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1. INTRODUCTION 

The technique of representing groups by graphs invented in 

nineteenth century by a mathematician named Cayley , where 

vertices correspond to the elements of a groups and the edges 

correspond to group generations. 

The following definitions which will be used in the squad due 

to (Harary.F [6] ) , (Gallran.J [4]) and (Fraleigh.J [3] ) . 

Definition 1.1 : A graph Γ = (V ,E ) consists of a finite 

nonempty set V=V (Γ) of n points together with a prescribed 

set E of q unordered pairs of distinct points of V . 

We call V(Γ) the vertex-set of ɼ , and E(Γ) the edge-set of Γ, 

often denoted by V and E respectively , the graph Γ will be 

called an (n,q)-graph where n is the number of vertices and q 

is the number of edges in Γ . 

Each pair x={u,v} of vertices in E (Γ) is an edge of Γ , and x 

joins u and v. Sometimes, we write x=uv , and say that u and 

v are adjacent vertices (by u adj .v) , u and x are incident with 

each other , as are v and x . 

Definition 1.2: The order of Γ is the number of vertices of Γ 

and denoted by | V (Γ) |. 

Definition 1.3: A path is an open trail with distinct vertices 

and edges. 

Definition 1.4: A cycle is a closed path. 

Definition 1.5: A graph is K-regular if every vertex is 

connected to k other vertices through k-edges  

Definition 1.6: Girth of Γ is the length of a shortest cycle (if 

any) in Γ, denoted by g (Γ). 

Definition 1.7: A subgraph of Γ is a graph having all of its 

vertices and edges in Γ. In other word a graph R is called a 

subgraph of a graph Γ if V (R) ≤ V (Γ) and E (R) ≤ E (Γ). 

Definition 1.8: A simple graph is undirected graph that has 

no loops and no more than one edge between any two 

different vertices. 

Definition 1.9: two graphs Γ 1 and Γ 2  are said to be 

isomorphic (denoted by Γ 1 ≅  Γ 2 ) if there exists a 1-1 

correspondence between their vertex sets , which preserves 

adjacency . 

Definition 1.10:  A graph is  connected if every pair of 

vertices there is at least the path joining them . A graph is that 

is not connected is called disconnected.  

Definition 1.11:  A graph is complete graph Kn if every pair 

of its vertices adjacent. Thus Kn is regular of degree n-1. 

Definition 1.12 : the valency  of vertex denoted by val(vi)= 

number of edges incident to vi ( sometimes we called it 

degree of vertex vi and denoted by di or deg vi ) . 

Definition 1.13:  A connected graph Γ is called Hamiltonian 

if there is a cycle which includes every vertex of Γ  , such 

cycle is called a Hamiltonian path . 

Definition 1.14: A connected graph Γ is called Eluerian  if 

there is a closed trail which includes every edges of Γ , such 

trial is called an Eluerian trial. 

Definition 1.15: The distance dΓ  (u,v) between two vertices u 

and v in Γ is the length of shortest path joining them if any ; 

otherwise dΓ (u,v)=∞ , if u=v then dΓ (u,v) = 0 (in digraph the 

distance between two vertices u and v is length of any 

shortest such path )  

Definition 1.16: A trail is a walk with distinct edges and 

distinct vertices. 

Definition 1.17: A graph Γ is n-transitive, n≥1 if it has an n-

rout and if there is always an automorphism of Γ sending 

each n-rout onto any other n-rout. 

Definition 1.18: A group  is an order pair (G,*) where G is a 

non-empty set and * is a binary associative operation on G 

which contains an identity (the natural element e ) and 

inverse for each element. 

Definition 1.19: If a subset H of a group G is itself a group 

under the operation of G, we say H is a subgroup of G. 

Definition 1.20: Let G be a group and let gi ϵ G for i ϵ I if 

this {gi : i ϵ I } subgroup is all of G then {gi : i ϵ I} generates 

G and the gi are generates  

of G . 

Definition 1.21: Let G be a group . A subset Ω of G is a 

generating set for group G if every element of G can be 

expressed as a product of elements of set Ω.  

