
Sci.Int.(Lahore),32(1),27-32,2020 ISSN 1013-5316; CODEN: SINTE 8 27

January-February

SOFTWARE ARCHITECTURE REFACTORING TOOLS AND TECHNIQUES:
A COMPARATIVE STUDY

*
Khawar Iqbal Malik

1
, Muhammad Ilyas

2
, Yaseen Ul Haq

3
, Abu Sameer

4
, Atiya Shakira

5

1Department of Computer Science & IT University of Lahore, Sargodha,

2,4,5Department of Computer Science & IT University of Sargodha,
3Department of Computer Science and Engineering, University of Engineering and Technology Lahore,

Narowal Campus, Narowal, Pakistan

Contact: *imkhawarmalik@gmail.com

ABSTRACT: Refactoring is a powerful method to enhance the quality and remove the issues of the software. Refactoring

is a phenomenon under the domain of performance engineering in which we can enhance reliability and maintainability of

software, code cleaning, enhance reusability, and increase extensibility. Architectural refactoring is the process of

changing the architecture without changing the behaviour of the software. An Architectural refactoring normally also

includes the code refactoring. Bad smell or code smell in a programming language is a problem that makes it difficult for

the software to acknowledge and retain the code. Some refactoring instruments and methods that are used to remove code

smells from code are addressed in this document. Here we draw conclusion about how programmer, refactor

characterize the assumption taken by each. This debate will help the future scientist to select a suitable method and tool

for refactoring architecture.
Key Words: Software refactoring, bad smell, refactoring tools, refactoring techniques.

1- INTRODUCTION

Refactoring is a composition enhancement method with the

exception of altering a system's external behavior. The

emergence of a purposeful technique of refactoring and

patterns of refactoring helps software developers to

influence established alternative approaches when coping

with needs for routine refactoring.

They may, therefore, move away from the degradation of

the layout [1]. Refactoring may be described as a

"coordinated set of deliberate architectural things to do that

get rid of a particular architectural smell and improve at

least one satisfactory attribute barring altering the system's

scope and functionality" [2].

There are now multiple instruments, methods and

frameworks for refactoring, each one had specific areas and

characteristics of the implementation. In this article, we

will attempt to categorize some instruments for refactoring,

to use an evolutionary categorization based on tool

characterization processes. This taxonomy is focused on

modifying methods and variables affecting these processes.

This taxonomy's objective is just to place substantive

instruments and methods within the software speciation

framework, making it simpler to match and merge them.

For this research, various tools were selected. Due to the

obvious variations among them, these instruments were

selected. It would also be important to see how the

instruments are as distinct as they appear to be. According

to Martin Fowler [2] "Using refactoring, observable

conduct is not modified if it alters the inside shape of

software program for simpler to apprehend and more cost-

effective to modify the code". When refactoring is being

used to alter the code, it improves robustness, reliability,

and code maintainability. Refactoring is an important part

of both the software application enhancement system and

extra refactoring machinery is necessary for fast refactoring

and behavior preservation. Generally, refactoring is indeed

a scheme that alternates a device software application in the

same manner that it stays the same outcome, only

improving an inside code. Maranzano et al [3] shown that

more than a couple of steps are often used to refract the

code. These fundamental steps can be described as below.

a. Use the system code module test.

b. Find those code in the package with "odor." or smell

c. Decide how certain code smells can be simplified.

d. To remove its code smell, pick and execute refactoring

technique.

e. Do it all over again, simplify/ test till the odor leaves.

This a review paper regarding software architecture

refactoring tools and techniques and here in section 2 we

discuss the motivation for software refactoring. Here we

also discuss the two practical examples of architecture

refactoring. Section 3 is regarding dealing with bad smells

and design flaws. In Section 4 comparison of tools used to

handle refactoring and bad smells. Different obstacles for

Architecture refactoring are discussed in section 5. Section

6 is about the conclusion of refactoring, reengineering and

rewriting.

2- MOTIVATION FOR SOFTWARE

ARCHITECTURE REFACTORING

Typically, professional software systems seem to be

complicated and stayed for a number of years. Perceive, for

instance, the Windows OS. From the past 25 years, that has

risen to about fifty million lines of code. Evolution on this

kind of moment and volume scale presents a danger to the

software's systemic content. Therefore, to preserve its

structural quality of this kind of complicated and changing

software program, regular architecture refactoring would be

required [4]. Moreover, such refactoring becomes

compulsory for all of the software product's achievement as

it enables easier development of fresh characteristics [4].

