
Sci.Int.(Lahore),32(1),69-73,2020 ISSN 1013-5316; CODEN: SINTE 8 69

January-February

PROPOSED APPROACH TO INCREASE EFFICIENCY OF POLYHEDRAL

COMPILATION USING HASH MAPPING AND PARALLEL SYSTEMS
Hira Beenish

and Muhammad Fahad

Pakistan Air Force, Karachi Institute of Economics and Technology, Karachi, Pakistan

E-mail: hira@pafkiet.edu.pk, mfahad@pafkiet.edu.pk

ABSTRACT: The polyhedral model is considered as a strong and powerful platform for efficient and optimizing programs.

The polyhedral model is totally based on the algebraic representation of a program and consider as production and mature

compilers. This compiler is a valid and good way to express the loop structure applied in run time compilation and it can be

suitable for loop-based programs. To enhance the algebraic progression and resolving complexities, we are proposing two

solutions that can enhance the speeding and memory efficiency during the compilation process which includes hash mapping

and parallel systems. Moreover, we are comparing the different applications of the polyhedral compilers and detecting the

lacking in performance which includes TIRAMISU and Alpha Z.

Keywords: Polyhedral, Hash Function, Parallel Systems, GPU, CPU, Algebraic Expressions

1. INTRODUCTION

 The polyhedral model is a vast and powerful platform or

framework where it gives values to optimize and variation

on parallel programs. Polyhedral compilation possesses the

compilation process that depends on the representation of

parallel and optimizing programs, which involves nested

loops and arrays. In initial stages, it was composed as

parallel compiler but it is now used for a wide range of

applications that requires optimization, including automatic

parallelization, data locality optimizations, memory

managing situations, verification of programs,

communication optimizations, SIMDization, code

generation for hardware accelerators, high-level synthesis,

etc. [3] It is an algebraic based representation of programs

that allows to construct and search for complex sequences of

optimizing programs. Furthermore, this model is now

efficient and can reach production compilers [9].

 The primary constraint of the polyhedral model is known to

be its effective transformation of the loop traversing to

statically, loop-based program parts. There has been

involved in utilizing such procedures in compilers, in short

time compilers, just as DSL compilers. The polyhedral

compiler has a strong scope in maintaining the technicalities

of handling the loop constraints while the compilation of

each line of code happens, yet increasingly more industrial

clients begin to adjust such advancements that have become

so ease of usage [7].

A Polyhedral framework is designed to maintain and

generate efficient performance code. This can be an

advantage of using multicore programs and

multiprogramming functions. This framework will be

helpful for areas on linear algebraic, image processing, deep

learning, and many more platforms. Compilers dependent on

the Polyhedral model including ongoing applications like

PoCC or CHiLL target code parts that precisely fit the

relative constraints of the model [2].

 The explanation for this restriction isn't that precise testing

is required to make use of the polyhedral model, yet rather

that there is no major plan to help dynamic control flow on

compile-time in the compilation of changing factors and

calculations. To battle a typical misconception, the intensity

of the polyhedral model isn't to accomplish complicated

information and testing but also analyses the array access

functions [8].

According to the structure of the polyhedral model, the

compiler creates two nested loops which bound to represent

the dimension integral point. The second step is to schedule

the affine changes producing efficient code for lite

frameworks is ending up increasingly more difficult as these

models are expanding in intricacy and decent variety.

Getting the best execution requires complex code and

information format changes, the board of complex memory

chains of importance, and efficient information

correspondence and synchronization. For instance, consider

summed up framework increase (gemm), which figures C =

αAB + βC and is a structure square of various calculations

[4].

Fig. 1 Taxonomy of Polyhyderal Model.

2. Literature Review

There are multiple researchers which were revolving

towards the polyhedral model, its advantages, its efficiency

and the applications on which it works as a compiler. The

overall sum up of the model is to generate and maintain an

efficient code that carries the performance for highly

efficient programs. The basic reviews on this model are

listed below:

mailto:hira@pafkiet.edu.pk
mailto:mfahad@pafkiet.edu.pk

70 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),69-73,2020

January-February

 The polyhedral model is described as these compilers

dependent on the variant of the language structure including

ongoing examination apparatuses target code parts that

precisely fit the relative imperatives of the model. It also fits

the logarithmic and algebraic tasks [1]

 The polyhedral structure is used to make efficient and

correct calculations on the coding structures, where we use

nested loops or loops to make such combinations to fulfill

the user's output and optimizing the result in such a manner

that it can generate efficiency. Where it allows constructing

the sequence of a complex structure which defines the

maturity of the model [2]

In this paper, this model's structure is based on the algebraic

representation of moderate programs. The restrictions that

are rotating towards this model are the static predictability

of loop and nested loop performance, which makes the data

allow to flow in control. Through this structure, it can be

applicable in many variant situations to execute high

performance [3]

