
Sci.Int.(Lahor),31(5),751-755,2019 ISSN 1013-5316;CODEN: SINTE 8 751

September-October

A PIPELINED 32-BIT SINGLE PRECISION FLOATING-POINT COORDINATE
ROTATION DIGITAL COMPUTER COPROCESSOR ON FIELD

PROGRAMMABLE GATE ARRAY
 M.Nasir Ibrahim

1,
, Chen Kean Tack

1
, Mariani Idroas

2

1*School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

2School of Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
For correspondence; Tel. + (607) 5535260, E-mail: mdnasir@utm.my

ABSTRACT: With the rapid growth of digital signal processing (DSP) applications, there is a high demand for efficient

implementation of complex arithmetic operations. In the last five decades, the Coordinate Rotation Digital Computer

(CORDIC) algorithm has been widely adopted to formulate and implement a variety of DSP algorithms for reconfigurable

computing. In this research, an IEEE-754 compliant pipelined 32-bit single-precision floating-point CORDIC coprocessor for

reconfigurable computing was implemented on Field Programmable Gate Array (FPGA) to accelerate the performance of

several arithmetic computations, such as multiplication, division, and 11 elementary transcendental functions. As the CORDIC

algorithm suffers from limitations for its convergence domain and speed, the unified argument reduction algorithm and the

hybrid angle method were adopted. In this research, the developed coprocessor was integrated into a NIOS II soft processor to

develop a NIOS II-based embedded System-on-Chip (SoC) for verification and performance analysis. The coprocessor was run

on Altera DE0 board with a clock frequency of 50MHz. The experimental results showed the precision up to six decimal places

and the speedup from software to hardware executions up to approximately 600 times. Besides, the performance improvement

of approximately 553 times was achieved when executing one-dimensional Discrete Cosine Transform (DCT) algorithm using

the developed coprocessor.
Keywords: CORDIC, FPGA, coprocessor, algorithm, arithmetic

1. INTRODUCTION
A basic CORDIC algorithm is derived based on two-

dimensional vector rotation in a circular coordinate system

through a given angle, , as illustrated in Figure (1) and its

equations are shown in equation (1) and equation (2) [1].

 sincos' yxx  (1)

 sincos' xyy  (2)

Fig (1) A vector rotation of basic CORDIC algorithm

The equations (1) and (2) can be expressed in matrix form as:
















 










y

x

y

x





cossin

sincos

'

'
 (3)

After simplification, the equation (3) becomes
















 



















 










y

x

y

x

y

x

1tan

tan1

tan1

1

1tan

tan1
cos

'

'

2 










 (4)

(Trigonometry identity:



2tan1

1
cos


)

The rotation angle  is then approximated by the sum of a

series of small successively micro-rotation angles, αi. Since

the micro-rotation angle can be positive or negative (depends

on the rotation direction), a rotation direction parameter, σi, is

introduced.

13210  n  (5)

or 






1

0

n

i

ii  where σi Є {-1, 1}.

To further simplify the equation (4), the micro-rotation angles

αi are chosen such that i
i

 2tan where i = 0, 1, 2, 3….n-

1. By doing so, the multiplication by the tangent term is

reduced to simple shift operation, which results in faster

operation for hardware implementation. Besides, the cosine

term in equation (4) can also be further simplified and then

represented as the scaling factor term, ki. The ki can be treated

as a constant where a set of predetermined αi is fixed and

constant in either clockwise or anti-clockwise direction.

Therefore, the simplified equation is shown in equation (6).






















 


















i

i

i

i
i

i

i

y

x
k

y

x

12

2cos
1

1

1

1

1




 (6)

where
i

ik
221

1


 and σi Є {-1, 1}.

However, the ki needs to be compensated from equation (6)

so that the equation consists of a simple shift and add

operation only. To achieve this, the vector rotation is

performed first by removing the ki term followed by the

scaling compensation operation upon the results after n

iteration. Since the product of ki terms converges to a

constant value as the number of iterations approach infinity,

the scaling compensation operation is reduced to a single step

mailto:mdnasir@utm.my

752 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(5),751-755, 2019

September-October

after n iteration. The product of the reciprocal of ki terms, Kn

was computed as shown below [2].

 








 

1

0

1

0

2 646760258.121
1

n

i

n

i

i

i
n

k
K

As mention earlier, the rotation angle  is approximated by

the sum of a series of smaller micro-rotation angle αi with a

unique sequence of rotation directions denoted by σi. Thus,

an angle accumulator is required to accumulate the micro-

rotation angles at each rotation while the corresponding

micro-rotation angular values are stored inside a small lookup

table or hardwired. Equation (7) shows how the rotation

angles perform the accumulation, where the values of tan
-1

(2
-

i
) for each iteration are stored in a lookup table.

