
Sci.Int.(Lahore),31(3),505-511, 2019 ISSN 1013-5316;CODEN: SINTE 8 505

May-June

MACHINE LEARNING BASED ON MALWARE DETECTION IN MOBILE
NETWORKS

Deemah A Alotaibi
1
, Malak F Aldakheel

2
, Norah S Al-Serhani

3 ,
Rachid Zagrouba

4

College of Computer Science and Information Technology, Imam Abdulrahman bin Faisal University Dammam Kingdom of

Saudi Arabia
2150004996@iau.edu.sa, 2160007006@iau.edu.sa, 2150000744@iau.edu.sa, rmzagrouba@iau.edu.sa

(Presented at ICSC, 2019, KSA)

ABSTRACT—The rapid growth of Android malware is noticeable with its serious threat to Android users. Such mobile

malware usually uses network communication to steal users’ data and launch different attacks. Therefore, there is a need to

protect Android users from malware and preserve their privacy. Accordingly, many researchers proposed network-based

detection mechanisms that utilize machine learning techniques for detecting mobiles malware. This paper reviews malware

detection techniques that rely on analyzing network traffic. Then, it compares and analyzes them based on specified criteria,

which are the type of malware to be detected, the detection rate, the used machine learning algorithm, resource consumption

rate, the extracted traffic features, the ability to detect encrypted traffic, and the ability to detect unknown apps. The result

shows that TextDriod mechanism is the best solution since it comprehensively satisfies the required criteria.

Keywords—Malware detection, network-based, Android, Botnet, Machine Learning

INTRODUCTION

NOWADAYS, smartphones play a major role in people's life

since it gives its users an opportunity to do everything in only

a few minutes. It facilitates people’s life by providing easily

nailed educational tutorials, communication, sharing media,

money transaction, and many others. These activities are

done by using the appropriate application that provides the

wanted activity. Besides, the smartphone is not limited to

only applications, it also used to store information including

the confidential information. Therefore, smartphones are

considered as an ultimate goal that can be used to harm the

user. Accordingly, the number of malware that targets the

smartphone has been increased, such malware is,

ransomware, spyware, malicious apps, etc.

Since smartphones are goldmine that contains lots of

information about the user, there is a need to protect it from

any type of attacks. Although all mobile devices are targeted

to be attacked, Android devices are the most attacked ones

due to its popularity and its open architecture [1]. The

variations among malware behaviors in Android mobile

devices results in some deficiencies in the existing security

solutions. Some security solutions are designed to detect

malware types that present its maliciousness in its codes,

accordingly, can be detected by analyzing the applications'

codes. Others are designed to examine the changes in the

operating system functionalities or device resources such as

memory and CPUs for malware detection. However, there is

some malware that covers its maliciousness in term of code

and OS functionalities, such as botnets and self-updating

malware but represents it through the generated network

traffic. Since the detection of such malware depends on

network monitoring instead of static approaches, employing

the science of Artificial Intelligence and Machine Learning in

the security solutions designed to detect such types of

malware considered as an effective approach. Accordingly,

this paper aims to solve this problem by analyzing different

network-based detection solutions that employ machine

learning techniques and propose enhancements to effectively

detect such malware.

The paper is organized as followed. Section II states the

problem statement, Section III addresses the background.

Section IV is a literature review that discusses several

machine learning malware detection methods. Section V

illustrates a comparison between the detection methods in

section IV. Finally, Section VI is the conclusion.

I. LITERATURE REVIEW

In this section, several network-based malware detection

techniques are discussed. Starting with the botnets detection

techniques, followed by self-updating malware detection

techniques, and concluding with some generic malware

detection techniques.

A. Botnet detection techniques

Garg, Peddoju, and Sarje [2]. proposed a network-based app

model to detect malicious apps, specifically botnets, in

Android-based mobile devices. The main objective of such a

proposed model is to identify malicious apps from benign

ones. It consists of three main modules, namely, Network

Traces Collection, Network Feature Extraction, and Detection

module, as shown in

Figure 1.

