated operations. However

the difference is that in RDBS one can choose not to cascade

update whereas in ODBs referential integrity is by default

maintained by the ODMBS.

In RDBS when an update is applied to a relation that might

have implications on other relations and that might have

implication on other relations and that cascading of updates is

switched off one can explicitly carry out the derived updated.

In contrast in ODBs possibilities of derived updated are

carried out by the ODMBS implicitly. In RDBs when a

update is applied to a relation that affect an MV then an

incremental change is usually computed by substituting in an

algebraic expression or an SQL view definition a relation that

is affected by the update with delta. This is mainly because an

update affects only one relation and every algebraic operator

takes one or two relations an input and replacing one relation

with another one is straightforward. The OODB context this

is not always possible because the delta might not be a direct

input in the algebraic expression or an OQL view definition.

For example assume that an MV v is based on extents x and y

such that v:= x p y where p is the join predicate. In an RDB

v can be affected by an update that aspects the tuples of either

x or y. suppose that an update u affects x then an incremental

change to v is composed by delta v := delta x p y where

delta x is the delta associates with the u. in the OODB

settings an update u might affect a class extent z which

implicitly affects the objects in x and hence affects v. the

incremental change to v in this case may not be computed by

delta v:+ delta z p y as x and z could be extents of entirely

different classes. That is why it man not be possible to

substitute in the expression defining v, x by delta z thick

makes IVM more different in ODBs. The level of difficulty

depends on how update events are detected. If derived

updates raise events which can be responded to then there is

no problem. In RDB once an incremental change is competed

there are only there possible ways in which it can be applied

to the MVs wither by inset delete to update.

The change itself is generally a collection of tuples that can

be directly applied to the MVs. In contrast there are many

different ways of applying changes to the MVs as there are

update operation in OODB OM. The change itself is not

necessarily directly applicable to the MVS and much be post-

processed before it can applied to the MVS for example to

construct new objects form the computed change or to

retrieve objects from the MVs that are going to be either

deleted op updated.

Table 3. Difference in RDB and ODB

Criteria RDBMS ODBMS

Support for object-
oriented features

Does not support; It
is difficult to map
program object to
the database

Supports’
extensively

Usage Easy to use

OK for
programmers; some
SQL access for end
users

Support for complex
relationships

Does not support
abstract data types

Supports a wide
variety of data types
and data with

Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3451

July-August

complex inter-
relationships

Performance
Very good
performance

Relatively less
performance

Product maturity
Relatively old and
so very mature

This concept is few
years old and so
relatively mature

The use of SQL
Extensive supports
SQL

OQL is similar to
SQL, but with
additional features
like Complex
objects and object-
oriented features.

Advantages

Its dependence on
SQL, relatively
simple query
optimization hence
good performance

It can handle all
types of complex
applications,
reusability’’ of code,
less coding

Disadvantages
Inability to handle
complex
applications

Low performance
due to complex
query optimization,
inability to support
large-scale systems

Support from
vendors

It is considered to
be highly
successful so the
market size is very
large but many
vendors are moving
towards ORDBMS

Presently lacking
vendor support due
to vast size of
RDBMS market

3.5. Attributes of View Materialization in Object
Oriented Paradigm
“The first dimension is the definition language dimension.

Solutions differ depending on the types over which views can

be defined. The richer the type system the more varied the

semantic issues arising in a context in which restoring

consistency is the main objective. A non-exhaustive list of

values in this dimension, partially ordered from least to most

expressive, could be as follows: [first-normal-form (1NF)

relational, nested relational, object-based]. Historically, most

of the work on the IVM problem has been carried out in a

1NF relational setting. The object based case is significantly

more complex and has been considered much less often in the

IVM literature (Urbano 2003)[2]”.

“The second dimension is the manipulation language

dimension. Solutions’ differ depending on the update events

that can be responded to. The richer the data manipulation

language the more varied the semantic issues arising. The

type system that the solution applies to determines the

primitive operations from which one defines the observable

behavior of the type instances. Values in this dimension could

be subsets of the following non-exhaustive set: {insert,

delete, modify, implicit consequences}.This list might be

extended by consideration, of operations on collections of

instances, as needed in the ODMG setting and as supported

by VMOP. The object-based case is significantly more

complex and has been considered much less often in the

MVM literature.”

“The third dimension is the view language dimension.

Solutions differ depending on the queries that can be bound

to view names. The richer the view definition language the

more varied the semantic issues arising. (Urbano 2003)[2].