Definition 1.22: Let A be the finite set {1,2,…,n}. The group 

of all permutations of A is the symmetric group on n letters 

and is denoted by Sn. 

Definition 1.23: A permutation of a set A is one to one 

function from A onto A. 

Definition 1.24: An element of a group an involution if it 

has order 2 (i.e an involution is an element a such that a ≠ e 

and a
2
 = e where e is the identity element). 

2. Cayley Graphs of Groups  

Cayley graph are of general interest in the field of Algebraic 

Graph theory and also have certain properties desirable in 

practical applications. 

We present here a brief survey of some of the broader results 

and conjectures surrounding Cayley graphs. 

Theorem 2.1 ( kutnar.K. [7] ) : 

Let G be a finite group. Every connected Cayley graph on G 

has a Hamiltonian cycle if |G| has any of the following forms 

(where p,q, and r are distinct primes): 

1. kp, where 1 ≤ k < 32 , with k ≠ 24, 

2. kpq , where 1 ≤ k ≤ 5, 

3. pqr, 

4. kp2, where 1 ≤ k ≤ 4, 

5. kp
3
 , where 1 ≤ k ≤ 2 . 
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It is clear that every Cayley graph over a group of prime 

order is Hamiltonian, since all such groups are cyclic. 

Theorem 2.2 ( Puskey.F. [9] ) : 

The Cayley graph Cay (Ω:Sn) ,where Ω is the three element 

generating set given below , is Hamiltonian. 

Ω = {(1,2) , (1,2) (3,4) (5,6)…,(2,3)(4,5)(6,7) … } 

Theorem 2.3 ( pak.I.[8] ): 

Every finite group G of size |G| ≥ 3 has a generating set Ω of 

size 

 |Ω| ≤ log2 |G|, such that the corresponding Cayley graph Cay 

( Ω : G ) , contains a Hamiltonian cycle . 

Theorem 2.4 ( Alspach.B.[1] ) : 

Every connected cubic Cayley graph on a dihedral group has 

a Hamilton cycle. 

Theorem 2.5 ( Tanakaa.Y.[12] ) : 

Let S and Ś be two sets of transpositions on {1, 2,…, n} . The 

Cayley graphs Cay (S: Sn ) and Cay ( Ś : Sn ) are isomorphic 

if and only if T(S) and T(Ś) are isomorphic . 

Theorem 2.6: ( Gallian.J.[4] ) : 

Let G be a group. If N1 and N2 are normal subgroups of a 

finite index in Γ , then N1∩N2  is also a normal subgroup of 

finite index of G . 

Theorem 2.7 ( Curran.S.[2] ) : 

For any minimal generating set Ω of transpositions in Sn (n > 

4) and for any fixed x ϵ Ω  there is Hamiltonian cycle in the 

graph Cay (Ω:Sn) in which every other edge is x . 

3. Group Representation by Cayley Digraph. 

We will introduce the Cayley dighrap of group. Provides  a 

method of visualizing the group and its properties. Properties 

such as commutativity and the multiplication table of group 

can be recovered from Cayley digraph. Also we introduce 

some examples for Cayley digraphs of groups, and we will 

introduce some important theorems related to Cayley graph 

of groups. 

3.1 The Cayley Digraph of a Group: 

Definition 4.1.1: A directed graph (or digraph) is a finite 

set of points called vertices, and a set of arrows called arcs 

(edges) , connecting some of the vertices . 

Definition 4.1.2 Cayley digraph of a group: 

Let G be finite group G and Ω a set of generators for G . 

We define a digraph Cay (Ω: G), called the Cayley digraph of 

G with generating set as follows. 

1- Each element of G is a vertex of Cay (Ω:G) 

2- For v and u in G , there is an arc(edge) from u to v if 

and only if  

u = vx , for some x ϵ Ω  

In Cayley digraph method we proposed that each generator 

by assigned a color , to know which particular generator 

connects two vertices , and that the arrow joining v to vx be 

colored with color assigned to x , we called the resulting 

figure the color graph of the group . Rather than use colors 

to distinguish the different generators, we will use solid 

arrows, dashed arrows, and dotted arrows. 