Figure 1 Proposed Detection System

mailto:2150004996@iau.edu.sa
mailto:2160007006@iau.edu.sa
mailto:2150000744@iau.edu.sa
mailto:rmzagrouba@iau.edu.sa

506 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(3),505-511, 2019

May-June

The first module, Network Traces Collection, is responsible

for monitoring the network traffic generated from all the

running apps in the mobile device, whether it is encrypted or

plain. This is done periodically, every t seconds. Then, it

records the headers only instead of the entire packets. Such

collection contributes in making the model lightweight since

it records a small amount of data which suites the limited

memory, CPU processing of mobile devices.

The second module, Network Feature Extraction, is

responsible for extracting selected network features that is

generated from short intervals and can be extracted without a

need to record the entire packets. To meet such conditions,

four different categories of network traffic features are used,

DNS-based features, HTTP-based features, Origin-

Destination-based features, and TCP-based features.

 The third module, Detection, is responsible for detecting

malicious apps. In this module, Random Forest Machine

learning classifier is used. This module consists of four

components, namely, Detector, Update Module, Notification

Center and Management Module. First, the detector takes an

input from the previous module, Network Feature Extraction,

in a feature vector form. Based on that, the detector classifies

the app as malicious or benign. The detector triggers the

Notification Center in case of malicious app detection which

in turn transmits a warning alert. Such a warning alert is then

shown in the notification bar of the mobile device. The

Management Module is used for management purposes to set

different parameters such as log records, alert mode, and alert

threshold.

 An experiment is performed to test the proposed model on

two different mobile devices. The experiment followed four

phases. First, traffic from malicious and normal apps was

collected to learn its behavior. Second, this traffic is used to

test different machine learning algorithms against accuracy,

complexity, and stability. Then, the optimal algorithm, which

is Random Forest, is chosen as a detector in the proposed app

after training. Lastly, a complete mobile app results that can

be downloaded from a server. Four experiments were

implemented to test the detection accuracy, the device

dependency, unknown apps detection and the detection of

malicious apps with encrypted communication.

 The results showed that the proposed model is capable of

detecting malicious apps using network traffic with 98%

accuracy. Moreover, Random Forest classifier showed a

lesser detection time, higher accuracy and stability. Also, the

experiment shows that the model is device independent with

an average detection rate of 95.4%. In addition to detecting

the plaintext malicious communications, the experiment

showed an average detection rate of 93% of malicious apps

that are communicated in an encrypted format. Lastly, it is

shown that the model is capable of detecting the unknown

apps that have similar behavioral apps in the training with a

99% rate. However, it reached an average rate of 86% for the

whole tested classifiers.

Narudin, Feizollah, Anuar and Gani [3] proposed a solution

to evaluate malware detection that integrates anomaly-based

approach with machine learning classifiers. The main

objective of this work is to evaluate various machine learning

classifiers for Android malware detection using network

traffic. Specifically, the used machine learning classifiers are

decision tree, Bayes network, multi-layer perceptron, k-

nearest neighbors and random forest.

 The evaluation process basically consists of two stages, the

first stage is performing experiments and the second is

analysis. The experiment carried out in three substages, data

collection, feature selection and extraction and machine

learning classifiers, as shown in Figure 2.

 In the data collection stage, network traffic for malicious and

benign applications was captured. The selected benign traffic

was captured from running 20 different trusted applications

such as Twitter and Facebook, each one was captured

separately to preserve the isolation of the traffic. On the other

hand, malicious traffic was collected by utilizing two

malware sets, public and private. The former is MalGenome,

which is a public dataset consist of 1260 malware categorized

into 49 different families, the experiment utilized 1000

malware samples from such families. The latter is a self-

collected dataset from the latest mobile malware traffic

consists of 30 samples.