For example, Windows undertook a significant refactoring

attempt as it evolved from Windows Vista to Windows OS

7 version [7]. The main objective of this refactoring was

always to replace the missing dependencies between

components in order to tackle layering breaches and

enhance the framework of dependency [5]. ⠀An important

point is to be noted here that if refactoring methodologies

can be used for code then why these could not be

applicable for rest of software developing elements like

UML diagrams (class, package and object), sequential logic

and behavior diagrams and other integrity constraints over

databases [6]. Actually, because of its constant

development (also recognized as fragmented development),

software architecture indicates a potential region for

refactoring operations. Software architecture evaluation and

refactoring, therefore, should be carried out frequently in

all phases [2, 3].

file:///C:/Users/ADMIN/AppData/Local/Temp/imkhawarmalik@gmail.com

28 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),27-32,2020

January-February

4- DEALING WITH BAD SMELLS

Pieces of code that is wrong in some experience and

unsightly to see [4]. Bad smells in different words, it is a

code or sketch problem that happens when structural traits

of software are described but it does not produce any error

at the execution time [5].

3.1 Types of bad smells The type of bad smells in the code

is as follows [6, 7].

Duplicate Code: If the same piece of code is available in

any location of the program it is called duplicate code. It is

more critical especially in the case when you change it at

one location and not in another one [6].

Long Method: Where code statements, different loops and

variables are a lengthy process in one strategy. The long

method will be too long, so understanding the code is a

problem [7].

Large Class: A genre that tries to perform too much

function is an enormous class. A large type reduces

compassion from a system that has many parameters or

techniques of example.

Feature Envy: A technique outlined in one form but

additionally engaged in the characteristic of distinct

categories is the location it is currently positioned and the

information is the focus of the envy's attention in function

envy. The approach appears happier in separate classes in

one section [6].

Long Parameter List: Several parameters have exceeded

one technique. Recognizing and ending up with erratic

code is hard.

In literature we have seen many term used by researcher for

architectural smells, few of them are as follows:

 “architectural bad smells” [28]

 “architecture smells" [29]

 “anti-patterns" [30]

 “architecturally-relevant code smells" [28]

 “contra-indicated patterns" [29]

 “architectural defects" [29]

The refactoring obstacle includes classifying areas that

architects may need to enhance. The writers of [6, 7]

incorporated "code smells" to define prospective regions

for enhancement for code refactoring.

3.2 Architectural Issues due to bad smell
Similarly, architectural odors are markers of architectural

issues. The below list illustrates some popular instances:

Duplicate design artifacts: If distinct architecture parts are

allocated the same obligations, the principle of DRY (do

not repeat yourself) may be breached. Important tasks must

be modularized [18], as facet-oriented software design

shows.

Unclear roles of entities: Component identities should

clarify their duties such that the design is readily

understood by the developer/engineer. Similarly, individual

parts should be allocated duties and not distributed across

various components [17, 18].

Inexpressive or complex architecture: Unnecessary

abstractions result from accidental complexity. These

abstractions lead to software systems that are complicated

and inexpressive. Architecture entities, for instance, may

have uncertain or false names, superfluous elements or

dependencies, or a granularity that is either too fine or too

coarse [15].

Everything centralized: Software engineers might be

misinformed towards centralized methods, even if it would

be more suitable to organize and decentralize themselves

[15]. A decentralized strategy to architecture is much more

suitable if the issue is intrinsically decentralized.

Over-generic design: Patterns like the pattern of strategy

design enable variation to be deferred to subsequent

binding moments. If they are misused, however, they suffer

from sustainability and expressiveness [13, 14]. The design

of architecture must be as precise as feasible and as clichéd

and extensible as needed.

Asymmetric structure: Inner quality of architecture is

mostly an indication for symmetric structure, while

asymmetry can imply future architectural problems. There

can be two types of symmetry: symmetry of behavior and

symmetry of structure [10]. Behavioral symmetry primarily

deals with launching and start features, like, (i) an open

method required close method, (ii) a start operation

requiring a hold or rollback technique, or a block requiring

a join.

Dependency cycles: The cycles of dependence between

architectural elements show an issue because they could

have an adverse effect on the ability to test, modify, or

expressively [11].

Design violations: Infraction of design policy goals, like

the use of relaxed layering rather than a strict layering,

must be evaded; otherwise, distinct project engineers would

uncontrollably solve this same kind of issue with various

solutions, reducing accessibility and expressiveness [12].

