
Sci.Int.(Lahore),32(4),355-359,,2020 ISSN 1013-5316; CODEN: SINTE 8 355

July-August

THE IMPLEMENTATION OF THE NEW PROTOCOL FOR HIGH SPEED
INTERNET ROUTERS/SWITCHES - ROACM

Abdullah Ali Bahattab
Computer Technology Department, College of Telecom. and Electronics, Jeddah, Saudi Arabia

abahattab@gmail.com

ABSTRACT: In this paper, we focus in implementing the Route once and cross-connect many (ROACM) new protocol as a

software based on Data Plane Development Kit (DPDK) application. We used the C programming language for coding. In the

previous study, the network simulation was used to conduct the comparison between the TCP/IP and the ROACM. The

ROACM protocol was considered from the source workstation to the destination workstation. This would enforce all users to

update their web browser with ROACM. So, in this paper, we make the implementation of the ROACM starts from source edge

router to destination edge router. The operating system for ROACM was built by using the open source network routing suite

“Quagga” and the “DPDK”. The results show that the ROACM outperforms the TCP/IP protocol.

KEYWORDS: ROACM, high speed network, Forwarding Packet, Cross-connect, IP addresses, Routing

. 1 INTRODUCTION

 ROACM is a new novel protocol [1,2], which does route

once and cross connect many by creating dynamic virtual

circuits for each connection/session. In [3], the research that

we did was based on the comparison between the TCP/IP and

ROACM protocols using the network simulation tool (NS3)

to study diff erent aspects of performance analysis. They are

the average delay, and throughput. In [3] two network

simulation scenarios were created. One is for the TCP/IP

while the other is for the ROACM. Each scenario consists of

a source and a destination workstation, and between them are

twenty routers, see Figure. 1. In this paper, we decided to

make the protocol starts the session from a source edge router

to a destination edge router instead of the source and

destination workstations. This would make the protocol

transparent to the users as in MPLS, ATM, and Tag switching

[4,5,6,7,8,10,15,16.17], see Figure 2. Thus, in this paper, the

implementation will be based in this concept.

Figure 1. A network with twenty hopes from source to destination

work stations.

Figure 2. A network using ROACM edge to edge routers.

2 SYSTEM OVERVIEW

The proposed solution implements ROACM protocol as a

software based on Data Plane Development Kit (DPDK)

application, see Figure 3. It handles the ROACM protocol,

synchronizes with kernel routing table, and forwards the

packets either through the routing table look up at the call set

up stage or ROACM specific local routing interface table

lookup at the data transmission stage. DPDK is a set of data

plane libraries and network interface controller drivers for

fast packet processing. DPDK provides a programming

framework for x86, ARM, and PowerPC processors and

enables faster development of high speed data packet

networking applications. The ROACM solution can run in

both host and virtualized environment (VM), see Figure 4.

The overall system consists of a) Quagga and b) ROCAM

Application.

2.1 QUAQQA.

Quagga is used in this solution to provide control plane

support for routing. It is an open source software-based

package which provides TCP/IP based routing services with

different routing protocols like OSPF, BGP, RIP, RIPng etc.

for Unix-liked platform (Linux, Solaris, FreeBSD, and

NetBSD). It uses an advanced software architecture which

offers a high quality, multi-server routing engine.

Figure 3. System Overview for Physical Environment.

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC

356 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(4),355-359,,2020

July-August

Figure 4. System Overview for Virtual Environment.

Quagga architecture consists of a core daemon(zebra) and

several protocol specific daemons which work together to

build the routing table, see Figure 5.

Figure 5. Quaqqa Architecture.

2.2 ROACM APPLICATION.
The ROACM solution is based on multicore DPDK

application, see Figure 6. One core (Master/Sync core) is

dedicated for synchronization activity like route sync up and

other cores take part in fast path packet (ROACM Protocol)

processing. The fast path cores or worker cores perform the

packet processing in a run-to-completion mode and each of

the worker cores are uniquely associated with RX/TX queues

per NIC.

Figure 6. ROACM DPDK Application Components

2.3 SOFTWARE DESIGN.

The ROACM solution consists of the following software

components:

Sync Module, Ingress Module, Egress Module, Parser

Module, De-Parser Module, ARP Module, Routing Module,

Kernel NIC Interface (KNI) Module, and ROACM Protocol

Block, see Figure 7.

Figure 7. ROACM Software Components

2.3.1 SYNC MODULE
The functionality of the Sync Module is to synchronize with

kernel routing table. Quagga updates the kernel routing table

based on the control application like OSPF. Sync module will

register with the kernel for route updates using net-link

socket (RTMGRP_IPV4_ROUTE and RTMGRP_NOTIFY

flags). These updates will be propagated to the routing

module. The routing module will store the information in the

routing table.

Sci.Int.(Lahore),32(4),355-359,,2020 ISSN 1013-5316; CODEN: SINTE 8 357

July-August

2.3.2 INGRESS MODULE
The ingress module will poll the RX queues of the ports to

receive the packets in bursts. The burst size is preconfigured.