 In the feature selection and extraction stage, the traffic

generated from the previous stage was utilized as an input to

select the intended features. First, the TCP traffic was

filtered. Then, four features were selected, namely, basic,

content-based, time-based and connection-based features.

After that, the extracted features were labelled and stored in a

database to constitute the input of the next stage.

 In the machine learning classifier stage, five different

machine learning classifiers were used to train on the

information stored in the database to eventually produce an

effective detection model.

 The assessment of the ideal classifier involved two main

experiments, one utilized MalGenome and the second utilized

the private dataset. The evaluation measures were True

Positive rate, False Positive rate, Precision, Recall, and F-

measure.

 True Positive rate: the rate of predicted malware classified

correctly

 False Positive rate: the rate of benign apps classified as

malware

 Precision: the rate of relevant results

 Recall: the sensitivity for the most relevant result

 F-measure: a combination of precision and recall to

estimate the entire system performance

The result of each experiment was analyzed and compared.

The final result showed that random forest machine learning

classifier achieved 99.99% for MalGenome detection. On the

other hand, KNN went better over random forest by a

difference of 10.42% with the latest malware detection and

achieved 84.57%.

Sci.Int.(Lahore),31(3),505-511, 2019 ISSN 1013-5316;CODEN: SINTE 8 507

May-June

Figure 2 experiment structure

B. Self-updating malware detection techniques

Shabati et al. [4] have proposed a host-based method for

detecting mobile malware, especially, the self-updating

malware, in the paper entitled by “Mobile malware detection

through analysis of deviations in application network

behavior” [4]. The detection method relies on learning the

usual network traffic caused by mobile applications. Once

this traffic is known, it becomes possible to detect any

deviations on the application's traffic. This method uses

machine learning algorithms on the host machine, Android

mobiles, to detect malware. Since this method solely depends

on network traffic, it can detect any malware that causes a

moderate to high network traffic even if the malware is new

or encrypted. This is due to the fact that self-updating

malware, and some other types, change the network traffic

and make it distinguishable from the regular one. The

malware detection system in this solution has four main

components, which are Features Extraction, Features

Aggregation, Local Learner, and Anomaly Detector. Table 1

summarizes these components.

The main component for detecting malware is the Anomaly

Detector. This component relies on predicted values assigned

by the Local Learner for all the chosen features (i.e. the

aggregated features during the Features Aggregation

process). The Anomaly Detector continually monitors the

network traffic of an application to observe the values of the

selected features and compare them with the predicted ones.

The probability of classifying an event as abnormal and

consequently a malware is found by multiplying the

evaluated differences between the predicted and observed

values of all the features. Equation 3 calculates the

probability of classifying a feature x as abnormal, where A(x)

is the predicted, B(x) is the observed value, and dist denotes

the distance between the two values.

Table 1 The main components of Shabati’s malware detection

system [4].

Features Extraction Extracts certain information from the

network traffic of a running application.

Features Aggregation Aggregates the extracted data to

represent the application’s traffic.

Local Learner Learns the application network pattern

by adapting the cross-feature analysis

approach using Decision table and

REPTree algorithms. It takes place

whenever an application is installed or

updated.

Anomaly Detector Analyzes the network behavior for

detecting any deviations from the

regular traffic.

P(B(x) is abnormal) = 1- dist (A(x), B(x))

The researchers conducted several experiments with benign,

self-written malware, and real malware applications. The

benign applications encompassed Gmail, WhatsApp,

Facebook. The self-written malware applications were

created to imitate the behavior of self-updating malware. The

real malware were normal applications injected by real

malware such as PJApps trojan. After conducting these

experiments, the researchers found that this mechanism gives

the best results when extracting a specific set of features,

such as the average of the sent and received bytes and data as

well as using the Decision Table and REPTree algorithms.