Incrementally maintaining views involving aggregation,

negation or recursion has proved quite challenging. Values in

this dimension could be sub-lists of the following non-

exhaustive list of values, partially ordered from least to most

expressive, could be as follows: [select-project-join (SPJ),

unnest (l), nest (C), sub-queries (SQ), aggregation (I),

duplicates (D), union ([), intersection (\) difference ())]. The

object-based case in the ODMG setting is arguably not the

most complex as far as the expressiveness of the view

definition language is concerned: the deductive case is, and

has been considered more often in the IVM literature”.

“The fourth dimension is the event processing dimension. In

addition to differences related to the database languages that

underlie them, solutions will also differ regarding the strategy

they adopt for processing update events. One possibility is to

react to the update event immediately. An alternative is to

defer the reaction to the update event, typically until the end

of the transaction in which the event took place”. Thus, a

non-exhaustive list of values in this dimension, often taken as

alternatives to one another, could be as follows: [immediate,

deferred].

“The fifth, and final, dimension is the environmental

information dimension. The final dimension used to

characterize the solution space for the IVM problem concerns

how much data must be available in the environment for the

solution to work. Intuitively, the less data that is needed the

better. Values in this dimension could be sub-lists of the

following non-exhaustive list of values partially (and

informally) ordered from least to most expressive:

[materialized view extent, update delta, view definitions, base

relations, and auxiliary views]. There is a trade-off between

the amount of data required and the update events that can be

accommodated by each solution. Relying on more data

allows more update events to be handled”.

3.6. Materialization in VMOP
A solution to the problem of incrementally maintaining

materialized OQL views defined with respect to any update

operation in the ODMG language bindings. “In order to

achieve the goal of incremental maintainability for all ’update

operations, the availability of both the references to the base

objects that contribute data to the MV and of the base extents

required for materializing. (Urbano 2003)[2]. It is also

assumed the VMOP solution is valid for MVs that refer to

any ODL-definable type (Ali 2000)[1]. The VMOP solution

is valid for any update operation in the ODMG standard”. “In

terms of practicality, the VMOP solution yields incremental

maintenance plans (IMPs) at the algebraic level. This makes

it easier to integrate the VMOP solution into the kind of

query processing frameworks that mainstream DBMSs rely

on”. These include derived events that arise in the ODMG

model as a result of the requirement to enforce referential

integrity constraints declared with the relationship/inverse

construction. Depending on the event type, one or more

algebraic IMPs are constructed that, when evaluated,

compute the required changes to the MV.

“A crucial component in the VMOP solution is, therefore, the

generation of IMPs that are appropriate for each kind of

update event”. “In VMOP, two kinds of IMP suffice to

3452 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

compute the changes required in the MV as a result of any

update operation in the ODMG standard. Immediately after

an update event takes place which implies the need to update

an MV, the corresponding delta (comprising the old and the

new state of affected objects) is made available and the

associated IMP (which uses the delta) is evaluated to

compute the changes needed. Once the changes needed have

been obtained, VMOP applies them to the relevant MV

extent”.

“

Fig 3.View Compilation

Fig 4.View Materialization in VMOP

The comprehensive nature of the VMOP solution with

respect to update operations requires that the OIDs of objects

that contribute data to the MV are also materialized”. “This is

achieved, at view compilation time, by generating from an

MV definition v another view definition, which is referred to

as OIDs_for_v, which is itself compiled, evaluated and

materialized. Thus, the OIDs of objects that contribute data

for an instance of v are associated withthe OID of that

instance in OIDs_for_v”.

3.7. Incremental maintenance in VMOP
“In VMOP, the generation of an IMP starts from an algebraic

query tree in which denotations are available for the OIDs of

contributing objects which is referred to as

OID_projecting_v. It is identical to v except that it also

includes those attributes in OIDs_for_v that originate from

extents occurring in the from clause of v. In contrast with v

and OIDs_for_v, OID_projecting_v is never materialized:

only the definition is needed as an input to the generation of

the IMPs”.

After extra information is derived, the events to be monitored

are identified and their corresponding IMPs generated.

Different forms of IMPs are generated depending on the

update and the properties of the view, as follows.

Planting a delta “For some kinds of updates, the constructed

IMP computes the changes required to v by evaluating

OID_projecting_v over the delta to the affected base extent,

rather than over the base extent itself, while accessing all

other base extents refeenced in the MV. For insertions only

the new state matters for incremental MV maintenance.