Inadequate partitioning of functionality: Some other

source of accidental difficulty is the insufficient sequencing

of duties to subsystems. In particular, a subsystem's

constituents should show high cohesion, whereas

subsystem coupling will be low [11]. Otherwise, it may

also show incorrect service file systems into components.

Unnecessary dependencies: The number of dependencies

must be mitigated in order to decrease complexity. All

extra and needless dependencies (i.e. accidental) may

influence efficiency and modifiability [15].

Implicit dependencies: If the application of a software

package includes frameworks not present in the

architectural designs, this can result in several liabilities

[15, 16]. Developers could generate a gap among required

architecture and applied architecture by adding inherent

dependencies to an application without telling anybody

about such fresh dependencies.

3.3 Architectural smells classification
We suggest a categorization of the architectural smell in

context to each smell according to the breach of certain

design rules. We regarded Ganesh et al. [18] suggested

categories, based on four concepts of architecture:

modularity, hierarchy, abstraction, and encapsulation. The

reasoning for these categories, as stated by the researchers

[21,18], is that it allows for an acute awareness of the smell

and provides a stronger idea of how to refactor the

architectural smell.

The criteria for classification that we have chosen are as

under:

Modularity [21]: It is the feature of software already

divided into a collection of domain-specific and cohesive

parts.

Hierarchy: This class or group of abstractions in which an

abstraction shows the essential characteristics of an object

that varies from all other kinds of stuff and thus provides

Sci.Int.(Lahore),32(1),27-32,2020 ISSN 1013-5316; CODEN: SINTE 8 29

January-February

elegant defined structural boundaries comparable to the

perspective of the user [21]:.

Healthy Dependency Structure: A (sub-) system's

dependence structure is regarded as unhealthy when it

encourages a sequence of system modifications every time

it is altered [21].

3.3 Dealing with design flaws

Time constraints in the delivery of software and extra

specifications compelled software engineers to change and

adapt the architecture continually. Regretfully, for this

reason, they did not comply with a systematic strategy, so

they could use ad hoc patches and backpacks to develop the

scheme. The subsequent software architecture had become

over-complicated and indistinct and after a while endured

from reduced modifiability.

a) First of all, certain software architecture will not be

constructed with "Big Bang" strategy [11], but instead in

tiny phases and iterations while each iterations plots one

criterion or a tiny set of demands for specific architectural

choices.

b) Using a fragmented growth strategy helps to manage

hazards by detecting architectural problems early [11].

c) Rather than slicing stone architectural choices,

architects should re-evaluate their structure in all iterations,

describe prospective design problems and fix them through

refactoring. Instead of addressing symptoms, this strategy

helps heal the issue.
Table 1: Design issues due to bad smell and their description

Design issue Description

Duplicate design artifacts Distinct architecture parts are allocated the same obligations, the principle of

DRY (do not repeat yourself) may be breached [14].

Unclear roles of entities Component identities should clarify their duties such that the design is readily

understood by the developer/engineer.[15, 16].

Complex architecture Unnecessary abstractions result from accidental complexity [13].

Everything centralized Software engineers might be misinformed towards centralized methods, even if

it would be more suitable to organize and decentralize themselves [13].

Over-generic design Patterns like strategy design enable variation to be deferred to subsequent

binding moments. If they are misused, however, they suffer from sustainability

and expressiveness [11, 12].

5- REFACTORING TOOLS AND COMPARISON

The various tools available for Architecture Refactoring

have been discussed in this section. Table 2 presents there

comparison of different facts.

Visual Works Visual Works is a famous Cincom-made

Smalltalk IDE. As of Visual Works 7.0, the popular

Refactoring Browser [31] became the normal Smalltalk

browser. Cincom has been working intimately with

Refectory. Inc. Incorporate a complete browser refactoring

toolset into Visual Works to achieve this. This provides

VisualWorks ' market place as the top toolkit for extreme

programming.

Smalltalk Browser The first commonly used refactoring

instrument was the Smalltalk refactoring browser, which

used most of the Smalltalk language refactoring standard

classes, techniques, and fields [28]. Smalltalk is a very neat

and clean language that processes more automatically than

other languages like C++.

The Eclipse The project was intended to build IDE's that

could be utilized to generate applications as various

Websites etc. The Eclipse has integrated architecture that is

upgradeable [29]. The software development kit has many

built-in generic characteristics.

Guru Programming language refactoring tool created by

Ivan Moore. Its language is object-oriented prototypical, so

there is no difference between class and instance objects.

Objects are related to relationships of inheritance. It is used

in an automatic way to restructure heritage hierarchies and

refactor techniques of SELF programs [31].