Using these specified features and algorithms provides a high

detection rate of malware, especially the self-updating

malware where the detection rate is between 90-100% and

the false positive rate doesn't exceed 10%. In addition to the

high detection rate, the resources consumption in this

mechanism is acceptable where it consumes while learning

applications' traffic less than 2% of the mobile's memory and

about 14% of the CPU.

C. Generic malware detection techniques

Wang et al [1] [5] proposed an Android malware detection

platform based on text semantics of the collected traffic,

namely TextDriod. It analyzes the request header of

HTTP/HTTPS traffic since it contains lots of text semantics.

It is deployed in the server and this server has a connection

with the gateway to collect the traffic, see Figure 3.

Figure 3 TextDriod Detection Model

508 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(3),505-511, 2019

May-June

Figure 4 shows the TextDriod detection process that goes

through five different stages, which are:

Figure 4 TextDriod’s process

1. Traffic collection

A traffic collection platform consists of Con2trol Center, App

& Traffic Storage server, and traffic collection server is used

to collect all the mobile traffic. The collected traffic contains

a different type of traffic which are the execution and data of

the app that is generated by the apps. The data traffic is a set

of HTTP/HTTPS flows that are mixed of all apps' data traffic.

2. Traffic Preprocessing

Once the data traffic is received from the collection platform,

firstly, the flow extraction process takes a place which is an

algorithm that takes the mixed traffic as an input and extracts

a collection of documents, each document contains the

request header of a single HTTP/HTTPS flow.

Secondly, flow segmentation process that splits the

document’s strings into single words by using special

characters which are (, : ; &) . Additionally, it removes the

meaningless words such as the .jpg, .png, the, is, were,

content-length, and en-us.

3. N-Gram Generation

N-gram method is one of the natural language processing

(NLP) methods that is used to identify the sequence of words

in the flow in order to give semantic information about the

flow. That is done by observing the occurrence of the n-th

word if the occurrence of each word is depending upon the

previews words (n-1) or not. For example, if the words are

independent of each other, then we substitute the letter N to

be 1 (1-gram), if two words are depended in each other, then

we substitute the letter N to be 2 (2-gram). This step provides

contextual information in order to know if there is a

relationship between multiple words. The outputted

meaningful word sets called features.

4. Feature Selection

The previous stage generates lots of features that are not that

much significant for the malware detection model, thus, the

chi-square test is used to filter them out. the chi-square test is

a statistical test used to determine if the observed distribution

of categorical variables significantly differs from the

expected one or not, meaning, to distinguish if the observed

distribution is malware traffic or benign traffic. That is done

by using a measurement method that assigns each feature chi-

squared test value which is the feature’s frequency in the

specific traffic. The chi-squared test value formula is:

 ()
()

If the result of this formula exceeds the threshold, that means

the selected feature and the specified category are dependent

on each other. If they are dependent that means this feature is

significant to this category, otherwise, the feature is

insignificant to this category. The resulted sets of the selected

and weighted N-gram sequences is called bag-of-word.

5. Flow Header Visualization

The last step of the proposed platform is to visualize the

detected traffic by representing it in a word cloud format.

That is done by using the word and its weight. The

researchers use the font size and the font color to represent

the words, meaning, the word with high frequency will be

larger and more vivid than the word with low frequency.

The used machine learning is a Support Vector Machine

(SVM) algorithm. Since it should be trained to detect the

malware, the conducted consists of two steps which are :

 Word Vectorization:

It converts the bag-of-words into numeric vectors, that is

done by replacing each N-gram sequences that exist in the

flow with binary values. If the N-gram sequence exists, then

the corresponding binary value is "1", otherwise, the binary

value is "0". Such an encoding process, each HTTP flow

transformed into a numeric vector.