The packets will be passed to parser module one by one.
2.3.3 EGRESS MODULE
The Egress module will receive the packets for transmission

through a specific TX queue of a port. To achieve the best

performance instead of sending a single packet, packets are

buffered and sent out together once it reaches the

preconfigured burst size. To handle TX failure scenario,

packets can be retransmitted with the preconfigured retry

count.
2.3.4 PARSER MODULE
This module will be used to parse the packet headers and

forward to the appropriate module for further processing. The

KNI module is running in both Sync and Worker Cores. All

control packets (ARP, ICMP etc.) will be directly sent to the

to the KNI module running in the Worker Core. A copy of an

ARP Packet will be sent to the ARP module for MAC/IP

learning. As ARP module runs on Master/Sync Core, ring

buffer will be used to send the MBUF from Worker to Sync

Core. All Other IP packets will be sent to ROACM protocol

block for ROACM related processing. Before sending the

packet to ROACM protocol block, parser module will

remove L2 header. This can be implemented using DPDK

API’s for MBUF processing.
2.3.5 DE-PARSER MODULE
De-Parser Module will add the data link layer or L2 header in

the packets before sending to the Egress Module for

transmission and fetches the destination MAC address from

IP/MAC Table and updates the L2 header.

2.3.6 ARP MODULE
The ARP module receives the ARP request/Response packets

from the Parser Module. IP/MAC information is extracted

from the packets and will be updated in the IP/MAC table.

This table will be implemented using in built DPDK HASH

library where IP address will be used as a key. This table will

be used by the routers to fetch the MAC address for a given

IP address.
2.3.7 ROUTING MODULE
The Routing module will add/update/delete routes from

routing table. This module receives route information form

the Sync Module. Other modules use the route module to

fetch the routing information. This routing table will be

implemented using in built DPDK LPM library. The DPDK

LPM library component implements the Longest Prefix

Match (LPM) table search method for 32-bit keys (IP

Address).
2.3.8 KNI MODULE
Both Sync core as well as worker cores uses this Module.

Sync Core uses this module to receive the packets from the

KNI interfaces and will be sent directly to the Egress Module.

Worker Core uses this module to send all the control packet

(ARP, ICMP, etc.) to the KNI interface.
2.3.9 ROACM PROTOCOL BLOCK
The session module will be used to maintain session related

information in the Edge routers. A session table will be used

to keep the session Information. Edge routers will use the

Source IP and Destination IP combination (OR operation) as

Key for the session table. This table will be implemented

using in-built DPDK HASH library. The State Module will

maintain the state machine per flow-based session. ROACM

has 4 different states:

a. Call set up

b. Data transmission

c. Path update

d. Path recovery.

 Based on the state of a session, ROACM header and

ROACM data is added to the packet for edge routers. Other

routers will add or removes the

RACOM data based on the control field of the ROACM

header. Timer module will handle the path update timeout for

a session. Update timer is necessary to get the optimal path.

Once the session gets created, the path update timer will start.

The timeout value is preconfigured. Once the timeout

happens, path update event will be triggered. This can be

implemented by calculating the difference between previous

and current CPU cycles. There are in-built DPDK APIs

(rte_get_timer_hz(), unlikely() etc.)are available to achieve

this functionality. The NI handler module will handle the NI

(Network Interface) index table. Information on these tables

are populated during the following stages.

3 PERFORMANCE ANALYSIS & RESULTS

In the previous research [3], we considered the comparison

between the TCP/IP and ROACM protocols using the

network simulation tool (NS3), but in this research we have

coded the ROACM protocol using C programing language.

Also, we implemented the virtual machines on DELL servers

each one with the following specifications; PowerEdge R640-

8 x 2.5 Chassis, Intel Xeon Silver 4110 – 2.1 GHz – 8 Core,

and 8 GB DDR4. In fact, we have one server for the control

and in the other two servers on which we install the virtual

machines (virtual routers), and all servers are connected as a

LAN. In each server of the two ones, we have 4 instances

(virtual routers), a total of 8 virtual routers. We transferred a

file with the size of 250GB from a source to a destination

using 4, 5, 6 hops (routers). As we mentioned that each

physical server has 4 virtual routers, therefore, when the

traffic moves from router number 4 to router number 6, it

goes via the physical links because every 4 virtual routers are

in different physical server. Table 1 shows the results of the

comparison of the delay between the TCP/IP and ROACM.

This depicted in Figure 8. The x-axis represents the number

of hops (virtual routers) and the y-axis represents the time

delay in seconds. So, Figure 8 shows that at the hop number

6, the value of the delay time of TCP/IP is very high than the

ROACM. Then we add The results of 8 hops, see table 2.

Table 1: The results of data transfer of file size 250GB for up to

6 hops.

No.
Hops TCP/IP ROACM

4 1465 1449

5 1534 1498

6 1583 1407

358 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(4),355-359,,2020

July-August

Figure 8: The delay for 6 hops

Table 2: The results of data transfer of file size 250GB for up to

8 hops.

No. Hops TCP/IP ROACM

4 1465 1449

5 1534 1498

6 1583 1407

8 2068 2005

Figur 9: The delay for 8 hops.

