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ABSTRACT: In this paper, the null hypothesis is a Student's t distribution is tested. A goodness of fit (gof) test statistics
involving Kullback-Leibler information (KLI) which is found based on kernel density estimation is used. The performance
of the test under ranked set sampling (RSS) agianst simple random sampling (SRS) is investigated. Several alternative
distributions are considered under the alternative hypothesis. Based on a simulation, it is found that the test is more

efficient under RSS than SRS for the distributions considered.
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.INTRODUCTION

In probability and statistics, Student's t distribution is any
member of a family of continuous probability
distributions that arises when estimating the mean of
anormally distributed population in  situations  where
the sample  sizeis small and population standard
deviation is unknown. It was developed by William Sealy
Gosset under the pseudonym Student. The Student's t
distribution is symmetric and bell-shaped, like the normal
distribution, but has heavier tails and a bit shorter and
fatter. This makes it useful for understanding the statistical
behavior of certain types of ratios of random quantities, in
which variation in the denominator is amplified and may
produce outlying values when the denominator of the ratio
falls close to zero.

Mclntyre [12] introduced a sampling scheme called Ranked
Set Sampling (RSS). RSS produces a sample which is more
informative about the population of interest than simple
random sampling (SRS). This technique can be described
as follows. Select M random samples each of size M

from the population of interest. From the " sample
detect, using a visual inspection, determine the i™ order
statistic and choose it for actual quantifications, say, Y,

where 1 =1,...,m . Assuming the ranking is perfect, RSS

is the set of the order statistics Y,,...,Y,,. The technique

could be repeated I times to get more observations. The
resulting measurements form an RSS of size M. A
comprehensive survey about developments in RSS can be
found in [2, 3]).

Many works have been done for identifying certain
distribution based on various gof test. A comprehensive
survey for gof tests based on SRS can be found in [6].
Although many works have been carried out on gof test
under RSS, the gof tests based on data collected via RSS
technique and its modifications have not been given much
attention in the literature. [9] proposed a method to improve
the power of the chi-square test for gof based on RSS. They
used the KLI measure to compare the data collected by
both SRS and RSS. Also, they conducted a simulation
study for the power of chi-square test of the method. [4]
studied the empirical distribution function EDF GOF tests
of Laplace distribution under Extreme Ranked Set Sample
(ERSS).

This paper introduces a method for gof test which involves
the use of KLI as obtained based on kernel density
estimator [8 , 1]. Others [7], have proposed a method of
finding the optimal bandwidth using the exact mean

squared error (MSE) and mean integrated squared error
(MISE) for estimation of normal densities.[10] has applied
the kernel method when conducting gof test. Although
kernel density estimator is often used to approximate the
data distribution, its used for finding the KLI measure has
not been explored.

This paper is organized as follows. In Section 2, we define
the kernel density estimator and the selection of the optimal
value of h and we define the gof test statistics involving
KLI. Then, we apply the test on Student's t distribution
using two algorithms to calculate the percentage points and
the power function of the test at an alternative distribution.
In Section 3, a simulation study is conducted to study the
power and efficiency of this test statistics under RSS
relative to SRS counterpart. We state our conclusions in
Section 4.

1. MATERIAL AND METHODS
2.1 Kernel density estimation and bandwidth selection

Let X,, X,,...,X, bearandom sample of size N from
the distribution function F (X ) with unknown pdf f (X).

Then, the kernel density estimator of f (X), X €R s
defined by [14] as
X =X,
i )’

f (x;h):%iK( h

where K (.) is called the kernel function and h is called
the bandwidth that controls the degree of smoothing
applied to the data. We need to determine K and h to
find the Kernel estimator. The kernel function K is usually
assumed to be a symmetric function, such as in the case of
student's t distribution. The following conditions are
satisfied:

21)

a. I K (X )dx =1, indicating that the kernel has a

unit mass.

b. ItK (t)dt =0, indicating that the kernel has
zero first moment.
2.2)

c. jtZK(t)dt =k, #0,and k, <o,

indicating that the kernel has a finite
non-degenerate second moment.
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The kernel method is widely used in nonparametric density
estimation particularly for determining a kernel estimator
for the unknown pdf f (X )[13] pointed out that the
choice of the bandwidth parameter h is crucial for an
effective performance of the kernel estimator. Since the
kernel estimator of pdf, fA(x), depend on the choice of

bandwidth, many methods have been suggested to
determine the bandwidth. In our case, we define the value

of h which minimizing the mean integrated square error
(MISE) given by [15]

MISE (1 (x))=E ﬁ(f(x)—f ()] o

-0

o

}: T(Bias (f"(x)))zdx + [Var £ (x)

-0 -0

where Bias
f(x)=E (f(x))-f (x) and Var(f(x))=E (fAz(x))—[E (fA(x))T.