 Model Building:

It is a process of identifying the malicious traffic by finding

out the source of this traffic by using Support Vector

Machine (SVM) algorithm. The SVM algorithm works by

learning the features of the malicious traffic and benign

traffic, then constructs multiple hyperplanes which is a line

that separates the two classes. Those multiple hyperplanes are

compared and select the one that has a maximum margin

between the two classes. After that, the detection model

calculates the detection function which is a combination of

the weight vector and the feature vector, as equation below

shows, if the F(x) > 0 that indicates malicious activity, while

F(x) < 0 indicates a benign activity.

 () ⟨ ⟩

This proposed detection model is applied in the test set, it

detects and identifies 99.15% of the malware and its

misjudgment rate is 0.45%, in case that the N value of N-

gram sequence is 1 and the number of features is 600, which

is the optimal level. On the other hand, once the detection

model is applied in a real-world environment, it detects

76.99% of the all malware application. Additionally, the

model has the ability to detect 54.81% of the new malware

types that are not be detected by anti-virus.

In 2019, Wang et al. [6] have proposed another mechanism

that is similar to the previous one, however, the features set

has been extended to include features from the TCP flow.

These features are the uploaded/downloaded bytes, the

number of uploaded/downloaded packets per one session, and

their average bytes. Including TCP flow features assists in

detecting malware that uses HTTPs instead of HTTP. The

learning-based for the detection in this mechanism uses the

C4.5 decision tree algorithm where a tuple of tree nodes,

branches, and leaf nodes represent the feature's name, value,

and class respectively.

The researchers did an experiment with more than 10,000

tuples of HTTP and 24,000 for TCP. Based on this

experiment, it is found that the detection rate of malware

varies based on the malware family and the number of its

Sci.Int.(Lahore),31(3),505-511, 2019 ISSN 1013-5316;CODEN: SINTE 8 509

May-June

initial training samples, and the used model (i.e. HTTP or

TCP). By that, a malware from an unknown family type that

had no training samples is hard to be detected by this

mechanism unless it has similar features with a malware

family that had many samples. Therefore, this mechanism

needs to be continually trained with samples of different

malware types. As for the model type, when binding both of

the models, the detection rate increases approximately by

50%. However, when using one model only, then relying on

HTTP model would give a higher detection rate by 5%.

As for the resources' consumption, this mechanism is

considered to be a lightweight detection mechanism since the

learning and detecting processes are done on a server that

receives the network traffic from the access point. In addition

to the process of detecting malware, the server provides a

meaningful discerption once it detects an application as

malware to the mobiles. Such messages clarify the feature

that led to classifying the detected application as malware.

Nacy, and Sharma [7] proposed a detection technique that

uses a decision tree model which is a supervised

classification learning technique that is widely used to

differentiate each traffic from the other. That is done by

relaying upon various features that are used to distinguish

each traffic. Firstly, the researchers conducted an experiment

in order to find out the distinguishing features which are

features that can clearly differentiate between malware traffic

and benign traffic. As a result of that, there are 8

distinguishing features which are:

 Average Packet Size

 Average No of Packets Sent per Flow

 Average No of Packets Received per Flow

 Average No of Bytes Sent per Flow

 Average No of Bytes Received per Flow

 The ratio of Incoming to Outgoing Bytes

 Average No of Bytes Received per Second

 The ratio of Number of Connections to Number of

Destination IPs.

In all those features, the malicious traffic has a small value

compared to the benign one. Thus, if the received traffic has a

small value of all those features, that means the traffic is from

malicious application.

Secondly, the researchers build a detection model which is

Decision Trees model. The tree is built on the 8

distinguishing features that are specified above. Therefore,

once the traffic of an application is forwarded to the Decision

Tree classifier, the traffic will go through the tree and the last

node that is reached will give the conclusion about the traffic

whether it is malicious or not. This detection technique

detects 90% of the samples, which means it provides high

accuracy. In contrast, it lacks the opportunity to detect

encrypted malware traffic.