 The polyhedral model supports an application CUDA for

generating parallel code. It affiliates with different sourcing

compilers and extracting the parallel data using memory and

polyhedral compilation. During the working on this

application, the polyhedral model compiles with two

different compiles like PoCC and CHiLL, which performs

like loop transformations similar to this model. The output

was to take out the dynamic data and its dependency [4]

In this paper, the polyhedral model is combined with deep

learning techniques. During the optimizations of machine

learning and deep learning, they need to run their training

phase while instructing new architecture, there comes a

challenge that how to compile the techniques of learning. To

resolve the compilation problem, the polyhedral compiler

played a role in the maintenance and it worked with deep

learning kernels to speed up the loop transforming situations

[5].

The polyhedral model has been effectively utilized in the

making of compilers. Late proposition researched how

runtime data could be utilized to apply the polyhedral model

on applications that don't statically at the model. They

proposed a dynamic investigation that manufactures a

reduced polyhedral model from a program execution that

can precisely identify conditions and fixed memory of

programs [6, 7].

In this paper, the polyhedral model is implemented as an

online auto-tuning. For a high-class auto tuner, it should

have high dimensional speed, should be more efficient, can

carry different variants of outputs and can possess a

multitasking program process. To fulfill the demands of this

auto tuner, the polyhedral model played a role in making a

technique to solve the tuning problems, which can improve

the speed, efficiency, and multitasking of the code [8].

In this paper, the author implemented an offline clustering

statement using the source to source a polyhedral compiler.

Modification of PPCG implemented in this work by

performing offline clustering before affine scheduling and

after analysis on dependency using python wrapper around

isl. Different benchmarks are used to implement it namely

image processing kernels, polytechnic-3AC, swim

benchmarks, and Dist kernel [10].

Following the advantages of the polyhedral model, a new

application is fused with this structure named TIRAMISU

which is a scheduling language that defines the complexities

of efficient and multitasking programs. This application

working is based on linear algebra and in the area of image

processing. This application is structured with 3 different

layers with this model as data layout, loop optimization, and

communication.

3. Proposed Methodology

In the previous workings of the polyhedral model, we have

categorized different polyhedral compilers and compare

their workings as comparing the different components and

qualities of those compilers. These include the recent one

compilers which are TIRAMISU and AlphaZ. They have the

most qualities which fulfill the scope of the polyhedral

model.

Fig. 2 Rotation of loop and working loop in compiler.

Before proposing our method, we are discussing some

polyhedral compilers which have the applied implemented

model and are in the working process. Those compilers can

make some variations but in order to achieve the

creditability of the efficient compiler, we need to compare

the models according to their structure, their hype, and their

computing data analysis.

3.1 Tiramisu
Tiramisu is a recent platform for a polyhedral compiler that

is based on expressing and organizing fast, portable and

efficient computations according to data layers. Moreover,

Tiramisu offers C++ API integrations which allow reducing

the consistency of repetition in the code compilation process

especially in nested loops, where the iterations go in infinite

series. Tiramisu can be used in different structured

component areas such as linear and deep learning, image

processing and machine learning. It is purely based on the

polyhedral model which is distributed as a data layer for

loop processing. It is designed to enable easy integration of

code generators for new architectures.

3.2 AlphaZ
AlphaZ is a general structure for analysis, change, and code

structure in the Polyhedral Model. The input structure of the

polyhedral model comprises at least one numerical

conditions that indicate exactly what should be figured. It

tends to be seen as a determination. So as to create an

Sci.Int.(Lahore),32(1),69-73,2020 ISSN 1013-5316; CODEN: SINTE 8 71

January-February

(ordinary/basic) program that needs to require this particular

structure, one needs to indicate a time frame. Moreover, the

distribution of processor based on memory consumption and

memory designation. As a matter of fact, even this isn't

carefully vital. We likewise have a "memorized request-

driven" code generator that produces executable code

without any time or memory/processor portion data.

 According to our research in different research projects, [9]

the pure essence of this model is to have onetime

compilation of loops that can make the code efficient to use,

Moreover, the running time of the code which increase the

performance of CPU is depend on the size of memory

accessible to the section, which can include the

synchronization of the register memory and main memory.

The below-mentioned table describes the comparison of the

different polyhedral compilers:
TABLE 1: COMPARISION OF DIFFERENT POLYHEDRAL COMPILERS

Compiling

Features

Tiramisu Alpha

Z

Pencil Pluto Hali

de

CPU

Generation

Yes Yes Yes No Yes

GPU

Generation

Yes Yes No Yes No

Affine Loop Yes Yes Yes Yes Yes

Data Access Yes No Yes Yes Yes

Optimizing

Data

Yes Yes Yes Yes Yes

Memory

Hierarchies

No Yes No No No

Data Flow

Graphs

Yes No Yes Yes Yes

Iteration

Spaces

Yes Yes Yes Yes Yes

Dependent

Analysis

Yes Yes No Yes No

Compilation

Time

No No Yes Yes No

Commands

Comm.