)2(tan 1
1

i
iii zz 

   (7)

The vector rotations of the CORDIC algorithm are usually

performed in one of two modes, which are rotation mode and

vectoring mode. In the rotation mode, the input vector is

rotated by a specific angle where the angle accumulator is

initialized with the desired rotation angle and then aimed to

reduce the angle towards zero with a suitable choice of

rotation directions for each rotation. Meanwhile, in the

vectoring mode, the input vector is rotated towards the x-axis

through any angle where the angle accumulator is initialized

with zero and then aimed to reduce the y component towards

zero with a suitable choice of rotation directions for each

rotation. Therefore, the rotation direction parameter σi can be

determined by the following equation (8).

)({ ii zsign for rotation mode (8)

)({ ii ysign for vectoring mode

The final equation set for the basic iterative algorithm of

CORDIC in circular coordinate system is summarized below:

)2(1 i
i

iiii yxkx 
   (9a)

)2(1 i
i

iiii xyky 
   (9b)

iiii zz 1 (9c)

where

)({ ii zsign for rotation mode

)({ ii ysign for vectoring mode

)2(tan 1 i
i



After n iterations, the equations are different based on the

mode of operation as shown below:

For rotation mode,

)sincos(0000 zyzxKx nn  (10a)

)sincos(0000 zxzyKy nn  (10b)

0nz (10c)

For vectoring mode,

)(
2

0
2

0 yxKx nn  (11a)

0ny (11b)














 

0

01
0 tan

x

y
zzn (11c)

Due to the iterative nature of the CORDIC algorithm, the

iterative computations for one rotation must be done first

before proceed to the next rotation [3] in order to prevent

concurrent computations. Therefore, this algorithm suffers

from latency and speed bottlenecks.

Pipelining is a powerful method to increase the performance

or speed of a system by reducing the critical computational

path delay. The basic concept for this method is to overlap

the processing of several tasks so that more tasks can be

accomplished in the same amount of time, and then increase

the throughput of the system. The throughput referred to the

shortest possible time interval between subsequent pipeline

computations. Deprettere et al. [4] has first suggested a

pipelined architecture for CORDIC algorithm to benefit the

execution speed in array processing. In addition, the pipelined

based CORDIC has been used for several signals and

graphical processing applications such as digital filters [5],

linear transformations [6], waveform generators [7], and 3D

graphics [8].

In order to pipeline the hardware architecture of the basic

CORDIC, the register needs to be inserted into the data-path

for each partitioned computational stages (iterations) [9]. By

pipelining, the time and area consuming barrel shifters

(which used in basic CORDIC architecture) can be replaced

by hardwired shifters since the shift numbers are fixed for

each stage. A ROM to store micro-rotation angles can also be

eliminated since the corresponding micro-rotation angles

values can be hardwired for each stage. Therefore, the

pipelining improves the throughput by a factor of N but

increases the hardware utilization by a factor less than N,

where N is the total number of iterations [10].

Fig (2) Pipelined CORDIC Architecture [8]

2. PIPELINED FLOATING-POINT CORDIC
COPROCESSOR
In this research, the NIOS II-based embedded SoC is

implemented on Altera DE0 board and operated in 50MHz.

The system was developed in both hardware and software

parts [4] so that it can run the hardware on the NIOS II soft

processor for the purpose of verification and performance

analysis [11].

First, a custom hardware component that consists of all the

required Avalon-MM interface signals needs to be developed

in order to interface with the NIOS II system. This custom

hardware component will be created as a new component

using the Qsys tool to make it executable and accessible by

Sci.Int.(Lahor),31(5),751-755,2019 ISSN 1013-5316;CODEN: SINTE 8 753

September-October

the NIOS II soft processor. The functional block diagram of

the custom component is shown in Figure (3).

Fig (3) The functional block diagram of the custom

component

The Qsys tool of Altera Quartus II software is employed to

establish an SoC design that connects all the required

hardware on the Altera DE0 board through Qsys

interconnect, such as a NIOS II processor, an SDRAM

memory unit, a custom hardware component, an interval

timer, and a system ID peripheral. The block diagram of the

completed NIOS II-based embedded SoC for the design is

illustrated in Figure (4).

Fig (4) The block diagram of the completed NIOS II-based

embedded SoC

Once the SoC design for Qsys system is completed, the

corresponding HDL source file and SOPC information file

can be generated by Qsys tool. Then, the SOPC information

file will be used by the NIOS II Eclipse software to start the

software development.

3. RESULTS AND DISCUSSIONS
The functionality of the developed coprocessor can be tested

and verified using the NIOS II based embedded SoC. The

result from the coprocessor is compared with the result of the

NIOS II software math functions. Both results are displayed

on the console window of NIOS II Eclipse software. The

output results for 13 computable functions that were obtained

from the hardware and software execution on the NIOS II

soft processor are collected and tabulated in Table (1).