In general, if there is an arc from v to u , there need not be an 

arc from u to v , note that there are several ways to draw the 

digraph of a group given by a particular generating set . 

However, it is not the appearance of the graph that is relevant 

but the manner in which the vertices are connected. 

These connections are uniquely determined by the generating 

set . Thus, 

Distances between vertices and angles by the arcs have no 

significance. 

It is important to note that Cayley graph of the same group 

can vary depending on which set generates the group.  

The following examples illustrate the representation of 

certain groups by Cayley digraphs. 

Example 3.1.1  

The Cayley digraph for the symmetric group S3 with the 

generating set  

Ω = {(1,2),(1,2,3)} 

The incident function is constructed as follows  

(e)(1,2,3) = (1,2,3)                                   (1,2,3) (1,2) = (1,3) 

(1,3,2)(1,2,3) = (e)                                   (1,3,2) (1,2) = (2,3) 

(1,2,3)(1,2,3) = (1,3,2)                            (e) (1,2) = (1,2) 

(1,3) (1,2,3) = (1,2)                                  (1,2) (1,2) = (e) 

(1,2) (1,2,3) = (2,3)                                  (1,3) (1,2) = (1,2,3) 

(2,3) (1,2,3) = (1,3)                                  (2,3) (1,2) = (1,3,2) 

 

                                                                   •                                    (1,2,3) 

                                                                                                         (1,2) 

                                                                   • 

                                                               (2,3) 

 

                                     (1, 2)      •                                  •(1,3) 

(1)(2)(3)        •                                                                               • (1,2,3) 

Figure 3.1.1 

Cay ({(1,2),(1,2,3)} : S3 ) 
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from this a Cayley digraph for the symmetric group S3 

with the generating set Ω = * (1,2) , (1,2,3) + . by looking 
at the identity element e , we can deduce that the solid 
arrow represents multiplication by (1,2,3) , because 
starting at the identity e , and following the solid arrow 
yields (1,2,3) . By the same logic, the dashed arrow 
represent (1,2) . The element (1,2,3) is of order 3 because 
starting at the identity and following the solid arrow once 
yields (1,2,3) , follow it again and you get to (1,3,2) , 
follow it once more and you get back to e, therefore 
applying the solid arrow three times is equiregular to the 
identity . By the principal, (1, 2) had order 2 . a quick way 
to see that an element in the generating set order 2 is to 
look and see if it has a double-headed arrow, i.e. an arrow 
on both sides of the arc . 
The Cayley digraph illustrates several interesting facts 
about S3. 
The Cayley digraph shows us that S3 is non-commutative 
group . this can be seen by starting at any element , say 

(1,3) and following the solid arrow and then the dashed 
arrow , which yields e , then start at (1,3) again and follow 
the dashed arrow and then the solid arrow , this results in 
(1,3,2). Since e is different that (1,3,2) then S3  is non-
commutative group . 
The Multiplication table of the group can be recovered 
from the Cayley digraph. As previously stated , (1,2,3) 
corresponds to traveling the solid arrow , therefore let 
(1,2,3) = S , and by the same logic , let (1,2) = D .     
Then using this SD notation the rest of the elements can 
be represented in the same manner. (1,3) = SD , (1,3,2) = 
SS , and (2,3) =DS . Using this notation the multiplication 
table can be recovered by starting at the identity and 
traveling the corresponding arrows.  
For example (1,3,2)(1,3) = SSSD = (1,2) and (2,3)(1,3) = 
DSSD = (1,2,3). 
Below is the multiplication table for S3 . The 
multiplication table is dependent on the group , not on the 
generating set  

 
Table (1) 

Multiplication table of S3 

 e (1,2)=D (1,2,3)=S (1,3)=SD (1,3,2)=SS (2,3)=DS 

E e (1,2) (1,2,3) (1,3) (1,3,2) (2,3) 

(1,2)=D (1,2) e (2,3) (1,3,2) (1,3) (1,2,3) 