Substituting the value of the integrated square bias and
the value of the integrated variance, then the asymptotic
MISE given by

o0

jf "2 (x )dx + L

4 0
— 2 2
AMISE ==-k; h_ij (t)d (t).

n
We can obtain the optimal value of h, h_, (see [14]), by

minimizing the AMISE with respectto h to have

w s -1/5
hom=k;2’5{jK2(t)dt} {jf "z(t)dt} n™e,

(2.3)

opt

where k2=It2K(t)dt, 0<k, <o,
Note that h,, —0as n —o.

Since h_. depends on the unknown pdf f (x), f (x)

opt

has to be estimated. The quantity If "2(t)dt can be

—00

estimated by J- f n2 (t)dt.

2.2 Kullback-Leibler information (KL1I)
We wuse the KLI number ( see [11])

Hy :F(x)=F,(x)
for some X. The information theory defines the KLI as
follows. Let f,(X) and f,(X) be two density functions

to test

induced by two hypotheses, say H, and H, respectively.
The KLI number of the two densities f (X ) and f,(X),
denoted by | (f,,f,), is given by

T f
I(fo.f,) = Ifo(X)Log fo

l((;(;dx. (2.4)

The quantity |(f,, f,) describes the amount of
‘Information’ lost for approximating f (X ) using f,(X).
The larger value of |(f,, f;) indicates the greater

disparity between f,(x) and f,(X). It known that
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I (f,, f,)=0 if and only if f (x)=f,(x) for all
X >0. Hence a test for H, vS H, can be designed as
follows. Reject H, vs H, if | (f,, f,) is large, where

fA1 (X ) is the kernel density estimator of f, (X ).

2.3 Testing for Student's t distribution
To test the hypothesis

H,:F(x)=F (x) ¥x vs H,:F(x)=F(x)
for some X where F, (X) is a Student's t distribution
function. We consider two cases:

a) SRS Case:

Let

K (x) =1, () =—— riv+972) <o 5L
() F(V/Z)[:H(XZ/V )}

f (x) =a p.d.f underH,,
kZ:szK(x).dx,

then the bandwidth h can be found by

-1/5
o0
-1/5
} n ,

h= k;Z’S{T K Z(X)dx} {jf 2 (x )dx
B - (2.5)

and the kernel density estimator can be obtained by
A 1 &
f(x)==->"f,((x -X,)/h).
nh

Then we defined test statistics T by incorporating the
kernel density estimator in the KLI measure to have

T= T fA(x )Log {%}dx ,

We canreject H, if T >d_,

(2.6)

2.7)

where d_ is the (1—)100th percentage point of the
distribution of T under H .

b) RSS Case:
Let Y,O, Y 00 Y O ber iid i" order
forall x against H,:F(x) = Fstattics, i =1, ..., m. Thus, the pdf of Y j(i) can be
given by ( see [5])
m! i m—i
(y)=———F'"y)(1-F f(y).
9= D m o) (V)(I-F)) f ()

An estimator for g; (Y ) can be obtained using the kernel
estimator,

- 1 i

d; (y;h) :_ZK ((y =Y j(l))/hi )-
rhi i=t

Thus, the pdf under RSS can be estimated based on the

kernel estimator as given by

fARss (y) =%i@i (y;h).

The kernel function K () can be chosen as follows. Let

(2.8)

(2.9)
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K(y)=f,(y) = pdf of Student's t

m! ,1 m—i
K(y)—mo ()A-F(y)) f(y)

(2.10)
Then, the optimal value of hi can be found by

- us 15
hi:kz‘z’s{sz(t)dt} {jf}"z(t)dt} nve,

(2.11)

or

Hence we reject H  if

T = I fARss (y)Log (

is reasonably large.

A simulation is conducted to show that test statistics T ~ is

more powerful than the test statistics T when comparing
samples of the same size under student's t distribution. The

power of the T " test statistics can be calculated according
to the equation

Powerof T (H)=P, (T >d,), (2.13)

where H is a cdf under the alternative hypothesis H, and
d,is the
distribution of T~ under H - We will calculate the
efficiency of the test statistics as a ratio of powers given by

:SS((y))de (2.12)

(1-a)100th percentage point of the

off (1", T)= POWerofT (2.14)
power of T
Hence T~ is more powerful than T if eff (T ", T)>1.