Based on the Table (1), all the output results from the

hardware and software executions are almost the same and

achieved the precision up to 6 decimal places. Therefore, the

functionality of the developed hardware coprocessor design is

fully verified.

In addition, the allowable input domain for the developed

coprocessor is also tabulated in Table (2) to show the effect

of the unified argument reduction algorithm to the

convergence domain of the proposed design. As discussed

earlier, the convergence domain is 1.74 for circular mode,

1.12 for hyperbolic mode and 1 for linear mode. By

employing the unified argument reduction algorithm, the

convergence domain for these functions has been

successfully expanded into entire function domain except for

hyperbolic function, where its domain is slightly expanded.

Table (1) The output results obtained by hardware and

software execution for different functions to be evaluated
Functions to

be evaluated

Input values

Software Result

(using C software

math library)

Hardware

Result (using

proposed

coprocessor)

cos(z) 0.785398 0.707107 0.707107

1.745329 -0.173648 -0.173648

3.839724 -0.766045 -0.766044

5.759587 0.866026 0.866026

sin(z) 0.785398 0.707107 0.707107

1.745329 0.984808 0.984808

3.839724 -0.642787 -0.642788

5.759587 -0.500000 -0.500000

arctan(y) 0.562578 0.512449 0.512449

-13.679456 -1.497824 -1.497823

278.945678 1.567211 1.567211

-7867.8948 -1.570669 -1.570669

arccos(m) 0.945623 0.331292 0.331292

0.746982 0.727285 0.727285

0.538921 1.001641 1.001641

0.247789 1.320399 1.320399

arcsin(m) 0.945623 1.239505 1.239504

0.469423 0.488637 0.488637

-0.376981 -0.386534 -0.386534

-0.759988 -0.863295 -0.863294

cosh(z) 0.457824 1.106645 1.106645

Table (2) The allowable input domain for the proposed design

Functions Actual function

domain

Domain for the

proposed design

cos(z) [-∞, +∞] [0, 2π]

sin(z) [-∞, +∞] [0, 2π]

arctan(y) [-∞, +∞] [-∞, +∞]

acos(m) [-1, 1] [-1, 1]

asin(m) [-1, 1] [-1, 1]

cosh(z) [-∞, +∞] [0, 2.77]

sinh(z) [-∞, +∞] [0, 2.77]

exp(z) [-∞, +∞] [0, 2.77]

arctanh(y) [-1, 1] [-1, 1]

logn(w) [0, +∞] [0, +∞]

sqrt(w) [0, +∞] [0, +∞]

x*z [-∞, +∞] [-∞, +∞]

y/x [-∞, +∞] [-∞, +∞]

By using the timestamp timer function, the time elapsed for

hardware and software executions can be captured. The

average execution time in microseconds (us) from 10 samples

and the corresponding approximate speedup are calculated

and tabulated in Table (3).

754 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(5),751-755, 2019

September-October

Table (3) The average execution time from 10 samples for

hardware and software and the approximate speedup achieved
Functions to

be analyzed

The average

execution time for

software (us)

The average

execution time for

hardware (us)

Approximate

speedup

achieved

cos(z) 16621.6 35.9 463

sin(z) 16125.9 35.9 449

arctan(y) 22392.4 37.4 599

acos(m) 15600.2 54.6 286

asin(m) 20259.4 54.7 370

cosh(z) 15600.2 36.8 424

sinh(z) 23128.3 36.6 632

exp(z) 12626.6 37.1 340

arctanh(y) 21625.9 37.6 575

logn(w) 19904.4 186.6 107

sqrt(w) 499.7 184.9 3

x*z 425.0 37.0 11

y/x 130.7 37.0 4

Based on Table (2), the developed coprocessor had

significantly accelerated the computation for most of the

functions when running on NIOS II soft processor. However,

there is only a small speedup achieved for the square root,

multiplication and division operations since the average

execution time is relatively faster than the other computable

functions of the CORDIC algorithm.

To further investigate the performance of the developed

coprocessor in DSP application, the coprocessor is used to

compute one dimensional 8-points DCT algorithm and its

NIOS II console output.

Fig (5) NIOS II console output for 8-point DCT

computation

As shown in Figure (5), the output results after DCT

operation for hardware and software executions are the same.

The software execution took 1302198.9 µs to complete the

computation process while the hardware execution only took

2354.2 µs. It shows that the developed hardware coprocessor

has accelerated the performance of the DCT computation

with the approximate speedup of 553.1 times from software

execution on NIOS II soft processor. Since the DCT

algorithm consists of sine and cosine functions and can be

written in CORDIC-liked form, therefore the developed

coprocessor can solve it efficiently. There are other

CORDIC-liked algorithms that can be solved by the

coprocessor such as Fast Fourier Transform (FFT) and

Singular Value Decomposition (SVD), which is left for future

works.