(1,2,3)=S (1,2,3) (1,3) (1,3,2) (2,3) e (1,2) 

(1,3)=SD (1,3) (1,2,3) (1,2) e (2,3) (1,3,2) 

(1,3,2)=SS (1,3,2) (2,3) e (1,2) (1,2,3) (1,3) 

(2,3)=DS (2,3) (1,3,2) (1,3) (1,2,3) (1,2) e 

Example 3.1.2  
The Cayley digraph for the cyclic group Z5 with generating set  
Ω = *1+        (Z5=<1>) 

                             •0                                                                               •0                     

 

    4   •                                           •1                             4•                                                •1                 

         

 

            3 •                               • 2                                                                          3•                           •2 

                                  Cay ({1}: Z5)                                                                                    Cay({1,3}:Z5) 

Figure 3.1.2 
Cay ({1}:Z5) and Cay ({1,3}:Z5) 

 
On the left figure the Cayley digraph of Z5 with generating 
set {1} . 
In the Cayley digraph each of the elements of the group Z5 
are the vertices of the digraph . The solid arrow 
represents addition by 1 , which is the only element in the 

generating set .The Cayley digraph illustrates several 
things about Z5 with generating set {1}.  The first point of 
interest is that 1 is order 5 , because if you start at the 
identity 0, and add 1 five times which equivalent to 
following the solid arrow five times , you get back to the 
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identity . Another property that should be noted is Z5 is 
cyclic because there is only one kind of arrows , which 
implies that there exist a generating set with only one 
element . (we can see Z5 in [18]) 
Note : In general the Cayley digraph for Zn = <1> is Cn . 
3.2 The basic properties of Cayley Digraphs  of  Groups 
In this section we will introduce some important 
theorems related to Cayley graphs of groups contain the 
basic constructive properties . 
Definition 3.2.1 (Gross.J.[5])  
An arbitrary graph Γ is said to be a Cayley graph if there 
exist a group G and a generating set Ω such that Γ is 
isomorphic to the Cayley graph for G and Ω. 
Theorem 3.2.1  
The complete graph K2n+1  is a Cayley graph for group 
Z2n+1 + with generating set {1, 2,…,n+ . 
Proof  
Let Γ=K2n+1 is complete graph that’s mean every vertex vi 
in V (Γ) 
Must adjacent with 2n vertices of Γ . Now when draw 
Cayley graph for group Z2n=1  with generating set *1,2,…,n+ 
. WLOS first ny generating 1 we draw the cycle C2n+1  from 
v0 and traverse all the vertices in closed path to v2n+1 = v0 
(since in Z2n+1 , 0 equal 2n+1) 
(i.e v0 adj. v1 and v0 adj. v2n) 
            Now by generating 2 we draw the all edges in the 
following form  
v0  adj. v2         v1 adj. v3 
v2 adj. v4         v3 adj. v6 
       .                        . 
       .  . 
       . . 
v2n adj. v1        v2n-1 adj. v0 

Following the same argument, every vertex of Γ adjacent 
with all vertices of  Γ. Thus, the constructed graph is a 
complete graph K2n+1 . 
Note: the complete K2n is a Cayley graph for group Z2n with 
generating set *1,2,…,n+ such that appear bidirected –arc 
with generator n . 
Definition 3.2.2 
             A graph Γ is vertex-transitive if for all vertex pairs 
u,v ϵ V (Γ) , there is an automorphism of Γ that maps u to 
v . 
(i.e. if Ф: Γ        Γ ; automorphism if u adjacent to v , then Ф 
(u) adjacent to v) 
Lemma 3.2.1  
          For any group G , the Cayley digraph is vertex-
transitive . 
(i.e every Cayley digraph is vertex-transitive) 
Proof  
      Let a and b be any two elements from the group G . 
We must show there is an adjacency-preserving 
automorphism Ф of G mapping a to b.Define Ф (x) = (ba-

