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ABSTRACT: The purpose of this paper is to study and derive a generalized formula of local truncation error and its 

corresponding principal error function for an iterative integrator to solve Cauchy type of problems. As a result, the iterative 

integrator is found to be second order accurate on the basis of having local truncation error of order  3hO  as confirmed by 

its comparison with Taylor’s series for a function of two variables. The same series has also produced related principal error 

function for the underlying integrator. The proposed iterative integrator can be used to attain second order accuracy in 

comparison with single-step Explicit Forward Euler’s Integrator to solve initial value problems associated to both scalar and 

vector-valued ordinary differential equations. Computation of local truncation errors is shown through both linear and 

nonlinear initial value problems.  
Keywords: Cauchy problems, local truncation error, principal error function. 

INTRODUCTION 
Ordinary differential equations are being extensively used in 

various fields of science, engineering, chemistry, business, 

biomedical and mathematical physics; for number of 

mathematical models involving such equations form the basis 

of unlimited application areas in these fields  31 . Most of 

these mathematical models specifically containing 

nonlinearities singularities, oscillations and stiffness; either 

do not have closed-form solutions or are substantially 

complicated to obtain in real time domain; for that reason, 

scholars try to compromise at approximate solutions with 

related analysis of errors  5,4 . 

Having great impact on many physical phenomena by such 

models causes interest among diverse scientific community to 

explore their solutions and as a result number of algorithms 

have been developed and the pace of devising better 

algorithms is on rise as shown in  96 . With arrival of 

every new algorithm; analysis of errors can never be 

neglected which is also a basic purpose of the present paper. 

Errors called local, global and round-off are needed to be 

comtemplated for an algorithm to be worthwhile and 

universally acceptable  10 . In addition to this, integrators 

having larger absolute stability regions have been found to 

produce better results than those with smaller such regions 

and accordingly the regions of a few two-step explicit 

methods are claimed to be expanded as described in  11 . 

Furthermore, extremely important for convergence of general 

linear methods are the standard order and stability analysis 

 12 .  

MATERIALS AND METHODS 
First-order ordinary differential equations with an initial 

condition are of the form: 

     1;, 00 yxyyxf
dx

dy
  

For the real-valued function y of the real variable x. In this 

study, we will mainly be concerned with the error analysis for 

an explicit linear single-step second order accurate iterative 

integrator as shown by  2  which was devised and tested 

upon both linear and nonlinear ordinary differential equations 

 6 . 
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    2  

The Taylor’s series expansion for a function of two variables 

as shown in  3  is employed to analyze local truncation error 

and associated principal error function for the integrative 

integrator given by  2 . 
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where a, b  and   Cyxf , . Furthermore, in order to 

confirm second order accuracy of the proposed method it is 

important that Taylor’s series expansion of both exact and 

proposed method must agree with each other up to the term 

containing 
2h . The series for exact result is expressed as: 
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    .2, 2 TSffffffffffyxf yyxyyyxyxxnn  As 
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stated in  1 , if exact result is assumed at previous integration 

steps then a local truncation error is defined to be the error 

caused by current single integration step. Mathematically, 
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where  1nxy  and 1ny  are the exact and approximate 

solutions of a differential equation at the current stage 

respectively and it has been assumed that no error occurs at 

previous integration step; nxx  . 

The derivation of required local truncation error of the 

proposed method using  3  goes as follow: 
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Let yx fffS  and yyxyxx fffffT 22  .  

Thus, 
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where all higher powers of h have been ignored. Thus, 
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Substituting all of this into (5) in which the term  1nxy  

constitutes the exact solution obtained by Taylor’s series 

expansion; we have 
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In this way, the required principal error function for the 

iterative integrator proposed in [1] is found to be: 
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RESULTS AND DISCUSSION 
This section carries out computation of local truncation error 

for all proposed integrator in case of both linear and nonlinear 

initial value problem. The first initial value problem chosen 

to be linear, goes as follows:  

  00;  yyx
dx

dy
 

On  1,0x  with the exact solution given by:

  1 xexy x .Third column of the table 1 has been 

computed using proposed method but every next integration 

step uses the exact value from previous integration step in 

accordance with definition of local truncation error which 

assumes no error is incurred at previous step. 

As a second example, a nonlinear problem is selected which 

is given below with its exact solution defied in the closed 

interval  1,0 : 

    5.00;1  yyy
dx

dy
 

where the exact solution is as follows:  
xe

xy



1

1
. In this 

example, it has also been observed from table 3 that 

whenever step size (h) is halved; ratio of absolute relative 

errors is approaching to a constant (4) which verifies the 

claim of second order accuracy of the proposed iterative 

integrator. 
Table 1 Percentile Relative Local Truncation Error for the 

linear case. 

x  exacty  proposedy
 latesty  Local 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

0.0050 

0.0211 

0.0493 

0.0910 

0.1476 

0.2206 

0.3118 

0.4231 

0.5566 

0.7146 

 

0 

0.0052 

0.0214 

0.0499 

0.0918 

0.1487 

0.2221 

0.3138 

0.4255 

0.5596 

0.7183 

0 

0.0050 

0.0213 

0.0497 

0.0917 

0.1485 

0.2219 

0.3135 

0.4253 

0.5592 

0.7179 

- 

3.3054 

0.4801 

0.3185 

0.1358 

0.1488 

0.0985 

0.0805 

0.0566 

0.0720 

0.0532 

 

Table 2 Percentile Relative Local Truncation Error for the 

nonlinear case. 

x  exacty  proposedy
 latesty  Local 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.5 

0.5250 

0.5498 

0.5744 

0.5987 

0.6225 

0.6457 

0.6682 

0.6900 

0.7109 

0.7311 

0.5 

0.5250 

0.5499 

0.5745 

0.5987 

0.6225 

0.6457 

0.6682 

0.6900 

0.7110 

0.7311 

0.5 

0.5250 

0.5499 

0.5744 

0.5986 

0.6225 

0.6457 

0.6682 

0.6900 

0.7100 

0.7310 

0 

-0.0040 

-0.0120 

-0.0074 

-0.0146 

-0.0065 

-0.0068 

-0.0018 

-0.0037 

-0.1336 

-0.0080 

Table 3 Second Order Accuracy . 
Step size Absolute Relative Error Ratios 

0.2 1.302923136046465e-04 --------------- 

0.1 2.520690258883109e-05 5.1689e+00 

0.05 5.381800699231935e-06 4.6837e+00 

0.025 1.2299624284058600e-06 4.3756e+00 

0.0125 2.930089350772398e-07 4.1977e+00 

0.0063 7.143874621179230e-08 4.10154e+00 

 
CONCLUSIONS AND FUTURE WORK 
The present paper offers discussion upon derivation of local 

truncation error and its corresponding principal error function 

associated with a proposed iterative integrator. This 

truncation error is claimed to have achieved second order 

accuracy for the integrator, that is; each time the step size h  

is halved, the truncation error is reduced by a factor of 4. In 

order to serve this purpose, Taylor’s series expansion for a 

function of two variables has been employed that agrees with 

proposed method up to the term involving
2h . Both linear 

and nonlinear models are solved with the proposed integrator 

for the computations of local errors as shown by tables 

thereof approximate result are also in compliance with exact 

results to certain amount of digits. In the time to come for the 

proposed iterative integrator, investigation for the decay of 

global truncation error will be carried out and possible error 

bounds would be constructed which are considered to be the 

essence of an algorithm to have been accepted. Apart from 

this, its consistency and stability analysis will also be major 

theme of the future research work.  
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