TogetherSoft ControlCenter 6.0 An application

development tool specifically designed to streamline the

software development method. Modeling of applications

used to ensure the company needs. It provides a good

synchronization around application design and code

conversion [30].

.

Table 2 Comparison of different Architecture Refactoring tools

Fact Visual Works Eclipse Guru ControlCenter

Change history Irrelevant Parallel/Async. Un-versioned Versioned

Frequency Continuously Continuously Occasionally Continuously

Role Developer/Designer Developer/tester Developer Developer

Distribution Local Local Local Local

Automation Semi-automatic Semi-automatic Fully automated Semi-automatic

Invasiveness Non-invasive Non-invasive Highly invasive Non-invasive

Effort Low effort Low effort Virtually no effort Low effort

Locality Global Global Global Global

Scope Source code Source code Source code Design/source code

Openness Source available

reflection

Plug-in architecture Source available Integration API

Wizards

Control Controlled refactoring Controlled refactoring Controlled Controlled refactoring

30 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),27-32,2020

January-February

The various tools available for Architecture Refactoring

have been discussed in this section. Table 2 presents there

comparison over different facts.

In literature Ganesh et al. [21] also discuss the following

tools that are used for the removal of different bad smells

from architecture. Here we also provide a comparison of

these tools in the context of a platform where these are

useful and there supported languages. Few of them are

available in commercial versions other few are operative in

license-free environment.

Table 3 Architecture Refactoring Tools w.r.t Language and Platform supported

Tool Name Supported platform Supported

Languages

License Currently

Availability

AI Reviewer [21] Mac OS, Microsoft Windows, Linux OS C++ & C Licensed Available

ARCADE [22][21] Mac OS, Microsoft Windows, Linux OS Java Free Not Available

Arcan [21] Mac OS, Microsoft Windows, Linux OS Java Free Available

Designite [21] Microsoft Windows C Sharp (C #) Licensed Available

Hotspot Detector [21] NA Java NA Not Available

Massey Architecture Explorer [25] Mac OS, Microsoft Windows, Linux OS Java Free Not Available

Sonargraph Commercial [25] Mac OS, Microsoft Windows, Linux OS Java, C Sharp

C++ & C

Licensed Available

STAN [21] Mac OS, Microsoft Windows, Linux OS Java Licensed Available

Structure 101 [27] Mac OS, Microsoft Windows, Linux OS Java, .Net, C++ & C Licensed Available

Table 4 Comparison of Architectural Smell Classes and Tools used to remove these smells

Architectural

Smell Class

Other Names in

literature

Description Variants Violated

Principal

Tools

Cyclic

Dependency

Tangle [21], Cross-

Package Cycle [23],

Cycle of classes [27],

Cross-Module Cycle

[23]

When more than

two architectural sections

depend on each other

formally or informally.

Strong Circular

Dependencies

Between Packages

[31], Shape

detection [24]

Structure,

Modularity,

Healthy

Dependency

Dependency Finder,

JArchitect,

ClassCycle,NDepend,

LDM,

Unstable

Dependency

Unstable Interface [23] Unstable reliance defines a

module (component) that

focuses on certain

components that are less

stable than themselves.

Unstable Interface

[23]

Structure,

Healthy

Dependency

Designite,

Arcan,

Hotspot Detector

Unutilized

Abstraction

Super-type Bypass,

Policy Detail

Dependency [27]

Architectural smell relates to

the issue of pointing

immediately to a concrete

class.

 Healthy

Dependency

Structure,

Hierarchy

Designite

AI Reviewer

Cyclic

Hierarchy

Subtype Knowledge,

Unhealthy Inheritance

Hierarchy [23]

Due to cyclic dependency

between sub and super-type

of namespaces

 Healthy

Dependency,

Structure,

Hierarchy,

Designite,

AI Reviewer,

Massey Architecture

Explorer

Multipath

Hierarchy

Degenerated

Inheritance [31].

Such smell arises when

different heritage routes link

sub-types with their super-

types or a specific class with

their abstractions.

 Hierarchy Massey Architecture

Explorer,

Designite

Hub-Like

Dependency

Link Overload [20],

Hub-like

Modularization [28].

These dependencies occur

when abstraction depends on

large number of other

concrete classes or

abstractions

Over reliant Class

[26]:

Dense Structure

[28]:

Modularity,

Structure,

Healthy

Dependency

Designite, ARCADE,

Arcan,

AI Reviewer

Scattered

Functionality

Scattered parasitic

functionality [20].

