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ABSTRACT: The focus of this research is to calculate element equations; assemble them to form global equations, 

incorporate essential boundary conditions into the system and obtain the final reduced system of equations in terms of the 

unknowns, solve it for nodal values, compute reactions and verify overall equilibrium and also determine axial strains, axial 

stresses, and axial forces in different elements of the truss by using finite element Analysis. We use five bar plane trusses. Also 

five bar truss problem with an inclined support with multipoint constraint due to inclined support, Lagrange multiplier used 

with global equations and Truss Supporting a Rigid Plate to use the penalty function approach and we choose the penalty 

parameter equal to l0
5
. The results of the trusses problems were obtained by using MATLAB which demonstrate the 

effectiveness, applicability of results. 
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INTRODUCTION 
Application of physical principles, such as mass balance, 

energy conservation, and equilibrium, naturally leads many 

engineering analysis situations into differential equations. 

Methods have been developed for obtaining exact solutions 

for various classes of differential equations. However, these 

methods do not apply to many practical problems because 

either their governing differential equations do not fall into 

these classes or they involve complex geometries. Finding 

analytical solutions that also satisfy boundary conditions 

specified over arbitrary two- and three-dimensional regions 

becomes a very difficult task. Numerical methods are 

therefore widely used for solution of practical problems in all 

branches of engineering [3]. 

The finite element method is one of the numerical methods 

for obtaining approximate solution of ordinary and partial 

differential equations. It is especially powerful when dealing 

with boundary conditions defined over complex geometries 

that are common in practical applications. Other numerical 

methods such as finite difference and boundary element 

methods [1, 4] may be competitive or even superior to the 

finite element method for certain classes of problems. 

However, because of its versatility in handling arbitrary 

domains and availability of sophisticated commercial finite 

element software, over the last few decades, the finite 

element method has become the preferred method for 

solution of many practical problems [2, 7].  

Many structural systems used in practice consist of long 

slender members of various shapes. Common examples are 

roof trusses, bridge supports, crane booms, and antenna 

towers. Structural systems that are arranged so that each 

member primarily resists axial forces only are usually known 

as trusses. Long slender members that are subjected to 

loading normal to their longitudinal axis must resist bending 

and shear forces and are called beams. A structural frame 

consists of members that must resist both bending and axial 

forces. A truss is a structure in which members are arranged 

in such a way that they are subjected to axial loads only. The 

joints in trusses are considered pinned. Plane trusses where 

all members are assumed to be in the xy-plane are considered 

[5-7]. 

MATERIAL AND METHODS  
A plane truss element is an axial deformation element 

oriented arbitrarily in a two dimensional space.  

 
Figure 1. Local and global coordinates for an axially loaded bar 

In a local coordinates that runs along its axis (0 ≤ s ≤ L), the 

element is exactly the same as the two-node axial 

deformation element developed. Thus in terms of s the 

assumed displacement over the element is 
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and the element equations in the local coordinate system are 
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Where,      E= Elastic modulus of the material 

                  A= Area of cross section of the element  

                   L= Length of the element 

1d  and 2d  are the displacements along the axis of the 

element and 1p  and 2p  are possible axial loads applied at 

the bar ends. To assemble element equations, we must refer 

all elements to one common reference coordinate system. 

Thus we define a global x-y coordinate system and locate all 

elements with respect to this system. The components of the 

axial displacements in the global coordinate system are the x 

displacements denoted by u and y displacements denoted by 

v. Each node thus has two degrees of freedom in the global 
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coordinate system [9, 11]. The possible applied loads at the 

element ends are also decomposed into their x and y 

components. Thus in the global coordinates we have  

Nodal degrees of freedoms: 
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where sl  is the cosine of the angle between the element s 

axis and the global x-axis and sm  is the cosine of the angle 

between the element s axis and the global y-axis.  
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Transformation from global to local degrees of freedom 
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The same relationship holds for the degrees of freedom at 

other nodes. Thus the transformation between the global and 

the local degrees of freedom can be written as follows: 

Global to local:   
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Local to global:                   
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Using this transformation, the element equations in the local 

coordinates can be connected to the global coordinate system 

as follows: 
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Multiplying both sides by 

TT ,we get 

                         l

T

l

T rTTdkT                 rkd  , 

where  TKTk l

T    and     l

T rTr 
 

Carrying out matrix multiplication, we get the following 

element equations 
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Add the concentrated loads directly to the global equations at 

the start of the assembly. 