II. COMPARISON AND ANALYSIS

This section compares and analyzes the discussed malware

detection techniques based on seven different criteria as

shown in Error! Reference source not found.. These criteria

are Malware Detection type, Malware Detection rate, the

used Machine Learning classifiers (ML technique),

Resources Consumption rate, the Extracted Features to be

analyzed, the ability of the mechanism to detect malware

which communicate in encrypted format, and lastly, the rate

of detecting unknown malware that were not part of its

training set.

The following is the analysis results for each criterion:

 Detected Malware Type

As shown in Error! Reference source not found., [2, 3]

proposed a solution that is capable of detecting botnets. On

the other hand, [4] proposed a solution to detect different type

of malware which is self-updating. As for [1, 6, 7], they

proposed a solution that deals with general malware types

and not specific for a certain malware. The detection scope of

the security solution considered a vital element that affects

the idealness of such solution.

 Detection rate

As shown in Error! Reference source not found., most of the

solutions achieved high detection rates which is not less than

90%. Although the majority of the proposed solutions

achieved high rates, the classifier detection ability depends

mainly on the training. If the classifier trained on specific

applications and tested on applications that have similar

behavior, the detection rate will be high. On the other hand, if

the classifier tested with applications that behave differently,

the detection rate will be

decreased. Thus, the detection rate criterion cannot be a

definite factor to identify the ideal solution since each

solution has its own dataset with certain samples. It needs to

be combined with other factors to get a clear result.

 Machine learning technique

As shown in Error! Reference source not found., each

proposed solution uses different machine learnings. Each

solution uses an appropriate classifier for it. Therefore,

researchers won't use this criterion for the best proposed

solution decision.

 Extracted traffic features

This criterion is various from one solution to the other since it

depends upon the proposed technique and the type of

malware that the detection technique is designed to detect it.

For example, the botnet detection techniques are depended

upon the TCP packets for the connection between the attacker

and zombie, in contrast, self-updating detection technique

depends on the applications’ behavior, and other detection

techniques rely on another aspect. Therefore, each proposed

solution uses different features based on the type of malware

it detects.

 Resources consumption

An important criterion when comparing between malware

detection mechanisms is the resources consumption to not

affect the mobile performance. In [2], the consumed

resources are low since the mechanism relies on extracting

the headers only to be aggregated and analyzed. As for [4],

the learning process consumes high CPU. However, since the

learning process only takes place when an application is

installed or updated, then this consumption rate is considered

to be acceptable. Unlike the aforementioned solutions, the

proposed mechanisms in [1] and [6] have the lowest rate in

resources consumption. This is due to the architecture of the

mechanisms themselves where the learning and detection

processes are done in a server instead of the mobiles. This

leads to lower consumption of resources and a better analysis

510 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(3),505-511, 2019

May-June

of network traffic since the AP will aggregate all the traffic

from different mobiles and send them to one server. By that,

the detection mechanism will be enhanced.

Table 2 Comparison Table

Criteria

References

[2] [3] [8] [1] [5] [7] [6]

Detected Malware

Type

Botnets Botnets Self-updating General General General

Detection rate 98% 99.99% 90-100% 99.15% 90% 91%

ML technique Random Forest Random Forest

and KNN

Decision table and

REPTree

SVM Decision Tree Decision Tree

Resource

Consumption

Low Not specified Low to moderate Low Not specified Low

Extracted Traffic

Features

 DNS-based

 TCP-based

 Origin-

destination

based

 HTTP-based

 Basic

 Content-based

 Time-based

 Connection-

based

 Avg.

sent/received bytes
 Avg. sent/
 received data

 Inner and outer

avg. sent/received

interval

 HTTP

Request header

 Eight

different

features in a

HTTP traffic

 HTTP

request header

 TCP flow

features

Encrypted Traffic Detected Not specified Detected Detected Not detected Detected

Detection of

Unknown apps

High High High moderate Not specified Low

 Encrypted traffic

Network traffic may include encrypted packets, such as

HTTPs. Such traffic is challenging for some malware

detection mechanisms as in [5]. However, there are

mechanisms that use advanced techniques to detect malware

when analyzing the network traffic even if it was encrypted

such as the solutions proposed in [1, 2, 4, 6]. This was

achieved by analyzing the TCP flow. Another approach was

to create a profile for each application’s regular network

traffic and use it as a baseline to detect any deviation that

may be evidence of malware activity.