Yes No Yes No No

The above mentioned table has two ideal polyhedral

compilers, which are good at the mentioned qualities. What

we found was the runtime and memory consumption

problem which has found in lacking towards both compilers

alternately i.e. TIRAMISU has compiled time error and

AlphaZ has memory consumption error. The fact is that

those two features can vary the compilation results of the

code which can put up different input stats and getting

nonfeasible outputs. Like if a loop is being run at some limit

of time we can have the fix results, but for the infinite loop,

the memory space and runtime of the compilers will hang.

3.3 Pencil
PENCIL is a characterized subset of GNU C99, and

authorizes a lot of coding rules mainly identified with

confining the way in which pointers can be controlled. The

guidelines are intended to empower a compiler to perform

better improvement and parallelization when making a

structure of PENCIL to a lower-level transformation, for

example, OpenCL. Moreover, PENCIL is likewise furnished

with explicit language builds, including expecting

precedence and calculations for capacities that empower

correspondence of area explicit data to the PENCIL

compiler, to be utilized for enhancement. Since it depends

on C, the expectation to absorb information for PENCIL is

quite complicated.

If we look at the architecture of a nested loop, the conditions

which will be furnished to get outputs will be first starting

with one iteration of x and then the required iterations of the

y if the condition meets or not. Due to the possible and close

iterations which should meet the conditions can be out of

run time, which means the running time of the program will

stick at one point and will consume a large amount of

memory. In order to overcome the problem of high-

efficiency redundancy, we can have two possible solutions

which can be possible or maybe one of the efficient

solutions to gain memory efficiency and speed.

The first proposed solution for maintaining efficiency is to

make a parallel way to check the required memory and

required runtime for getting maximum inputs. Due to

maximum loop checks, it can be possible to make the

parallel distance of memory and speed using the polyhedral

model architecture. The required automating strategy is to

make the check from first having the total sets of loop

checks and then optimizing the parallel process of the code.

3.4 Process
 The model can be started by checking the cache.

 Excess amount of memory can be restored once the

memory prediction completes according to the compiling

code.

 The storage according to the flowchart, can be maintained

by one file system which can create new dependencies and

the external software distinguish the memory with or

without the proper statement.

3.5 Advantages
 The main interest of this modification is to manipulate and

optimize the speed of the compilation process.

 It will depend on the number of the items and elements

which is present in the sets of nested loop. The items will

be placed through x and y states.

 The process can be utilized in data localization,

program validity and completion of a data structure

according to the nested loop.

 Genetic and compact solutions through a nested loop

can be advanced in polyhedral models as well.

Another way to have some possible solution is to work on

cache memory using a hash map and functions. Hash

functions and mapping can play a vital role in order to get

the functioning results and minimizing the search according

to the needs. A Cache is quick to support, that either

attempts to gain access times to slower memory or to

maintain a strategic distance from costly recalculations of

possible outputs. Generally, the size of a cache is full when

it gets the possible loop elements. Since our cache isn't

restricted in size, our reserving calculation cache memory

works out in a hash map. So as to do this, a hash capacity

should be characterized. Besides the capacity of an

equivalent is expected to check for the equity of two

components.

A hash capacity maps estimations of info set onto fixed-size

whole number qualities. An equivalent capacity accepts two

72 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),69-73,2020

January-February

qualities as information and returns genuine if these qualities

are viewed as equivalent and false generally. So as to look

for a component in the hash map, it is adequate to scan for it

in the impact rundown of its hash map. Moreover, in this way

to restrict the hunt to all

Fig.3. Modified proposed taxonomy for parallel process

stored components that have a similar hash function.

In order to make some general computations through the

hashing functions, our caching algorithm is mapped through

hash mapping. Furthermore, a structure of equations is

derived to check the consistency of the elements that get

solved through the hashing functions. A hashing map sets a

value which considered as input towards the integer values

and during computation, the compilation process gets an

output. It makes a decision of what the fact is true or false

due to the collision of hash values then to limit the searching

of items if the cache elements have the same hash values.

These two possible solutions can make a major role in

making the consistency and efficiency of the code. During

the compilation process of the nested loop, it can make some

possible outcomes while compiling the sets of processes.

Using parallel ways, the process can be divided into two

separate processes in which the memory assumption gaining

on the process of the nested loop can full fill the architecture

of the polyhedral model. Although we have the overall

comparison of all polyhedral compilers which are flexible,

although they have some flaws, they are running.