1)x, for all x ϵ G , clearly Ф maps a to b since Ф(a) = (ba-1-) 
a=b (a-1a) = be = b (associativity) 
The map Ф is injective since if Ф (x) = Ф (y) then (ba-1) 
x= (ba-1) y and so x=(ba-1)-1(ba-1) x = (ba-1)-1(ba-1) y = y 
(inverses) 

Similarly Ф is surjective since for any x in G , 
Ф (ab-1x) = (ba-1)(ab-1) x = x , so Ф is a bijection . 
Finally , Ф maps vertices adjacent to a to vertices adjacent 
to b . 
Ф (agi) = (ba-1)(agi) = bgi for all gi ϵ Ω . 
      While every Cayley graph is vertex-transitive, but a 
vertex-transitive graph Γ is Cayley if there exists an 
automorphism group G of Γ that acts regularly on V (Γ) , 
i.e for each u , v ϵ V (Γ) , there exists exactly one 
automorphism 
Ф (u) = v . 
Example 3.2.2  
           The Petersen graph is smallest vertex-transitive but 
is not a Cayley graph, since its automorphism group has 
no transitive subgroup of order 10 
Theorem 3.2.2 
Every Cayley digraph is strongly-connected. 
Proof 
      In view of lemma 3.2.1, it is sufficient to show the 
existence of a path from the identity, e, to any other group 
element g. This is easy since there is , by definition of a 
generating set , a sequence of generators g1,g2,…,gk whose 
product is g . 
          These lemmas imply that every (undirected) Cayley 
graph is vertex-transitive and connected. 
Notes: 
The Cayley graph Cay (Ω: G) is: 
1. loopless if and only if e ∉ Ω. 
2. undirected if and only if Ω = Ω -1 . 
3. connected of and only if Ω generates G. 
4. simple if and only if undirected.  
5. if |Ω| = k , then Cay (Ω:G) is k-regular. 
                              
4. Hamiltonian and Eulerian Cayley Graphs 
We will introduce Hamiltonian cycles and paths in Cayley 
digraph and  
graph of a group and we will introduce if Cayley digraph 
and graph of a group is Eulerian graph . 
4.1 Hamiltonian cycles and paths in Cayley digraph and 
graph : 
      Finding Hamiltonian cycles and paths in graph is 
difficult problem. 
The classical question raised by lováse asks whether 
every Cayley graph is Hamiltonian . 
           In this section, we introduce some results on Cayley 
graph of symmetric groups Sn. 
Theorem 4.1.1 (Ruskey.F.[9])  
                    A set Ω = *t1,t2,…,tk} of transpositions generates 
Sn if and only if undirected graph associated with Ω 
(denoted by G (Ω) with n vertices where each edge 
denotes one of transpositions) is connected . 
Proof  
      Consider the elements 1 and k . we can construct a 
permutation σ 
such that σ (1) = k . Let σ = tir … ti3 ti2 ti1 . WLOS, assume 1 
appears for the first time in ti1 and k appears for the first 
time in tir . 
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Then , there is path from 1 to k as follows : 
 
1                 V1                                   V2    …                    K 
  ti1                     ti2                                     tir      
 
     Conversely, suppose that G (Ω) is connected. There is 
no loss of generality in assuming that G (Ω) is a tree . The 
proof is by induction on n . The result is true for n =2 . 
     Inductively , assume the result is true for all m < n . 
since G (Ω) is a tree , it has a pendant vertex  , and there is 
no loss of generality in labelling this vertex n and the 
vertex connected to it n -1 .  
Then (n -1 , n ) ϵ { t1, t2,…,tk} , and we may denote it as tk . 
Remove the vertex n and the edge from n -1 to n ; the 
resulting graph is still connected, since n was a pendant 
vertex. By the inductive hypothesis 
<t1,t2,…,tk-1> = Sn-1 . Then Γ = <Sn-1 , tk > . Since (1, 2,… , 
n-1) ϵ Sn-1 , 
(1,2,…,n-1)(n-1 ,n)=(1,2,…,n-1,n) ϵ Γ. 
Also, (1,2) ϵ Sn-1 . Thus Sn = < (1, 2),(1,2,…,n) > ⊆ Γ , and 
we have equality . The result follows by induction. 
Example 4.1.1 
G (Ω) with 4 vertices (associated with S4) there two forms 
either 