2.4 Algorithm for Power Comparison
Let V =5. To compare the powers of T~ and T ; the

following algorithm is designed to calculate the percentage
points: Calculate h in formula (2.5).

1. LetY ,,...,Y . bearandom sample from F (y).
2. Calculate the formula (2.6).
3. Calculate the value of T asin (2.7).
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4, Repeat the steps (1-4 ) 10, 000 times to get
Ty Tioooor
5. Determine the percentage point da of T which

is given by the (1—)100th quantile of T, ,..., Ty g0

Secondly, to calculate the power of T at H, we need to
use simulation. So, we design the following algorithm:

1. Calculate h in formula (2.5).

2. Let Y,,....Y, be a random sample from H, a

distribution under H,.

3. Calculate the formula (2.6).

Calculate the value of T asin (2.7).
Repeat the steps (1-4 ) 10, 000 times to get

4
5
Ty Tigooo-
6

Calculate Power of
1 10,000

TH)= 10,000 - Z I (T, >d,), where |(.) stands

for indicator functlon.

2. RESULTS AND DISCUSSION

Based on a Monte Carlo simulation of 10,000 iterations, the
power of each test is approximated according to the
algorithm of Section 5. In the case of student's t distribution
under RSS, we can’t find the optimal bandwidth values. So,
we used the same values of bandwidths as found in SRS
case. We compared the efficiency of the tests for different

samples sizes: I =5, 10, 15, 20, 25, 30, set size:

m =3 and different alternative distributions: Normal =
N(0,1), Cauchy(0,1), Logistic = Lo(0,1), Student T =
5(10), Extreme Value = Ext(0,1), Lognormal =
Log(0,1), Chi — Square — chi(5), Beta = Be(1,3),
Gamma = G(1,2),

Weibul = W(1,2) and Exponential = E(5).

The comparisons are made for the cases when the data are
quantified via minimum, maximum and median. For
Lognormal, Chi-Square , Beta, Gamma, Weibul and
Exponential distributions, computations show that the
efficiency of all tests equal one. The Simulation results are
presented in the Tables (1)-(5).

Table 1. The values of h under SRS for n =5, 10, 15, 20, 25, 30

H

SRS

n

20 25 30

N (0,1) 615 .535 493

.466 .446 .430

C(0,1) .600 522 482

.455 .435 .419

Lo(0,1) 952 828 764

721 .690 .665

ST (10) 619 539 497

.469 .449 .433

Ext (0,1) 595 518 477

.451 .431 .416

log(0, 1) 137 .120 111

.104 .100 .096

Chi (5) .099 .087 .080

.075 .072 .070

Be(l,3) 220 192 477

.167 .159 .154

G(L2) 1.035 .901 831

.785 .750 .723

W (2,2) 576 .501 462

.436 417 .402

.104 .090 .083

E (5)

.078 .075 .072
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Table 2. The values of h under RSS for r =5, 10, 15, 20, 25, 30