Such odor occurs if the same

high-level issue has to be

realized by different

components.

 Modularity Designite,

ARCADE

God

Component

Concern overload [20],

God Class [27]

Such smell indicates that

there are too many problems

with the component and

builds up so much control.

 Modularity ARCADE,

Designite,

AI Reviewer

Abstraction

without

disassociation

Unhealthy Inheritance

Hierarchy [23]

Architectural smell that leads

to a situation where a

customer class uses a service

defined as an abstract type

 Structure,

Healthy

Dependency

Massey Architecture

Explorer, Hotspot

Detector

Sci.Int.(Lahore),32(1),27-32,2020 ISSN 1013-5316; CODEN: SINTE 8 31

January-February

6- BARRIERS OF ARCHITECTURE REFACTORING

The requirement for refactoring programming design

appears to be obvious; however software

engineers/architects still need to manage different

hindrances as fast as they endeavor to acquaint their

association with refactoring. Naturally, they will only do it

for their interest but they usually sacrifice over many

advantages [16]. There are a few diverse areas where

obstacles may arise:

5.1 Technology and tools
On one side, the refactoring procedure must be performed

manually owing to the lack of instruments actively

supporting the refactoring of software architecture, which is

often tedious and prone to errors. On the other side, it is

even more cumbersome and error-prone to find and cope

with architectural issues in subsequent stages. If a catalog

or scheme of refactoring patterns is available, software

architects can improve the software much more efficiently

[18].

5.2 Development process

The mechanism of refactoring must be explicitly

incorporated into the general method of growth. Apart from

that, project management will not schedule sufficient

resources for purposes of rehabilitation. Furthermore,

duties for refactoring must be explicitly assigned to various

stakeholders, such as testers or software architects [18].

5.2 Practical Implementation
If the design erosion of the software system is

sophisticated, tactical refactoring can only cure the

symptoms and not the causes, reengineering or even

rewriting can be more appropriate and efficient [19]. Such a

scenario could be intimated when refactoring activities

cannot boost the quality to a higher media (such as bug

rates or architecture metrics).

5.4 Management and organization:
Software engineering's primary assets are often regarded by

the institution's participants, like product management.

Factors like "the design of software architecture should first

be correctly conducted so that no problems can ever occur"

overlook the reality that all but small projects are rapidly

changing. First, at least not in complete detail, software

engineers do not originally understand all specifications.

Therefore, choices can only take into consideration current

knowledge [17]. As an early understanding deepens, it is

necessary to check and refine prior decisions.

6 CONCLUSION
As Martin Fowler suggests, architectural refactoring

usually includes code refactoring to making it more

sustainable without altering its empirical behavior. We

concentrate on program entities such as packages, classes,

and techniques for code refactoring. Code refactoring is

indeed a structure-preserving bottom-up activity while

architectural refactoring is a top-down process that is used

to enhance the quality of the structure. It affects elements,

connectors, modules, interfaces. Architectural refactoring is

an intentional method for removing architectural odors

without altering the code's features or functionality We

addressed the distinct classes of poor smell in software

architecture in this article and we also try to address the

distinct instruments and compare them over specified

guidelines and characteristics with one another. According

to this debate, Designite is an instrument that can manage

most types of classes of bad smells, but the drawback is it

only works with the Windows platform and supports C #

language. Similarly, ControlCenter gives the best

performance although it's a semi-automatic tool for

refactoring.

REFERENCES:

[1] Zimmermann, O. Architectural refactoring: A task-

centric view on software evolution. IEEE

Software, 32(2), pp. 26-29 (2015).

[2] Fowler, M. Refactoring: Improving the design of

existing code. In 11
th

 European Conference, Jyväskylä,

Finland, June 9 - 13, (1997).

[3] Kruchten, Philippe, Henk Obbink, and Judith Stafford.

The past, present, and future for software

architecture. IEEE software, 23(2), pp. 22-30 (2006).

[4] Joshi, Rohit R., and Rajesh V. Argiddi. Author

identification: an approach based on style feature

metrics of software source codes. International

Journal of Computer Science and Information

Technologies, 4(4), (2013).

[5] Kim, Miryung, et al. An empirical study of refactoring

challenges and benefits at Microsoft. IEEE

Transactions on Software Engineering, 40(7), pp 633-

649 (2014).

[6] Samarthyam, et al. Refactoring for software architecture

smells. Conference on 1
st
 International Workshop on

Refactoring ACM, (2016).

