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ABSTRACT: Modeling and simulation of complex flow fields over the space vehicle is not only difficult but also time 
consuming task. Analytical solutions are not possible while numerical solution contains approximation error. Currently 
methods for precise and efficient prediction of vehicle response due to aerodynamic loading are greatly under investigation.      
Work is in progress to reduce computational requirements, speed up simulations and minimize numerical errors.  
Explicit schemes require low computational resources but larger computational time by limiting time step to a certain limit 
dictated by stability criteria. Combination of explicit large time step scheme with artificial compression method has not been 
vastly explored to obtain precise and efficient numerical results. In present work Qian’s modified form of Harten’s large time 
step scheme with artificial compression method is used to solve Lax shock tube problem. Large time stepping is used to 
minimize simulation time while artificial compression method is applied to optimize accuracy. Results are very promising 
and depict the importance of large time stepping and artificial compression method.    
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NOMENCLATURE 

A inviscid flux jacobion matrix 

Cl (x) coefficient functions 

D fractional constant in ACM switch  

E total energy 

F physical flux 

K CFL restriction parameter 

P ACM parameter 

R eigen vector matrix 

R-1 inverse eigen vector matrix 

U conservative variable vector 

a characteristic speed 

c speed of sound 

f numerical flux 

  flux correction 

ğ limiter function 

i grid pointer 

  ACM parameter 

k characteristic  direction 

m number of eigen values 

n number of time steps taken   

p pressure 

t time 

 t time step 

u velocity in x-direction 

v local CFL number 

x axial distance  

 x grid spacing 

α characteristic variable 

  numerical characteristic speed  

ε  entropy fix parameter  

Φ numerical dissipation term  

γ ratio of specific heat 

λ mesh ratio  

µ CFL parameter 

ρ density 

σ  limiter function parameter 

ψ entropy correction function 

θ ACM switch 
 

INTRODUCTION 
Flow field over the space vehicle contain complex flow 
features. When the space vehicle is launched from earth to 
space, it takes long time to reach their destination. 
Particularly missions for outside earth orbit take time in 
months to achieve final goal. Computation of such complex 
flow physics is very costly and is a challenging task. In the 
field of computational fluid dynamics, Navier-Stocks 
equation is a smart tool to predict aerodynamics and 
aero-thermodynamics behavior of space vehicle. 
Navier-Stocks equation is consisting highly coupled, 
nonlinear, three dimensional, transient equations [1].  
Numerically these equations can be solved in two ways, 
namely, implicit or explicit formulation [2] [3]. Implicit 
formulations are robust and lack due to unnecessary 
hardware and memory requirements for simulation of such 
large system of discrete equations. Explicit formulation 
overcomes this issue but deficit due to limitation in time step. 
Stability criterion for explicit formulations limits time step 

size which ultimately fallout long computer running times 
and thus increases computational cost [4-6]. Harten in 1986 
presented a second order accurate (2K+3) point Total 
Variation Diminishing (TVD) scheme with explicit 
formulation for the computation of weak solutions of 
hyperbolic conservation laws under a CFL restriction of K 
[7-9]. Computations for nonlinear wave equation through 
Harten’s large time steps scheme are free of oscillation [10] 
[11]. However, computation of highly coupled nonlinear 
system of equations through Harten’s large time steps 
scheme exhibit spurious oscillation in the vicinity of 
discontinuities [12-15]. 
Later on Zhan Sen Qian [16] [17] pointed out that this 
spurious oscillation is due to the improper extension of scalar 
schemes to coupled system of equations. He suggested that 
inverse characteristic transformations should be carried out 
through the local right eigen vector matrix at each cell 
interface location. His proposed modifications ultimately 
provide oscillation free results.  
Combination of explicit large time step scheme with 

mailto:ihtram2010@hotmail.com


3374 ISSN 1013-5316; CODEN: SINTE Sci.Int.(Lahore),28(4),3373-3378,2016 

July-August 

artificial compression method has not been vastly explored 
up till now. Behavior of LTS scheme with ACM for shock 
tube problem using LAX boundary condition is yet to be 
reported in the literature and still is a hidden corner. Lax 
boundary condition for shock tube problem is relatively 
more complex as compared to Sod shock tube problem [18] 
[19]. Combination of Qian’s modified form of Harten’s 
large time step scheme with artificial compression method 
is used to compute Lax shock tube problem. Large time 
stepping is used to fulfill the requirement of shorter 
simulation time while artificial compression method is used 
to reduce numerical errors.  

NUMERICAL METHOD 

1D Euler equation in conservation form is given below: 
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where m = 3, 4, 5 for one-, two- and three-dimensional 
problem respectively, and  
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Table 1 shows the formulas of coefficient functions Cl (x) for 
different values of K.  
 