H RSS
r
5 10 15 20 25 30
N (0,1) Min 423 368 339 320 .306 295
Med 676 589 543 513 490 473
Max 423 368 339 320 306 295
Cc(0.1) Min 520 453 417 394 377 363
Med 746 649 599 565 541 521
Max 520 453 417 394 377 363
Lo(0,1) Min 693 603 556 525 502 484
Med 1065 928 855 807 772 745
Max 693 603 556 525 502 484
ST (10) Min 619 539 497 469 449 433
Med 619 539 497 469 449 433
Max 619 539 497 469 449 433
Ext (0,1) Min 360 313 289 272 261 251
Med 718 625 576 544 520 501
Max 557 485 447 422 404 390
log(0, 1) Min 082 072 .066 062 060 057
Med 345 300 21 262 250 241
Max A11 358 330 311 298 287
Chi (5) Min .060 052 048 046 044 042
Med 1.665 1.449 1.337 1.262 1.207 1.164
Max 1.435 1.249 1.152 1.087 1.040 1.003
Be(1,3) Min 059 051 047 044 043 041
Med 115 .100 092 087 083 081
Max 243 212 195 184 176 170
G(L2) Min 324 282 260 245 234 226
Med 580 505 465 439 420 405
Max 665 579 534 504 482 465
W (2,2) Min 312 271 250 236 226 218
Med 622 541 499 471 451 435
Max 449 390 360 340 325 313
E(5) Min 032 028 026 025 023 023
Med 058 050 047 044 042 041
Max 067 .058 .053 .050 048 047
Table 3. 5% Percentage points for SRSand RSSfor y =5, 10, 15, 20, 25, 30, M =3 and « =0.05.
H SRS | RSS
r
5 10 15 20 25 30 5 10 15 20 25 30
N (0,1) 657 389 291 240 203 180 479 304 234 .198 470 .156
C(0,1) 671 392 302 245 .209 .180 441 275 217 .180 159 .140
Lo(0.1) 575 375 273 225 195 471 482 316 238 197 156 155
ST (10) 646 385 297 245 .200 182 411 261 198 162 141 126
Ext (0,1) 664 409 .303 245 .207 181 474 300 234 .194 170 .150
log(0,1) 1.076 705 530 446 .388 351 362 215 164 137 119 .103
Chi (5) 1.209 817 627 528 460 404 474 341 279 228 211 1195
Be (1, 3) 406 271 221 190 167 148 282 145 .106 .081 073 .056
G(12) 507 360 272 230 .206 184 259 155 118 .097 083 074
W (2,2) 582 371 294 245 214 194 292 178 136 113 097 088
E (5) 1.218 808 618 514 443 405 1.801 172 863 735 605 522
Table 4. The values of Power of test under RSS and SRS for n = =5, 10, 15, 20, 25,30, M =3 «« a =0.05.
H sks, o = 0.05. RSS
n r
5 10 15 20 25 30 5 10 15 20 25 30
N (0.1 .006 003 .003 .004 .002 .003 .002 .002 .005 013 .039 .069
c(.1 361 489 574 624 668 716 673 .866 .945 .980 .990 1
Lo(0.1) 266 380 495 586 669 737 549 791 911 .965 .980 .995
ST (10) 021 012 010 .008 .009 .008 .009 .005 .007 .007 .004 .006
Ext (0,1) .109 147 201 264 332 404 232 .564 .825 .966 .993 1
log(0, 1) 1 1 1 1 1 1 1 1 1 1 1 1
Chi (5) 1 1 1 1 1 1 1 1 1 1 1 1
Be (1, 3) 1 1 1 1 1 1 1 1 1 1 1 1
G(12) 1 1 1 1 1 1 1 1 1 1 1 1
W (2,2) 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5. The efficiency of test using RSS relative to SRS for r =5, 10, 15, 20, 25, 30, M =3 and a = 0.05.
H o = 0.05.
r
5 10 15 20 25 30
N (0.1) 0.333 0.667 1.667 3.25 19.50 23
c(.1) 1.864 1771 1.646 1571 1.482 1.397
Lo(0.1) 2.064 2.082 1.84 0.002 1.465 1.350
ST (10) 0.429 0.417 0.700 0.875 0.444 0.750
Ext (0,1) 2.128 3.837 4.104 3.659 2.991 2.475
log(0,1) 1 1 1 1 1 1
Chi (5) 1 1 1 1 1 1
Be (1 3) 1 1 1 1 1 1
G2 1 1 1 1 1 1
W(2,2) 1 1 1 1 1 1
E (5) 1 1 1 1 1 1
From the above tables, we make the following remarks: 3. Alodat, M. T., Al-Rawwash, M. Y. & Nawajah, I. M.
1. The bandwidths are decreasing as the sample size r (2009). Analysis of Simple Linear Regression via
increases for SRS and RSS methods. Median Ranked Set Sampling. Metron International
2. The efficiencies in Table 5 are all greater than 1 except Journal of Statistics, LXVII, n.1, 1-18.
for Student's distribution (10), which means that the test 4. Al-Subh, S. A. (2018). Goodness of Fit Tests of
statistics under RSS is more powerful than their Laplace Distribution Using Selective Order Statistics.
counterparts in SRS. International  Journal of Applied Engineering
3. The efficiency is decreasing as the sample size r Research,13(7):5508-5514.
increases. 5. Arnold, B. C., Balakrishnan, N. & Nagaraja, H. N.
(1992). A First Course in Order Statistics. John Wiley
3. CONCLUSION and Sons, New York.
We have introduced a test for gof when the data is 6. D'Agostino, R.B & Stephens, M.A. (1986). Goodness
collected via selective order statistics. This test statistics of fit Techniques. Marcel Dekker Inc., New York.
involves KLI measure which is found based on kernel 7. Feyer, M. J. (1976). Some errors associated with the
density estimation. We found that the test introduced is nonparametric estimation of density functions. J. Inst.
more efficient under RSS than SRS for the distributions Math. Appl., (18): 371-380.
considered, i.e. the mean information per observation under 8. Fix, E. & Hodges, J. L. (1951). Discriminatory
RSS is larger than the mean information per observation analysis-nonparametric  discrimination: consistency
under SRS. properties. Report No. 4, project no.21-29-004, USAF
school of Aviation Medicine, Randolph Field, Texas.
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