Correspondingly, for deletions only the old state matters.

However, for modification, both the old and new states are

necessary, so the representation of the delta benefits from

being conceptualized as a pair. The IMP generated by VMOP

is different from the evaluation plan.” Joining a delta with

materialized OIDs. “For other kinds of updates, the IMP

constructed by the system joins OIDs_for_v with the delta in

order to identify MV objects that are affected by the update.

The idea is to avoid access to base extents whenever possible.

The information captured in the delta is not enough to

identify which object(s) in the MV might be affected because

the delta only refers to the updated composite Part object:

there is no handle in the delta to the instances in the MV

which have data that was contributed by the affected

composite Part object. In this case, the IMP will need to join

OIDs_for_dbSizeView with the delta on the OID of the

object in the delta. When this IMP is evaluated, the result is

input to an algorithm that applies the changes to the MV and

to OIDs_ for_dbSizeView, if required.”

3.8. Algorithm for View Materialization in Object
Oriented Paradigm
VMOP processes that are carried out when update events take

place. For explanation, given a database state D over a

schema S that conforms to ODMG. Suppose that an update u

E ET causes a transition from D to D’. Then the following

action takes place:

1 Generating an event and delta: from the update u an event e

and a delta(new, old) are generated and passed on to

subsequent steps.

2 detecting relevant event: the event e is matched against the

event specifications. A relevant event and corresponding

event specifications are passed on to subsequent steps.

3 Processing relevant events: for e and each corresponding

event specifications es there exists one or more v from which

es was derived. For each affected v, following action take

place:

 Identifying the type of incremental plan

 Generating the incremental plan

 Applying updates to materialized views

Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3453

July-August

Fig5.Incremental Maintenance in VMOP

3.9. Type of Incremental Maintenance Plan
Choosing an IMP type involves the following analysis:

Kind of update event: updates events can be divided into two

groups. first updates that cause new objects or elements to be

added to the view, i.e. insert and insertElem and second

updates that cause removal or modification of existing view

object, i.e. delete, deleteElem and modify (Urbano 2003).

view classification: views can be divided into four

classes depending on the operators that occur in

their algebraic representation in increasing levels

of complexity. These are reduceget, reducegetjoin,

unnest and nest (Urbano 2003). Given the kind of update

event and the views class the IMP types is determined. There

are two types of IMP

 IMPs that requires access to base extents. It is referred to

as planting a delta in mvD.

 IMP the do not require access to base extents. It is referred

to as joining a delta with mvXs.

3.10. Generating an Incremental plans
For each type of incremental maintenance plan, VMOP uses a

different algorithm to generate an IMP. Therefore there are

different algorithms used for each plan. The key points in the

incremental maintenance plan are as follows:

 Base extents are not accessed.

 The IMP joins the delta with the extra information. The

extent of the materialized extra information shows the join

condition. The join condition matches the objects in the

delta with the objects in newer state by comparing the OID

of the former with the CompositePart_ID attribute of the

latter which hold the OID of a compositePart object that

was contributed data to the view.

 The IMP returns a structure containing the OIDs of the

view object and the new value of the CompositeType

attributed of the view.

3.11. Applying Updates to Materialized View
Once the Imps are generated there are evaluated to obtain

incremental changes to MV. It is then necessary to apply the

incremental changes to MVs to make them consistent with

the current state of the database. The specific way in which

changes are applied to MVs depends on the kind of update

event and the view class.

3.12. Propagating Changes to the Views
Given a materialized view v that is affected by an event e the

set of changes obtained by evaluating an Imp that used delta

new is denoted BY. If imp uses delta old then the set of

changes is denoted BY. The explanation is given as:

1. View update Operations : The view updates operations

that are used in VMOP for applying changes to an MV. For a

given view v. mvT and mv denote the ODL type and extent

of v respectively mvX and mvXs denote the OLD type and

extent of extra information pertaining to v. and mvD denote

the augmented form of v. let V, X and D the set of attributed

and collection names in mvT, mvXs and mvD respectively

used the function defined as follows:

 Create an object of type t with state s where s is a list of

values. The state of an object means that it is the result og

appending to s2 to s1. Each element in s corresponds to an

attribute in t.

 State returns the state of the object o.

 OID returns the OID of the object o.

 Position returns the position of an element el in the list

collection c.

 Projection returns projection of the values of L a list of

attributes and collection names, out of an object o.

The order of the object maintained the order of objects in mv.

