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ABSTRACT. Let G=(V; E) be a simple connected graph with the vertices and edges sets V=V(G) and E=E(G), respectively. In 

such a simple molecular graph, vertices represent atoms and edges represent bonds. In graph theory, we have many invariant 

polynomials and topological indices for a graph. The M-polynomial of G was introduced by S. Klavzar and E. Deutsch as 

M(G,x,y)=   i

i

i

j

j

im G x y
   

 , where mij(G) be the be the number of edges e=uv of G such that {du,dv}={i,j} and du,dv are 

the degree of vertices u,v∊V(G) (Obviously 1≤δ≤dv≤Δ≤|V(G)|-1, such that { | V (G)}vMin d v    and { | V (G)}vMax d v   ). 

In this paper, we focus on the structure of some families of Benzenoid molecular graphs as "Circumcoronene series of 

Benzenoid Hk, Capra-designed planar Benzenoid series Cak(C6) (∀ k≥1)" and compute their M-polynomials. 
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INTRODUCTION 
Let G=(V,E) be a molecular graph with the vertex set 

V=V(G) and the edge set E=E(G). |V(G)|=n, |E(G)|=e are 

the number of vertices and edges. A molecular graph is a 

simple finite graph such that its vertices correspond to the 

atoms and the edges to the chemical bonds. A general 

reference for the notation in graph theory is [1].  

Numerous graph polynomials were introduced in the 

literature, several of them turned out to be applicable in 

mathematical chemistry. Graph polynomials are invariants of 

graphs (i.e. functions of graphs that are invariant with respect 

to graph isomorphism); they are usually polynomials in one 

or two variables with integer coefficients. Graph polynomials 

can be interpreted as ordinary generating functions for the 

coefficient sequences which count in most cases certain 

subgraphs.  

For instance, the Hosoya polynomial [2], see also [3-5], is 

the key polynomial in the area of distance-based topological 

indices. In particular, the Wiener index can be computed as 

the first derivative of the Hosoya polynomial, evaluated at 1. 

Important examples of graph polynomials are the domination 

Polynomial, chromatic polynomial, independence 

polynomial, matching polynomial, Tutte polynomial, 

reliability polynomial, characteristic polynomial, subgraph 

polynomial, clique polynomial, forest polynomial, 

Padmakar-Ivan polynomial, Omega polynomial. For 

definition of these polynomials see [6-14]. 

Recently in 2015 [15], S. Klavzar and E. Deutsch introduce a 

degree-based invariants polynomial called the M-polynomial, 

and they show that its role for degree-based invariants is 

parallel to the role of the Hosoya polynomial for distance-

based invariants. 

The distance d(u,v) between the vertices u and v of the graph 

G is equal to the length of (number of edges in) the shortest 

path that connects u and v. An edge e=uv of graph G is 

joined between two vertices u and v (d(u,v)=1). 

The Hosoya polynomial was introduced by H. Hosoya in 

1989 [16] and define as follow: 
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The Wiener index W(G) [17] is the oldest topological indices 

(based structure descriptors) that introduced by H. Wiener in 

1947, which have very chemical applications, mathematical 

properties and defined as follow [18-22]: 
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where du and dv are the degrees of the vertices u and v of a 

graph G, respectively.  

Definition 1. [23] Let G be a simple connected molecular 

graph and dv (1≤dv≤n-1) be the degrees of vertices/atom v in 

G. We divide the vertex set V(G) and edge set E(G) of G into 

several partitions as follows ( i,j and k: δ≤ i,j,k≤Δ): 

V{k}={vV(G)| dv=k} 

E{i,j}={e=uvE(G)|du=j & dv=i} 

where δ and Δ are the minimum and maximum of dv for all 

vV(G) and { | V (G)}vMin d v    and { | V (G)}vMax d v   , 

respectively. 

Now, let G=(V,E) is a graph and let mij(G) be the number of 

edges e=uv of G such that {dv(G),du(G)}={i, j}, then the M-

polynomial of G define as follow: 

M(G,x,y)=   i

i

i

j

j

im G x y
   

  

where du,dv (1≤δ≤du,dv≤Δ≤|V(G)|-1) are the degree of 

vertices u,v∊V(G). By Definition 1, one can see that 

mij(G)=E{i,j}. 

In this paper, we focus on the structure of some famiies of 

Benzenoid molecular graphs as "Circumcoronene Series of 

Benzenoid Hk, Capra-designed planar Benzenoid series 

Cak(C6) (∀k≥1)" and compute the M-polynomials of these 

molecular graphs in following sections. 

THE M-POLYNOMIAL OF CIRCUMCORONENE 

SERIES OF BENZENOID Hk 

In this section, we compute the M-polynomial of a family of 

Benzenoid molecules, which called Circumcoronene Series 

of Benzenoid Hk. The Circumcoronene series of Benzenoid is 

family of molecular graph, which consist several copy of 

benzene C6 on circumference. The first terms of this series 

are H1=benzene, H2=coronene, H3=Circumcoronene, see 

Figure 1, where they are shown. The general representation 

of Circumcoronene series of Benzenoid is shown in Figure 2. 