 
 
 
 
 
 
 
The artificial compression method (ACM) proposed by 
Harten [11] is used to control the amount of nonlinear 
dissipation introduced during discretization process. This 
method efficiently reduces false diffusion and produce high 
resolution results. The modification is done in equation (4)  
by replacing the term Φ
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Table-01: Cl (x) at different K. 

K C1 C2 C3 

2 x2   

3 x2(3 − x) x3  

4 x2(6 − 4x  x2) 2x3(2 − x) x4 
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ACM which reduces dissipation. The parameter   is 
problem dependent having range   <  ≤  1.  The values 
of     used in present studies are 0.9, 0.92, 0.93 & 0.95 for 
K=1, 2, 3 & 4 respectively. Value of ‘P’ is taken as 0.1 
The numerical flux formula for modified large time step total 
variation diminishing (MLTS TVD) scheme with artificial 
compression method (ACM) is given by: 
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Detailed description of TVD scheme, large time step scheme, 
and artificial compression method can be found in [11-17]. 

TEST CASE DESCRIPTION 
Shock tube is one of the few 1D problem for which analytical 
solution is possible and hence it is often used as a test case 
for verification and validation purpose. LAX boundary 
conditions (Table 2) for 1D shock tube problem are used in 
present computation. Time integration is carried out until 
physical time 0.15 sec is reached. Here minmod limiter is 
used and entropy fix parameter value is taken as 0.1. The size 
of computational domain is   ≤  𝑥 ≤ 1  and number of 
grids are 1000. Initial discontinuity is centered at 𝑥  𝑥𝑜 and 
𝑡    subject to the conditions: 

𝑈(𝑥, 𝑡)  {
𝑈𝐿 , 𝑥 < 𝑥𝑜
𝑈𝑅 , 𝑥 ≥ 𝑥𝑜

       where;     xo=0.5 

 

 

 

RESULT AND DISCUSSION 

1D shock tube problem for LAX boundary conditions are 
solved to investigate the behavior of large time step TVD 
scheme in combination with artificial compression method 
(ACM).  Expansion, contact and shock regions are mainly 
focused to examine the effectiveness of modified 
formulation. CFL values are taken as 0.9, 1.8, 2.8, and 3.8 for 
K  1, 2, 3 and 4, respectively. Higher value of CFL means 
larger time step size and hence minimum number of time 
steps are required to perform desired simulation. Computed 
results are not only compared with analytical results but also 
with numerical results obtained from large time step scheme 

without artificial compression method (ACM). Simulations 
are carried out on Intel(R) Core(TM) 2 CPU @ 2.13 GHz, 2 
GB RAM. In all figures, SW=0 means that ACM switch is 
not applied while SW=1 is vice versa of it. 
The 1D shock tube problem with the LAX boundary 
condition is a relatively complex problem to compute 
because its Left end face has non zero initial velocity. 
Computed results of large time step scheme with and without 
artificial compression method are compared with analytical 
results from Figure 1 to Figure 4.  
Figure 1 shows comparison of results near start of expansion 
region. Results depict that Artificial Compression Method 
(ACM) successfully minimize false diffusion in this region 
without dispersion and stability issues. Results at the end of 
expansion region are shown in Figure 2. Results show same 
behavior as at the start of expansion region. Large time step 
scheme combined with artificial compression method 
produce less diffusive results with shorter simulation time 
around expansion region for this case. Complete expansion 
process is better captured using proposed methodology. 
Results near contact discontinuity and shock region are 
shown in Figure 3 and Figure 4. Results at both regions have 
been improved by using artificial compression method. 1D 
shock tube problem with LAX boundary condition is 
predicted well using combination of large time step scheme 
and artificial compression method. Slight oscillation at the 
end of expansion and near shock is overwhelmed by the 
significant reduction in numerical dissipation.  
Overall results for 1D shock tube problem with LAX 
boundary condition are satisfactory and show the benefit of 
proposed methodology.  

CONCLUSION 
Robust and precise computation of hyperbolic conservation 
laws is a challenging task. Present work demonstrates a 
methodology based upon the combination of large time step 
scheme and artificial compression method to compute 
hyperbolic conservation laws with improved accuracy and 
shorter simulation time. This methodology is not only 
helpful for researchers to get precise results within short 
period of time but also provide researcher a better 
opportunity to try more possibilities during the prescribed 
time frame. 
Although present studies are focused only on 1D shock tube 
problem with LAX boundary condition however in future 
this work should be extended to multi-dimensional flows. 
Further studies are also required to find optimal values of 
artificial compression method parameters. 
 
 
  

Table-02:  LAX Boundary condition 

pR ρR uR pL ρL uL 

0.571 0.5 0.0 3.528 0.445 0.698 
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Fig. 1. : Switch vs. without switch, near start of expansion 

region 

 

 

 

 

Fig. 2. Switch vs. without switch, near end of expansion 

region 
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Fig. 4. Switch vs. without switch, near shock region 

 

 

 

 

Fig. 3. Switch vs. without switch, near contact region 
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