The order of mv may be affected by any of the following:

 Insertion into the base extent

 Deletion from the base extent

 Modifications to e affecting exp

The order of the mv is denoted by exp, VMOP must include

at view compilation time e in v as projected attributed if they

are not already included. Some of the approaches to help

maintain the order of the view include:

 Adding an extra attributes index in c that will store that

positron of an object in mv. A single insertion into or deletion

from mv may affect the value of the index of several objects

in mv. Therefore maintaining index valued could be an

expensive task.

 Leaving mv unordered and providing a interface to the

view such that any retrieval from mv returns the objects in

the required order. A simple interface might be to define a

virtual view over mv that retrieves the objects over mv.

 To store mv as a list collection. Any insertion into or

deletion from mv can be carried out using appropriate

positions relative to the value of exp. Modification to exp

may be complicated to handle as they may require moving

objects from one position to another.

 To create an index over mv on exp and let the underlying

ODMBS maintain the index.

2 Applying changes to VMOP: The result given by

evaluating the IMP chosen and generated views are then

proceeds to apply changes to MV using the view update

operator.

3.13. Implementation stage
Lambda DB is chosen as a platform for implementing the

VMOP solution due to the following features:

3454 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

 It is based on a theoretical framework called monoid

comprehension calculus for query optimization

 It is based on the ODMG standard which coincides with

the object based setting on which VMOP solution stands.

 It supports most of the ODL which is appropriate for

realizing the data model dimension of the IVM solution

space that VMOP targets.

 It supports most OQL query constructs which is more than

enough to realize the VDL dimension of the IVM solution

space that VMOP targets.

 It supports function for manipulating data dictionary which

are helpful for realizing algorithms.

 It supports an object algebra based on the monoid

comprehensive calculus which is capable of representing

queries and views in OQL. The algorithms for generating

Imp manipulate expression in object algebra.

 The lambda DB OQL optimizer is written in an optimizer

specification language called OPTL and is implemented in

an optimizer generation tool called OPTGEN. OPTL is a

language for specifying query optimizers that captures

most of the optimizer specification information in a non

procedural style.

 Its source code is publicly available so it is possible for us

to implement VMOP as an extension to it and have

significant control over the overall functionality of the

system.

3.13.1. Handling View materialization
View definition process is responsible for deriving and

storing event specifications and metadata from MVs and

generating code for materializing the initial extents of MVs.

Two passes are required when view definitions are processed

for materialization in the following manner:

 In the first pass, the OLD types for each view v are

generated which is processed by ODL to SDL translator to

plant the new schema into the data dictionary.

 In the second pass event specification and metadata are

derived and stored for ivm_metadata_catalog foe each view.

The process generates code to materialize view implements

the procedure by generating code that when run materializes

the view and extra information. After deriving the set of

event specifications the process iterates over the collection

and constructs EventSpec objects which are persistently

stored in the data dictionary. It also constructs an object of

type MatView for the metadata pertaining to the view.

3.13.2. Handling View Maintenance
Handling View maintenance describes how view

maintenance has been implemented in the VMOP. View

maintenance is handled through the following way:

Generating Events from lambda-DB updates:
lambda-DB does not support the ODMG C++ language

binding because it provides its own C++ binding which

integrates OQL with C++ called lambda-OQL. In OQL any

statement that starts with thee symbol % denotes an OQL

query , view definition or an update. lambda-OQL have their

semantics that are similar to update operations defined by

ODMG OM. As an example consider the following lambda-

OQL update:

%ComPart501:=CompositePart(id:501,type:”type003”,build

Date1999);

From this update following event is generated:

<eventType: insert,

Params:[<classExtent, “COmpositePart”, “CompositeParts”>,

<object, “CompositePart”,”CompositePart501”>]>
Computing and propagating Changes to MVs:
For each lambda_OQL update event is generated, whenever

there is an MV for which the event is relevant because it

matches the event specifications derived for that MV at view

compilation time the generated IVM code is such that when

executed it evaluated the IMO associated with that event to

compute the changes and then propagates those changes to

MV. For each event update t, event e and associated event

specification es, the IVM code is generated in the following

ways:

 The process generates code to generate delta constructs

an algebraic expression denoted by q and passes it to

lambda_DB-QOT to generate the code foe evaluating q. q

corresponding to an OQL query of the form Select x from x

in the X where p.

That returns a collection containing the objects affected by

the event where X is name of the extent of the affected

objects and p is a predicate. Both X and p is derived from the

information carried by t and e.

