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ABSTRACT—The rapid growth of Android malware is noticeable with its serious threat to Android users. Such mobile 

malware usually uses network communication to steal users’ data and launch different attacks. Therefore, there is a need to 

protect Android users from malware and preserve their privacy. Accordingly, many researchers proposed network-based 

detection mechanisms that utilize machine learning techniques for detecting mobiles malware. This paper reviews malware 

detection techniques that rely on analyzing network traffic. Then, it compares and analyzes them based on specified criteria, 

which are the type of malware to be detected, the detection rate, the used machine learning algorithm, resource consumption 

rate, the extracted traffic features, the ability to detect encrypted traffic, and the ability to detect unknown apps. The result 

shows that TextDriod mechanism is the best solution since it comprehensively satisfies the required criteria.  
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INTRODUCTION 

NOWADAYS, smartphones play a major role in people's life 

since it gives its users an opportunity to do everything in only 

a few minutes. It facilitates people’s life by providing easily 

nailed educational tutorials, communication, sharing media, 

money transaction, and many others.  These activities are 

done by using the appropriate application that provides the 

wanted activity. Besides, the smartphone is not limited to 

only applications, it also used to store information including 

the confidential information. Therefore, smartphones are 

considered as an ultimate goal that can be used to harm the 

user. Accordingly, the number of malware that targets the 

smartphone has been increased, such malware is, 

ransomware, spyware, malicious apps, etc. 

Since smartphones are goldmine that contains lots of 

information about the user, there is a need to protect it from 

any type of attacks. Although all mobile devices are targeted 

to be attacked, Android devices are the most attacked ones 

due to its popularity and its open architecture [1].  The 

variations among malware behaviors in Android mobile 

devices results in some deficiencies in the existing security 

solutions. Some security solutions are designed to detect 

malware types that present its maliciousness in its codes, 

accordingly, can be detected by analyzing the applications' 

codes. Others are designed to examine the changes in the 

operating system functionalities or device resources such as 

memory and CPUs for malware detection. However, there is 

some malware that covers its maliciousness in term of code 

and OS functionalities, such as botnets and self-updating 

malware but represents it through the generated network 

traffic. Since the detection of such malware depends on 

network monitoring instead of static approaches, employing 

the science of Artificial Intelligence and Machine Learning in 

the security solutions designed to detect such types of 

malware considered as an effective approach. Accordingly, 

this paper aims to solve this problem by analyzing different 

network-based detection solutions that employ machine 

learning techniques and propose enhancements to effectively 

detect such malware. 

The paper is organized as followed. Section II states the 

problem statement, Section III addresses the background. 

Section IV is a literature review that discusses several 

machine learning malware detection methods. Section V 

illustrates a comparison between the detection methods in 

section IV. Finally, Section VI is the conclusion. 

I. LITERATURE REVIEW 
 

In this section, several network-based malware detection 

techniques are discussed. Starting with the botnets detection 

techniques, followed by self-updating malware detection 

techniques, and concluding with some generic malware 

detection techniques. 

A.  Botnet detection techniques 
 

Garg, Peddoju, and Sarje [2]. proposed a network-based app 

model to detect malicious apps, specifically botnets, in 

Android-based mobile devices. The main objective of such a 

proposed model is to identify malicious apps from benign 

ones. It consists of three main modules, namely, Network 

Traces Collection, Network Feature Extraction, and Detection 

module, as shown in  

Figure 1.     
 

Figure 1 Proposed Detection System 
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The first module, Network Traces Collection, is responsible 

for monitoring the network traffic generated from all the 

running apps in the mobile device, whether it is encrypted or 

plain. This is done periodically, every t seconds. Then, it 

records the headers only instead of the entire packets. Such 

collection contributes in making the model lightweight since 

it records a small amount of data which suites the limited 

memory, CPU processing of mobile devices. 

The second module, Network Feature Extraction, is 

responsible for extracting selected network features that is 

generated from short intervals and can be extracted without a 

need to record the entire packets. To meet such conditions, 

four different categories of network traffic features are used, 

DNS-based features, HTTP-based features, Origin-

Destination-based features, and TCP-based features. 