As we can see in Figure 9 that even thaogh the time delay for

ROACM is lower than TCP/IP, but it was not as expected to

be. This is because of the coding (programming) at the edge

routers for the ROACM consumes time. If we move this code

to a hardware as the Application Specific Integrated Circuit

(ASIC), then the delay for the ROACM will be as in Figure 8,

and it will keep low as there are more hops in the

session/connection.

4 FUTURE RESEARCH

Since protocols on software takes time, therefore, the code of

the implementation of the ROACM should be implemented in

a hardware such the ASIC Hardware. This is our future

research.

5 CONCLUSION

 In this research, we focus in implementing the Route once

and cross-connect many (ROACM) new protocol as a

software based on Data Plane Development Kit (DPDK)

application. The operating system for ROACM was built by

using the open source network routing suite “Quagga” and

the “DPDK”. We use the C programming language for

coding. In this research, we make the implementation of the

ROACM starts from source edge router to destination edge

router, not as in the previous study, where in the simulation,

the ROACM protocol was considered from the source

workstation to the destination workstation. In this research,

we build the operating system for ROACM by using the open

source network routing suite “Quagga” and the “DPDK”. The

results show that the ROACM outperforms the TCP/IP

protocol when there are many hops (routers) between the

source and the destination.

ACKNOWLEDGMENT

The author would like to thank “Badir”, the technology

incubator at King Abdulaziz City for Science and Technology

(KACST) based in Riyadh, Saudi Arabia for funding the
implementation stage of this research and facilitating their

services to make this project successful. Also, the author

would like to thank High Speed Networks Solutions LLC,

Jeddah, Saudi Arabia, which is the development management

company who oversaw the process of the protocol’s operating

system development in association with 3
rd

 party developer.

REFERENCES

[1] Abdullah Bahattab, “Route once and cross-connct many”,

USA patent No. 7664108, Feb. 16, 2010.
[2] Abdullah Bahattab, “Route once and cross-connct many”,

European patent No. 2048835, March. 22, 2017.

[3] Abdullah Bahattab, “A Comparative Analysis of

TCP/IP and ROACM Protocols- A Simulation

Study”, Indian Journal of Science and

Technology, Volume 9. Issue 28, July, 2016.

[4] T. Ishihara, et al. “A Consideration of IX Architecture

Using MPLS Based on Router Performance and QoS

Requirements”, IEICE Transaction Communication, Vol.

E86-B, No.2, Feb.2003

[5] X. Xiao, L. Ni, V. Vuppala ”An Overview of IP

Switching and Tag Switching”, ICPADS’97, Dec. 11-13,

1997, Seoul, KOREA.

[6] Y. Rekhther, et al. “Cisco Systems’ Tag Switching

Architecture Overview” RFC 2105, Feb. 1997.

[7] Y. Katsube, K. Nagami, and H. Esaki, “Toshiba’s Router

Architecture Extensions for ATM: Overview,” IETF

RFC 2098, April 1997.

[8] F. Baker, “Requirements for IP Version 4 Routers,” IETF

RFC 1812, Jun. 1995

[9] Cisco White Paper, “Understanding MPLS-TP and Its

Benefits, © 2009 Cisco Systems, Inc. All rights reserved.

This document is Cisco Public Information.

[10] Ali Diab, Rene Boringer, “Optimized I-MPLS: A Fast

and Transparent Micro- Mobility-Enabled MPLS

Framework”, 1-4244-0398-7/06 §2006 IEEE

[11] Wenjun Xie, Shanguo Huang, Wanyi Gu, “AN

IMPROVED RING PROTECTION METHOD IN

MPLS-TP NETWORKS”, Proceedings of ICNIDC2010,

978-1-4244-6853-9/10 ©2010 IEEE

Sci.Int.(Lahore),32(4),355-359,,2020 ISSN 1013-5316; CODEN: SINTE 8 359

July-August

[12] David Applegate, “Load optimal MPLS routing with N +

M labels”, 0-7803- 7753-2/03 (C) 2003 IEEE

[13] Yimin Qiu, “A Research of MPLS-based Network Fault

Recovery”, 2010 Third International Conference on

Intelligent Networks and Intelligent Systems 978-0-

7695-4249-2/10 © 2010 IEEE

 [14] P. Newman, T. Lyon, and G. Minshall, “Flow Labelled

IP: A Connectionless Approach to ATM,” Proc IEEE

Infocom’96, San Francisco, CA, March 1996, pp. 1251 -

1260.

[15] Y. Rekhter, B. Davie, D. Katz, E. Rosen, and G.

Swallow, “Cisco Systems’ Tag Switching

Architecture Overview,” IETF RFC 2105, Feb. 1997.

 [16] Peter Newman et al., “IP Switching and Gigabit

Routers”, IEEE Communications Magazine, Vol. 35, No.

1, January 1997, pp. 64-69.

[17] Kaur.G and Kumar.D, MPLS technology on IP

backbone network, IJCA, 2010

[18] Dumka.A and Mandoria.H, Dynamic MPLS with

feedback, IJCSEA, 2012

[19] Chan.C et al, High performance IP forwarding with

efficient routing-table update, ELSEVIER, 2003