The polyhedral compilation is suitable and more interesting

gaining when it uses in manipulation and optimization in

algorithms because when the loop compiles, it depends on

its iterating structure and complexions and then the output of

the loop performance gets varied over the algorithm.

Furthermore, generic and compact solutions through this

process can be designed which will be based on polyhedral

model techniques. The structure has some essence of acyclic

flow that handles loop as a whole technicality of the loop

elements. Also, compared to optimizations that can handle

complex loops, the polyhedral model techniques work on

the specification of looping scales, instead of having some

iteration issues that might be taking time in resolving the

factors.

Fig. 4. Structure of Hash mapping

The applications that can make adjustments in the

polyhedral structures gets somehow difficult to overcome all

flaws which can affect the structure and efficiency of the

compilers and its process. As an example, AlphaZ does not

intend to take care of this issue, despite the fact that now and

again we have utilized the framework to understand explicit

cases of explicit advancement issues. Or maybe, AlphaZ

gives a structure wherein such issues can be understood by

various clients for various focuses with various target

capacities to enhance. This is regularly the quick objectives

of the individual structure at explicit occasions, however, the

objective of the AlphaZ framework is to set the memory

allocating structure for this exploration. It is consequently a

framework wherein to investigate advancement techniques,

regularly manual however in the long run programmed, to

accomplish higher execution. Specifically, AlphaZ opens the

capacity to adjust memory allotment and treats decreases.

4. CONCLUSION
This paper described the classic functions of the Polyhedral

model and its applications, that how a polyhedral framework

works with multiple functionalities and scheduling

languages. Moreover, this paper describes the core features

of the compilation of nested looping and indexing and

getting the set inputs and outputs. The polyhedral model

structure is described in which the looping and iterating

process is discussed and works in an efficient process of

compilation with TIRAMISU and Alpha Z.

Comparisons of the different polyhedral models following

compilers were happening in which we found the major

error of timing and speed due to the high compiling process

and access to getting most outputs. The data layout is

introduced in the shape of a parallel process in which the

compilation steps go in parallel. Moreover, we also

proposed hash mapping and hash functions that can support

Sci.Int.(Lahore),32(1),69-73,2020 ISSN 1013-5316; CODEN: SINTE 8 73

January-February

the polyhedral model architecture with parallel systems. It

checks the required memory with needed runtime for getting

maximum input, all the steps are working parallel to each

other to increase the efficiency in the polyhedral compiler.

REFERENCES

1. Benabderrahmane, M. W., Pouchet, L. N., Cohen, A., &

Bastoul, C. The polyhedral model is more widely

applicable than you think. In International Conference

on Compiler Construction (pp. 283-303) (2010)

2. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio

Gomez, J., Tenllado, C., & Catthoor, F. Polyhedral

parallel code generation for CUDA. ACM Transactions

on Architecture and Code Optimization (TACO), 9(4),

54 (2013).

3. Kobeissi, S., & Clauss, P. The Polyhedral Model Beyond

Loops Recursion Optimization and Parallelization

Through Polyhedral Modeling. (2019).

4. Vaidya, H., Badrinaaraayanan, A., Patwardhan, A. A., &

Upadrasta, R. When Polyhedral Optimizations Meet

Deep Learning Kernels (2019).

5. Sato, Y., Yuki, T., & Endo, T. An autotuning framework

for scalable execution of tiled code via iterative

polyhedral compilation. ACM Transactions on

Architecture and Code Optimization (TACO), 15(4),

67 (2019).

6. Gruber, F., Selva, M., Sampaio, D., Guillon, C., Pouchet,

L. N., & Rastello, F. Building of a Polyhedral

Representation from an Instrumented Execution:

Making Dynamic Analyses of non-Affine Programs

Scalable (2019).

7. Mohammadi, M. S., Yuki, T., Cheshmi, K., Davis, E. C.,

Hall, M., Dehnavi, M. M., ... & Strout, M. M. Sparse

computation data dependence simplification for

efficient compiler-generated inspectors. In Proceedings

of the 40th ACM SIGPLAN Conference on

Programming Language Design and

Implementation (pp. 594-609) (2019).

8. Pfaffe, P., Grosser, T., & Tillmann, M. Efficient

hierarchical online-autotuning: a case study on

polyhedral accelerator mapping. In Proceedings of the

ACM International Conference on

Supercomputing (pp. 354-366) (2019).

9. Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E.,

Akkas, A., Zhang, Y., ... & Amarasinghe, S. Tiramisu:

A polyhedral compiler for expressing fast and portable

code. In Proceedings of the 2019 IEEE/ACM

International Symposium on Code Generation and

Optimization (pp. 193-205) (2019).

10. Baghdadi, Riyadh, and Albert Cohen. "Scalable

Polyhedral Compilation, Syntax vs. Semantics: 1–0 in

the First Round." (2020).