 
1- Line graph (p4) 
 
               •                     •                •                    • 

1                              2                         3                               4 

2 Star graph (k1,3) 
                                                                         
                                       •3 

 
                                            
 
               •                       •                                  • 

                    2                                   1                                                    4 

 

That’s mean S4 generated by the set of 

transpositions  

1- Ω = *(1,2),(2,3),(3,4)} 
2- Ω =*(1,2)(1,3),(1,4)+          (this graph we can 

see in [9]) 
Theorem 4.1.2 
    The graph Cay (Ω:Sn) is Hamiltonian whenever Ω is a 
generating set for Sn consisting of transpositions , then the 
resulting Cayley graph contains a Hamiltonian cycle . 
Theorem 4.1.3 
           If n is even (for n ≥ 4 ), the Cayley graph of Sn 
generated by *(1,2),(1,2,…,n)+ does not contain a 
Hamiltonian cycle . 
Proof  
             Let a = (1,2) and b = 1,2,…,n) 
Then c=ab-1=(1,2)(1,n,n-1,n-2,…,3,2)=(1,n,n-1,…,3) is of 
order  
n-1 , which is odd . 

          But [G:<a>]  , which contradicts Rankin and 

swans theorem (4.1.3) .  
Thus the resulting Cayley graph does not contain a 
Hamiltonian cycle. 
The existence of Hamiltonian cycles in Cayley graph of S3 
and S5 generated by {(1,2),(1,2,3)} and {(1,2),(1,2,3,4,5)} 
respectively , suggests the possibility of Hamiltonian 
cycles existing in Sn Cayley graphs when n is odd. 
4.2 Eulerian Graphs and Cayley Graphs  
           The problem of finding Eulerian trail (closed) is 
perhaps the oldest problem in graph theory ; it was 
originated by Euler in the 18th century . 
           We can imagine that Cayley graph of group is 
Eulerian graph relying on the basis of the following 
theory. 
Theorem 4.2.1 (Harary.F.[6]) 
Graph Γ (V.E) is Eulerian if and only if Γ is connected and 
the degree of every vertex in Γ is even. 
Theorem 4.2.2 
Let Γ be a Cayley graph of the group G with set generator 
Ω, and let |Ω| is even. Then Γ is Eulerian graph.  
Proof:   
    Let Ω be a set of generators of a group G with 2n 
generators, where n is an integer, so the constructed 
Cayley graph in  
2n-regular. Thus valancy (vi) is even for all vi in Γ. 
By previous theorem,then the graph constructed is 
Eulerian graph. 
We can back to figure 3.2.3 and note Cay 
({(1,2),(1,2,3)}:Ss) is Eulerian graph since |Ω|=2 is even 
and note Eulerian closed trail as the following 
{(1,3,2),e,(1,2),e,(1,2,3),(1,3)(1,2,3),(1,3,2),(2,3),(1,3),(1,
2),(2,3),(1,3,2)}. 
Lemma 4.2.1 (Ruskey.f.[9]). 
A connected directed multigraph is Eulerian if and only if  
out-degree of each vertex is the same as its in-degree. 
Note : Let Γ be an undirected Cayley graph generated by a 
transposition generating tree on n vertices . If Π is an even 
permutation, then the outdegree and indegree of Π are 
⎾(n-1)/2⏋ and ⎿(n-1)/2⏌,respectively . If is Π an odd 
permutation, then the indegree and outdegree of Π are 
⎾(n-1)/2⏋ and ⎿(n-1)/2⏌ ,respectively . 
(i.e the indegree is greater than or equal to the outdegree 
for an odd vertex). 
Moreover, Cayley digraph is regular if n is odd. 
We can say, not every Cayley graph is Eulerian since we 
have example explain Cayley graph is not Eulerian: 
Cay ({(1,2),(1,3),(2,3)}:S3).  
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