For more study of these molecular graphs see the paper series 

[24-43]. 
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Figure 1. The first three graphs H1, H2 and H3 of Circumcoronene 

Series of Benzenoid Hk. 

Theorem 1. Let Hk be the Circumcoronene series of 

Benzenoid. Then, the M-polynomial of Hk is equal to: 

M(Hk,x,y)= 6x
2
y

2
+12(k-1)x

2
y

3
+(9k

2
-15k+6)x

3
y

3
. 

Proof of Theorem 1. Let Hk (k≥1) be the Circumcoronene 

series of Benzenoid. Such that from Figure 2 and [39-43], we 

see that this Benzenoid graph has 6k
2
 vertices and 

3 6k(k-1)+2 6k

2

  =9k2-3k edges. From the structure of Hk, one 

can see that there are two partitions V{3}={vV(Hk)| dv=3} 

and V{2}={vV(Hk)| dv=2} for the vertexs set V(Hk), with size 

6k(k-1) and 6k, respectively. By Definetion 1 and [39-43], we 

see that the edge set of Hk can be dividing to three partitions 

as: 

E{2,2}={e=uvE(Hk)| du=dv=2} → |E{2,2}|=6 

E{2,3}={e=uvE(Hk)| du=3 &dv=2} → |E{2,3}|=12(k-1) 

E{3,3}={e=uvE(Hk)| du=dv=3} → |E{3,3}|=9k
2
-15k+6 

 
Figure 2. The Circumcoronene series of Benzenoid Hk (k≥1) 

with edges marking. 

In Figure 2, we mark the members of E{2,2} by red color, the 

members of E{2,3}by green color and the members of E{3,3} by 

black color and the size of E{2,2}, E{2,3} and E{3,3} are equle to 

6, 12(k-1) and 9k
2
-15k+6, respectively. Thus, the M-

polynomial of the Circumcoronene series of Benzenoid Hk is 

equal to: 

M(Hk,x,y)= 

i j

 mij(Hk)x
i
y
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THE M-POLYNOMIAL OF CAPRA-ESIGNED 

PLANAR BENZENOIDS 

In this section we compute a closed formula of the M-

polynomial of Capra-designed planar Benzenoids. In 

chemistry, physics and nanoscience, there are especially 

symmetric structures. Such molecular graphs are Capra-

designed planar Benzenoids. Capra Ca map operation is a 

method of drawing and modifying the covering of a 

polyhedral structure, introduced by M.V.Diudea [44, 45] (see 

Figure 3) and used in many papers. In Refs [46-58] some 

connectivity topological indices of Capra-designed planar 

Benzenoids are computed. The some first members Ca0(C6), 

Ca(C6), Ca2(C6) and Ca3(C6) of the Capra of planar 

Benzenoid series are shown in Figure 4 and 5. 

 
Figure 3. An example of Capra map operation on the hexagon 

(benzene) face. 

Theorem 2. Let Cak(C6) be the Capra-designed planar 

Benzenoids. Then, the M-polynomial of Cak(C6) is equal to: 

M(Cak(C6),x,y)=(3
k
+3)x

2
y

2
+4(3

k
)x

2
y

3
+3(7

k
-2(3

k-1
)-1)x

3
y

3
. 

Proof of Theorem 2. Consider the molecular graph “Capra-

designed planar Benzenoids Cak(C6)”, where k≥1 is steps of 

growth in this type of drawing (Figures 4 and 5). From the 

structure Cak(C6), we see that the number of vertices/atoms 

in this Benzenoid molecular graphs is equal to 

|V(Cak(C6))|=2×7
k
+3

k+1
+1. 

By according to Figures 2 and [46-58], we see that the size of 

two vertex/atom partitions V{2} and V{3} are equal to 

|V{2}|=3
k+1

+3 and |V{3}|=2(7
k
-1) and alternatively the number 

of edges/bonds in this Benzenoid system is equal to  

|E(Cak(C6))| =
    13 32 2

2

7 13k k  
=3(7

k
+3

k
). 
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Figure 4. The some first members Ca0(C6), Ca(C6) and Ca2(C6) 

from the Capra-designed operation of planar Benzenoid series. 

 

By according to Figure 4 and 5 and [46-58], one can see that 

the edge set of Cak(C6) have three edge partitions as: 

E{2,2}={uvE(Cak(C6))| du=dv=2} → |E{2,2}|=3
k
+3, 

E{2,3}={uvE(Cak(C6))| du=3 &dv=2} → |E{2,3}|=2|V{2}|-

2|E{2,2}|=4(3
k
), 

E{3,3}={uvE(Cak(C6))| du=dv=3} → |E{3,3}|=3(7
k
-2(3

k-1
)-1). 

Therefore, we have following computations for the M-

polynomial of Capra-designed planar Benzenoids Cak(C6) as 

follows: 
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Figure 5.The third member Ca3(C6) Capra-designed operation 

of planar Benzenoid series. 
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