 Detection of unknown apps

As shown in Error! Reference source not found., the

detection of unknown apps reached high rates in [2, 3, 4, 6]

achieved low detection rate. Moreover, [1] achieved

moderate detection rate. These measures constitute a vital

factor since it represents the classifier ability to detect

malware that behaves differently. Thus, [2, 3, 4] are more

qualified in term of new behavioral malware detection than

the others.

Although some solutions exceeded the others in specific

criteria, the best solution measures constitute in a

comprehensive model. The security has a clear trade-off to

achieve its goal. Taking these into consideration and based on

the conducted analysis, TextDriod [1] is considered as the

best solution to detect malware based on network traffic

features for different reasons. First, it has a high detection

rate. Second, it is general for all types of malware. Third, it

can detect most of the unknown malware that it did not train

on. Fourth, it can detect encrypted malware traffic. Finally, it

consumes low resources.

III. CONCLUSION AND FUTURE WORK

Malware that targeted Android platform is rapidly growing

which increases the threats to its users. Such malware may

steal users’ information or launch an attack. Some types of

malware cannot be detected by traditional anti-virus software

or other detection methods that rely on analyzing malware’s

code or access rights. As a remedy, network-based detection

techniques are introduced. This paper discussed several

machine learning detection techniques, two of them focus on

detecting botnets malware, one of them focus on detecting

self-updating malware, and the rest focus on detecting the

general type of malware. After that, the researchers compared

and analyzed the discussed techniques based on specified

criteria which are Malware Detection type, Malware

Detection rate, the used Machine Learning classifiers,

Resources Consumption rate, the Extracted Features to be

analyzed, the ability of the mechanism to detect malware

which communicate in encrypted format, and lastly, the rate

of detecting unknown malware that were not part of its

training set. The result OF this comparison and analysis

showed that TextDriod detection technique is the most

powerful one since it detects most of the malware type and it

has a high detection accuracy rate which is 99.15% with

0.45% misjudgment.

REFERENCES

[1] M. Conti, C. Zhao, B. Yang, Z. Chen, Q. Yan and S. Wang,

"Detecting Android Malware Leveraging Text Semantics

of Network Flows," in IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, 2018.

[2] S. Garg, S. Peddoju and A. Sarje, "Network-based

detection of Android malicious apps," International

Journal of Information Security, vol. 16, no. 4, pp. 385-

400, 2017.

[3] F. A. Narudin, A. Feizollah, N. B. Anuar and A. Gani,

"Evaluation of machine learning classifiers for mobile

malware detection," Soft Computing, vol. 20, no. 1, pp.

343-357, 2016.

Sci.Int.(Lahore),31(3),505-511, 2019 ISSN 1013-5316;CODEN: SINTE 8 511

May-June

[4] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L.

Rockach, B. Shapira and Y. Elovici, "Mobile Malware

Detection Through Analysis of Deviations in Application

Network Behavior," Elsevier, vol. 43, pp. 1-18, 2014.

[5] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao and M. Conti,

"TextDroid: Semantics-based Detection of Mobile Malware

Using Network Flows," in IEEE Conference on Computer

Communications Workshops, 2017.

[6] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng and Z. Jia, "A

Mobile Malware Detection Method Using Behavior

Features in Network Traffic," Elsevier, vol. 133, pp. 15-25,

2019.

[7] Nancy and D. Sharma, "Android Malware Detection using

Decision Trees and Network Traffic," International

Journal of Computer Science and Information

Technologies, 2016.