Thus in the element equations the right hand side, load vector 

is taken as all zeros 
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 The assembly and solution procedures have been 

discussed in five-bar truss problem. After computing nodal 

displacements for each element, the element solution is 

computed by first transforming the nodal displacements back 

to the local coordinates [10-12] as follows: 

Axial displacement: 
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The axial displacement at any point along the element is 

calculated as: 
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The axial strain is simply the first derivative of the axial 

displacement, giving constant strain over the element as 

follows: 
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The axial stress is  E  and axial force in the element is 

AF  .

 

The sign convention used in these equations 

assumes that the tension is positive and the compression is 

negative. 

 

NUMERICAL ILLUSTRATIONS 
FIVE BAR TRUSS PROBLEM 
Construct element equations; assemble them to form global 

equations for the five bar plane truss [8, 15] shown in figure 

2. Incorporate essential boundary conditions into the system 

and obtain the final reduced system of equations in terms of 

the unknowns. Solve for nodal values. Compute reactions and 

verify overall equilibrium. Determine axial strains, axial 

stresses, and axial forces in different elements of the truss. 

The area of cross section for elements 1 and 2 is 40
2cm , for 

elements 3 and 4 is 30 
2cm  and for element 5 is 20

2cm . 

The first four elements are made of a material with E=200 

GPa and the last one with E=70 GPa. The applied load 

P=150 kN. 
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Figure 2. Five-bar plane truss 

Each node in the model has two- displacement degrees of 

freedom. They are identified by the letters u and v with a 

subscript indicating the corresponding node number and are 

shown in Figure 3. without considering the specified zero 

displacements at the supports, the model has a total of eight 

degrees of freedom. Thus the global equations will be a 

system of eight equations in eight unknowns. 

 
Figure 3. Five-bar plane truss finite element model 

The load at node 2 is (0, -150 kN).  
Table 1. Specific nodal loads: 

Node Degrees Of Freedom Value 

2 
2u  0 

2v  -150000 

The global equations at the start of the element gathering 

process are    
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The equations for element 1 are as follows 

E=200000 MPa 

A=4000 mm 

Table 2. 1Equations for element 

Element Node Global Node number x y 

1 1 0 0 

2 2 1500 3500 

Length of the element: L  =  3807.89 

Direction Cosines: 393919.0
s

l  , 919144.0
s

m   

Element Equations: Substituting into the truss element 

equations, we get 
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freedom, 

Its global vector:   
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These values are plane truss stiffness matrix 
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Global Equations: We proceed above steps till to find the 

global equations. 
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Boundary Conditions: Nodes 1 and 4 of the truss have pin 

supports.  
Table 3. The essential boundary conditions are 

Node 
Degrees Of 

Freedom 
Value 

1 
1u

 

1v  

0 

0 

4 
4u

 

4v
 

0 

0 
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After deleting equations (1, 2, 7, 8), we have 
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Since all entries in columns (1,2,7, 8) are multiplied by zero 

nodal values, they can be removed. The final global system of 

equations is thus as follows: 
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Nodal Values: Solving the final system of global equations, 

we get the following nodal values: 

u2 = 0.538954, v2 = -0.953061, u3 = 0.264704, v3 = -0.264704 
Table 4. Complete Nodal Values 

 u v 

1 0 0 

2 0.538954 -0.953061 

3 0.264704 -0.264704 

4 0 0 

Computation of Reactions: Equation numbers of degree of 

freedom with specified values: (1,2,7, 8) Extracting equations 

(1,2,7, 8) from the global system, Substituting the nodal 

values and rearranging we have 
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Table 5. Reactions 

Lebel Degree of Freedom Reaction 

R1 u1 54926.7 

R2 v1 159927 

R3 u4 -54926.7 

R4 v4 -9926.67 

Sum of reactions: 

dof:   u   0 

dof:   v   150000. 

There is no applied load in the x direction. Since the sum 

of reactions in the horizontal direction is zero, the equilibrium 

is satisfied in this direction. There is an applied load of 

150000 in the -y direction which balances with the sum of 

reactions in the y direction, indicating that equilibrium is 

satisfied in this direction as well. Hence the solution satisfies 

the overall equilibrium. 

The displacements are in inches, loads in pounds, and stresses 

in pounds per inch squared. 

The solution for element 1 is as follows: 

Element nodal coordinates:  

First node (node #1): (0,0);  

Second node (node #2): (1500.,3500.)  

x1 =0; y1 =0; x2 =1500.; y2 =3500. 