 For each MatView mv associated with es , following

action take place:

 An algorithm is implemented for choosing an appropriate

IMO type and generating an IMP. The process generates an

Imp denoted by imp and returns it to the calling process.

 Manage code invoke the process with the input imp and

mv. The generation of the IVM code that when executed

computes the changes are necessary to be applied to the MV.

 All generated code is serialized and written out to the

source code files. These files are compiled and linked to

obtain an executable that when run computes and propagates

changes to the affected MVs.
Table 4. VMOP in IVM solution space

3.14. Performance Evaluation
Performance evaluation can be characterized on the basis of

cost modal and on the basis of experiments. A systematic

approach to performance evaluation can be as follows:

 Describe the goals and the system that is being analyses.

 List the services and outcomes of the system.

 Choose the metrics and parameters used in the

evaluation.

 Identify the factors to study.

 Select an evaluation technique.

 Design and conduct experiments.

 Analyses and present results.

The factors that influence the performance of an IVM system

are studied. The evaluation technique used in the PE is

Sci.Int. (Lahore), 28(4), 3443-3456,2016 ISSN 1013-5316; CODEN: SINTE 8 3455

July-August

empirical in nature based on measurement of various metrics

using the VMOP prototype. The choice of which views to use

for the evaluation is based on the hypotheses being

investigated in the performance analysis.

 “The selectivity of the view influence the performance of

an IVM as the ratio of the number of objects selected by a

query to the number of inputs objects”.

 “The structural complexity of the view influence the

performance of an IVM system it varies with the number

and kind of algebraic operators needed to evaluate the

query part or the view”.

 “The benefits of an IVM system increase with an increase

in database size. The number of module objects varies

uniformly across the databases. The effects of databases

size on the performance on an IVM system relative to its

counterparts”.

The performance of an IVM system can be evaluated by:

 The cost of query answering over the MV and compared

with its virtual counterpart.

 “The cost of incrementally maintaining the MV by update

propagation compared with re-materialization”.

 “The cost of incrementally maintain the MV in comparison

with the cost of answering a query over its virtual

counterpart”.

Experiments are carried out to testing the hypothesis. Each

experiment investigates the above three kinds of cost. These

experiments were run in cold state so that conduction one

experiments does not favor or discriminate another one due to

the object caching used by the underlying DBMS. Each

experiment was run three times and the average taken. The

elapsed time for answering a query or propagating an update

is measured in milliseconds.

6. FUTURE WORK

Currently VMOP does not support array and dictionary

collection types. Supporting these collections would complete

the entire ODMG OM. In order to support all update

operation defined on the ODMG OM it would require

extending the MOIE solution algorithms for deriving event

specifications , generating IMP and applying changes to MV

to support update operations specific to array and dictionary

collection types.

MV can potentially provide improvements in query

processing times and will be useful if query optimizers can

use MV transparently in order to answer queries. In order to

realize this in VMOP the OQL optimizer must know how and

when to exploit MV. The optimizer should be able to

determine whether part or all of a query can be computed

from MVs. The performance of VMOP does not result in a

generic policy for selecting views for materialization. This

may also be a research area so that system can identify and

choose views that are likely to be beneficial.

REFERENCES

[1] Ali M.A. and N.W.Paton, 2000, Incremental Maintenance

of Materialized OQL views, Proceedings of the 3rd

ACM international workshop on Data warehousing and

OLAP, Pages: 41-48.

[2] Urbano R., 2003, Oracle Database Advance Replication.

[3] Mumick I.S., D.Quass and B.S.Mumick,1997,

Maintenance of Data Cubes and Summary Tables in a

Warehouse.

[4] Rundensteiner E.A. and H.A.Kuno , 1996, Using Object-

Oriented Principles to Optimize Update Propagation to

Materialized Views, ICDE Proceedings of the Twelfth

International Conference on Data Engineering, IEEE

Computer Society, Pages: 310 – 317.

[5] Vista D., 1996, Optimizing Incremental View

Maintenance Expressions in Relational Databases.

[6] Bebel B. and R.Wrembel, 2001, Hierarchical

Materialization of Methods in Object-Oriented

Views: Design, Maintenance, and Experimental

Evaluation, Atlanta, Georgia, USA.

[7] Mistry H., P.Roy, S.Subsarshan and K.Ramamritham,

2001, Materialized View Selection and Maintenance

Using Multi-Query Optimization, SIGMOD

Conference, pp. 307–318.