[7] Terra, Ricardo, et al. Recommending refactoring to

reverse software architecture erosion. 16th Conference

on Software Maintenance and Reengineering 2012,

IEEE, (2012).

[8] Xiao, Lu, et al. Identifying and quantifying architectural

debt. International Conference on Software

Engineering ’16 38
th

, ACM, (2016).

[9] Kumar, M. Raveendra, and R. Hari Kumar.

Architectural refactoring of a mission critical

integration application: a case study. 11
th

 India

Software Engineering Conference, ACM, (2011).

[10] Newman, Sam. Building microservices: designing

fine-grained systems. O'Reilly Media, Inc, (2015).

[11] Syed, Madiha H., and Eduardo B. Fernandez. The

software container pattern. 22
nd

 European conference

on Pattern Language of Program, (2017).

[12] Arcelli, Davide, at al. Performance-Driven Software

Architecture Refactoring. International Conference on

Software Architecture Companion (ICSA-C), IEEE,

(2018).

[13] Arcelli, Davide, at al. Antipattern-based model

refactoring for software performance

improvement. ACM SIGSOFT conference on Quality

of Software Architecture, (2012).

[14] Trubiani, Catia, and Anne Koziolek. Detection and

solution of software performance antipatterns in

palladio architectural models. ACM SIGSOFT

Software Engineering Notes 36.5, pp.36-36 (2011).

[15] Arcelli, Davide, et al. EASIER: an Evolutionary

Approach for multi-objective Software archItecturE

32 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),27-32,2020

January-February

Refactoring. IEEE International Conference on

Software Architecture, (2018).

[16] Ganesh, S. G., Tushar Sharma, at el. Towards a

Principle-based Classification of Structural Design

Smells. Journal of Object Technology, 12(2), pp.1-

1(2013)

[17] Mo, Ran, et al. Hotspot patterns: The formal definition

and automatic detection of architecture smells. 12
th

Working IEEE/IFIP Conference on Software

Architecture, IEEE, (2015).

[18] Le, Duc Minh, et al. Relating architectural decay and

sustainability of software systems. 13
th

 Working

IEEE/IFIP Conference on Software Architecture,

(2016).

[19] Azadi, Umberto, at el. Architectural smells detected by

tools: a catalogue proposal. International Conference

on Technical Debt (2019).

[20] Le, Duc Minh, et al. An empirical study of

architectural change in open-source software

systems. 12
th

 Working Conference on Mining Software

Repository. IEEE, (2015).

[21] Kim, Miryung, at el. A field study of refactoring

challenges and benefits. Foundation of Software

Engineering 12
th

 proceedings of the ACM SIGSOFT,

(2012).

[22] Baum, David, et al. Visualizing Design Erosion: How

Big Balls of Mud are Made. 6
th

 IEEE Working

Conference of Software Visualization, (2018).

[23] Buyya, Rajkumar, at el. Market-oriented cloud

computing: Vision, hype, and reality for delivering it

services as computing utilities. 10
th

 IEEE Conference

on High Performance Computing and Communication,

(2008).

[24] Hovorushchenko, Tetiana, at el. Intelligent System for

Determining the Sufficiency of Metric Information in

the Software Requirements Specifications. 2
nd

International workshop on Computer Modelling and

Intelligent System, (2019).

[25] Samarthyam, Ganesh, at el. Refactoring for software

architecture smells. Proceedings of 1
st
 Internatinal

workshop of Software Refactoring, ACM, (2016).

[26] Bass, Len, Paul Clements, and Rick Kazman. Software

architecture in practice. Addison-Wesley Professional,

(2003).

[27] Lauder, at el. Legacy system anti-patterns and a

pattern-oriented migration response Systems

Engineering for Business Process Change. Springer,

London, pp 239-250, (2000).

[28] Manolescu, Dragos A. Workflow enactment with

continuation and future objects. ACM SIGPLAN

Notices 37(11), pp.40-51 (2002).

[29] Zimmermann, Thomas, at el. Predicting defects for

eclipse. 3
rd

 International Workshop on Predictor

Model in Software Engineering '07: International

Conference on Software Enginering, IEEE, (2007).

[30] Simmonds, Jocelyn, and Tom Mens. A comparison of

software refactoring tools. Programming Technology

Lab (2002).

[31] Beck, Kent, and Erich Gamma. Extreme programming

explained: embrace change. addison-wesley

professional, (2000).

[32] Hamid, Almas, et al. A comparative study on code

smell detection tools. International Journal of Advance

Science and Technology 60, pp.25-32.