4. CONCLUSIONS
Based on the simulation and the results obtained from the

NIOS II based embedded SoC, the developed coprocessor has

successfully solved 13 computable functions, which include

cosine, sine, arc-tangent, arc-cosine, arc-sine, hyperbolic

cosine, hyperbolic sine, hyperbolic arc-tangent, exponential,

logarithmic, square root, multiplication, and division. Thus, it

is able to produce precise results with the precision up to 6

decimal places. Furthermore, it also achieved more than 100

times of speedup for most of the analyzed functions when

comparing software and hardware executions. Although there

was a slightly small speedup for square-root, multiplication

and division operations, it is sufficient for most of the

applications. Due to the reconfigurable architecture of the

developed coprocessor, it is also applicable for other

applications such as DSP and image processing.

As for the DCT computation, the developed coprocessor

computed the DCT algorithm in a more efficient way since

the functions can be derived into CORDIC-liked form. The

coprocessor successfully performed the DCT computation

with approximately 553 times faster than the software

computation. This result shows that the coprocessor has the

ability to perform in a more advanced application such as

image compression.

It can be concluded that a pipelined 32-bit single-precision

floating-point CORDIC coprocessor had been successfully

designed for reconfigurable computing on FPGA and has

achieved good performance for several complex arithmetic

functions. In addition, the limitations of the CORDIC

algorithm are also reduced. The developed coprocessor is

applicable for the computation of other algorithms that can be

derived into CORDIC- liked form.

5. ACKNOWLEDGEMENT
The authors would like to acknowledge the Ministry of

Education and Universiti Teknologi Malaysia for the research

grant (GUP 14J98).

6. REFERENCE

[1] Murthy, H.N.S. and Roopa, M. FPGA Implementation of

Sine and Cosine Generators using CORDIC Algorithm.

International Journal of Innovative Technology and

Exploring Engineering, November 2012, Vol. 1, Issue 6,

16-19.

[2] Sharat, K., Uma, B.V. and Sagar, D.M. Calculation of

Sine and Cosine of an Angle using the CORDIC

Sci.Int.(Lahor),31(5),751-755,2019 ISSN 1013-5316;CODEN: SINTE 8 755

September-October

Algorithm. International Journal of Innovative

Technology and Research, March 2014, Vol. 2, Issue 2,

891-895.

[3] Meher, P. K. et. al. 50 Years of CORDIC: Algorithms,

Architectures and Applications. IEEE Transactions on

Circuits and Systems, September 2009, 56(9): 1893-

1907.

[4] Deprettere, E., Dewilde, P. and Udo, R. Pipelined

CORDIC Architectures for Fast VLSI Filtering and

Array Processing. IEEE International Conference on

Acoustics, Speech and Signal Processing, 1984, 250-253.

[5] Ma, J. et. al. Efficient Implementations of Pipelined

CORDIC Based IIR Digital Filters Using Fast

Orthonormal μ-Rotations. IEEE Transactions on Signal

Processing, September 2000, 48(9): 2712-2716.

[6] He, S. and Torkelson, M. A New Approach to Pipeline

FFT Processor. The Proceedings of 10
th

 International

Parallel Processing Symposium, 1996, 766-770.

[7] Garcia, E., Cumplido, R. and Arias, M. Pipelined

CORDIC Design on FPGA for a Digital Sine and Cosine

Waves Generator. 3
rd

 International Conference on

Electrical and Electronics Engineering, September 6-8,

2006, 154-157.

[8] Lang, T. and Antelo, E. High-Throughput CORDIC-

Based Geometry Operations for 3D Computer Graphics.

IEEE Transactions on Computers, March 2006, 54(3):

347-361.
[9] Arora, M., Chauhan, R.S. and Bagga, L. FPGA

Prototyping of Hardware Implementation of CORDIC

Algorithm. International Journal of Scientific and

Engineering Research, January 2012, Vol. 3 Issue 1, 1-6.
[10] Lakshmi, B. and Dhar, A.S. CORDIC Architecture: A

Survey. VLSI Design, 2010, vol. 2010, 1-19.
[11] M.N. Ibrahim, C.K. Tack, M. Idroas, Z. Yahya. The

Implementation of a Pipelined Floating-point CORDIC
Coprocessor on NIOS II Soft Processor. International
Journal of Electrical, Electronics and Data
Communication, Vol. 3, Issue 4, April 2015, 15-20.


For correspondence; Tel. + (607) 5535260, E-mail:mdnasir@utm.my

mailto:mdnasir@utm.my