Length of the element: L  =  3807.89; 

 Direction Cosines: 0.393919
s

l  , 

0.919145
s

m  

Global to local transformation matrix 











919145.0393919.000

00919145.0393919.0
T

 

Element nodal displacements in global coordinates, 







































953061.0

538954.0

0

0

2

2

1

1

v

u

v

u

d

 

Element nodal displacements in local coordinates,  

dl =Td=









 663697.0

0  

Axial displacements at element ends, d1=0 , d2= -0.663697 

Axial strain =  -0.000174'295  

Axial stress =  -34.8591;  

Axial force =  -139436 

For any other element the calculations follow exactly the 

same pattern. 
Table 6. Solution summary of five bar truss problem 

 Stress Axial force 

1 -34.8591 -139436 

2 -6.29994 -25199.8 

3 -10.5881 -31764.4 

4 -10.5881 -31764.4 

5 22.4608 44921.7 

FIVE BAR TRUSS PROBLEM WITH AN INCLINED 

SUPPORT 

Figure 4. Graph of five bar trusses for stress and axial force 

Consider the five-bar pin-jointed structure shown in 4. All 

members have the same cross-sectional area and are of the 

same material, E =70 GPa, and A =10
-3

 m
2
. The load P =20 

kN. The dimensions in meters are shown in the figure.  

Figure 5. Five bar truss problem with an inclined support 
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Determine axial strains, axial stresses, and axial forces in 

different elements of the truss. The global system of 

equations is as follows 


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4
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1
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u

v
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v
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v
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The multipoint constraint due to inclined support at node 1 is   

u1 sin(π/6) + v1 cos(π/6) = 0. 

The augmented global equations with the Lagrange multiplier 

are as follows: 
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Solving the final system of global equations, we get 

u1 = 5.14286, v1 = -2.96923, u3 =16.8629, v3 =12.788, u4 =-

1.42857, v4 =11.7594, λ =80000. 

Ina similar manner, we can compute the solutions over the 

remaining elements: 
Table 7. Solution summary of five bar truss problem with an 

inclined support [14] 

 Stress Axial force 

1 23.3238 23323.8 

2 23.3238 23323.8 

3 69.282 69282 

4 -20 -20000 

5 -12 -12000 

 
Figure 6. Graph of five bar truss problem with an inclined 

support for stress and axial force 

TRUSS SUPPORTING A RIGID PLATE  
A plane truss is designed to support a rigid triangular plate 

[13] as shown in Figure 6. All members have the same cross-

sectional area A = 1 in2 and are of the same material, E = 

29,000 ksi. The load P = 20 kips. The dimensions in ft are 

shown in the figure. Note there is no connection between the 

diagonal Determine axial strains, axial stresses, and axial 

forces in different elements of the truss members where they 

cross each other.  

 
Figure 7. Truss supporting a rigid triangular plate 
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To use the penalty function approach [16], we choose the 

penalty parameter μ equal to l0
5
 times the largest number in 

the global K matrix, incorporating the constraints into the 

global equations with this value of μ.  
Table 8. Solution summary of truss supporting a rigid 

triangular plate 

 Strain Stress / Axial Force 

1 0.000318525 9.23722 

2 -0.000463913 -13.4535 

3 0.000594098 17.2289 

4 0.000398156 11.5465 

5 -0.00050989 -14.7868 

6 8.52877 x 10
-9

 0.000247334 

 
Figure 8. Graph of truss supporting a rigid triangular plate for 

strain and axial force 

CONCLUSION 
The Lagrange multiplier method of imposing constraints has 

two drawbacks. First, it requires adding new rows and 

columns to the global system of equations that for large 

systems may be inefficient. Second, the resulting system has 

zeros on the diagonal corresponding to the constraint 

equations. Some simple equation solvers that assume nonzero 
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diagonal terms may not work for this system. Another 

standard technique of imposing constraints, the so-called 

penalty function approach, does not have these two 

drawbacks. The performance of the method depends on the 

value chosen for the penalty parameter μ. Large values, say 

of the order of μ = 10
10

, give accurate solutions;  General rule 

of thumb is to set μ equal to 10
5
 times the largest number in 

the global K matrix. The technique of penalty function 

approach in finite element analysis is batter then Lagrange 

multiplier method.  We used five bar plane trusses, five bar 

truss problem with an inclined and Truss Supporting a rigid 

plate, by using the finite element method we calculated 

element equations, global equations, incorporate essential 

boundary conditions into the system and obtain the final 

reduced system of equations in terms of the unknowns, 

calculated nodal values, compute reactions and verify overall 

equilibrium and also determine axial strains, axial stresses, 

and axial forces in different elements of the truss.  
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