[8] Encinas S., M.Trinidad, H.Montano and J.Antonio, 2007,

Algorithm for Selection of Materialized Views: Based

on Costs Model, Current Trends in Computer Science,

Eighth Mexican International Conference on Digital

Object Identifier, Issue 24-28, Pages: 18 – 24.

[9] Yang J., K.Karlapalem and Q.Li, 1997, Algorithms for

Materialized View Design in Data Warehousing

Environment, Issue 136-145.

[10] Rundensteiner E.A. and H.A.Kuno , 1996, Using

Object-Oriented Principles to Optimize Update

Propagation to Materialized Views, ICDE Proceedings

of the Twelfth International Conference on Data

Engineering, IEEE Computer Society, Pages: 310 –

317.

[11] Gupta A. and I.S.Mumick, 1999, Materialized Views

Techniques, Implementation and Applications.

[12] Roy P, S.Seshadri, S.Sudarshan and S.Bhobe,2000,

Efficient and Extensible Algorithms for Multi Query

Optimization, ACM.

[13] Goldstein J. and P.A.Larson, 2001,Optimizing Queries

Using Materialized Views: A Practical, Scalable

Solution, ACM SIGMOD.

[14] Lee Y.K., J.H.Son, and M.H.Kim, 2001,Efficient

Incremental View Maintenance In Data Warehouses

,Conference on Information and Knowledge

Management Proceedings of the tenth international

conference on Information and

knowledgemanagement,Pages:349-356.

[15] Palpanas T., R.Sidle, R.Cochrance and H.Pirahesh,

2002, Incremental Maintenance for Non-distributive

Aggregate Functions, Very Large Data Bases,

Proceedings of the 28th international conference on

Very Large Data Bases, Pages: 802 – 813.

[16] Ali M.A. and N.W.Paton, 2003, MOVIE: An

Incremental Maintenance System for Materialized

Object Views.

[17] Chirkova R. and C.Li, 2003, Materializing Views with

Minimal Size to Answer Queries, ACM.

[18] Paraboschi S. G.sindoni, E.Baralis and E.Teniente, 2003,

Materialized Views in Muiltidemensional Databases,

3456 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int. (Lahore), 28(4), 3443-3456,2016

July-August

Multidemensional Databases: Problems and

Solutions,Pages: 222-251.

[19] Lee Y.K., J.H.Son, and M.H.Kim, 2005, Optimizing the

Incremental Maintenance of Multiple Join, Views, Data

Warehousing, and OLAP, Proceedings of the 8th ACM

international workshop on Data warehousing and

OLAP, Pages: 107 - 113.

[20] Gupta H. and I.S.Mumick, 2006, Incremental

maintenance of aggregate and outerjoin expressions,

Information Systems Volume 31, Issue 6, Pages: 435 –

464.

[21] Dhote C. and M. S. Ali, 2007, Materialized View

Selection in Data Warehousing, International

Conference on Information Technology, IEEE

Computer Society Washington, DC, USA.

[22] Hung M.C., M.L.Hunang, D.L.Yang and N.L.Hsueh

,2007, Efficient Approaches for Materialized Views

Selection in a Data Warehouse, Information Sciences:

An International Journal, Volume 177, issue 6, Pages:

1333-1348

[23] Yin G., X.Yu and L.Lin , 2007, Strategy of Selecting

Materialized Views Based on Cache updating, IEEE,

International Conference on Integration Technology.

[24] Zhou J., 2007, Lazy Maintenance of Materialized Views.

[25] Mr. P. P. Karde, and Dr. V. M. Thakare,2010, Selection

Of Materialized View Using Query Optimization In

Database Management, International Journal of

Computer Science & Engineering Survey (IJCSES)

[26] Mr. P. P. Karde, Dr. V. M. Thakare,2010, Selection &

Maintenance of Materialized View and It’s Application

for Fast Query Processing, International Journal of

Computer Science & Engineering Survey (IJCSES)

[27] Prabagaran G., N. Venkatesan, 2013, Issues of

Materialized Views in Dataware housing for Efficient

Management of Information , 2nd National Conference

on Future Computing February 2013

[28] Anjana G., S. Sabharwal and R. Gupta, 2015, Model

Based Materialized View Evolution, Science Direct,

1273-1280.

[29] Colby L.S., 1996, Algorithms for Deferred View

Maintenance, ACM SIGMOD Record Volume 25, Issue

2, Pages: 469 – 480