 The third module, Detection, is responsible for detecting 

malicious apps. In this module, Random Forest Machine 

learning classifier is used. This module consists of four 

components, namely, Detector, Update Module, Notification 

Center and Management Module. First, the detector takes an 

input from the previous module, Network Feature Extraction, 

in a feature vector form. Based on that, the detector classifies 

the app as malicious or benign. The detector triggers the 

Notification Center in case of malicious app detection which 

in turn transmits a warning alert. Such a warning alert is then 

shown in the notification bar of the mobile device. The 

Management Module is used for management purposes to set 

different parameters such as log records, alert mode, and alert 

threshold.  

 An experiment is performed to test the proposed model on 

two different mobile devices. The experiment followed four 

phases. First, traffic from malicious and normal apps was 

collected to learn its behavior. Second, this traffic is used to 

test different machine learning algorithms against accuracy, 

complexity, and stability. Then, the optimal algorithm, which 

is Random Forest, is chosen as a detector in the proposed app 

after training. Lastly, a complete mobile app results that can 

be downloaded from a server. Four experiments were 

implemented to test the detection accuracy, the device 

dependency, unknown apps detection and the detection of 

malicious apps with encrypted communication.   

 The results showed that the proposed model is capable of 

detecting malicious apps using network traffic with 98% 

accuracy. Moreover, Random Forest classifier showed a 

lesser detection time, higher accuracy and stability. Also, the 

experiment shows that the model is device independent with 

an average detection rate of 95.4%. In addition to detecting 

the plaintext malicious communications, the experiment 

showed an average detection rate of 93% of malicious apps 

that are communicated in an encrypted format. Lastly, it is 

shown that the model is capable of detecting the unknown 

apps that have similar behavioral apps in the training with a 

99% rate. However, it reached an average rate of 86% for the 

whole tested classifiers. 

Narudin, Feizollah, Anuar and Gani [3] proposed a solution 

to evaluate malware detection that integrates anomaly-based 

approach with machine learning classifiers. The main 

objective of this work is to evaluate various machine learning 

classifiers for Android malware detection using network 

traffic. Specifically, the used machine learning classifiers are 

decision tree, Bayes network, multi-layer perceptron, k-

nearest neighbors and random forest.   

 The evaluation process basically consists of two stages, the 

first stage is performing experiments and the second is 

analysis. The experiment carried out in three substages, data 

collection, feature selection and extraction and machine 

learning classifiers, as shown in Figure 2.  

 In the data collection stage, network traffic for malicious and 

benign applications was captured. The selected benign traffic 

was captured from running 20 different trusted applications 

such as Twitter and Facebook, each one was captured 

separately to preserve the isolation of the traffic. On the other 

hand, malicious traffic was collected by utilizing two 

malware sets, public and private. The former is MalGenome, 

which is a public dataset consist of 1260 malware categorized 

into 49 different families, the experiment utilized 1000 

malware samples from such families. The latter is a self-

collected dataset from the latest mobile malware traffic 

consists of 30 samples. 

 In the feature selection and extraction stage, the traffic 

generated from the previous stage was utilized as an input to 

select the intended features. First, the TCP traffic was 

filtered. Then, four features were selected, namely, basic, 

content-based, time-based and connection-based features. 

After that, the extracted features were labelled and stored in a 

database to constitute the input of the next stage.    

 In the machine learning classifier stage, five different 

machine learning classifiers were used to train on the 

information stored in the database to eventually produce an 

effective detection model.   

 The assessment of the ideal classifier involved two main 

experiments, one utilized MalGenome and the second utilized 

the private dataset. The evaluation measures were True 

Positive rate, False Positive rate, Precision, Recall, and F-

measure.   

 True Positive rate: the rate of predicted malware classified 

correctly 

 False Positive rate: the rate of benign apps classified as 

malware 

 Precision: the rate of relevant results  

 Recall: the sensitivity for the most relevant result 

 F-measure: a combination of precision and recall to 

estimate the entire system performance  

The result of each experiment was analyzed and compared. 

The final result showed that random forest machine learning 

classifier achieved 99.99% for MalGenome detection. On the 

other hand, KNN went better over random forest by a 

difference of 10.42% with the latest malware detection and 

achieved 84.57%.  
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Figure 2 experiment structure 

B. Self-updating malware detection techniques 
 

Shabati et al. [4] have proposed a host-based method for 

detecting mobile malware, especially, the self-updating 

malware, in the paper entitled by “Mobile malware detection 

through analysis of deviations in application network 

behavior” [4]. The detection method relies on learning the 

usual network traffic caused by mobile applications. Once 

this traffic is known, it becomes possible to detect any 

deviations on the application's traffic. This method uses 

machine learning algorithms on the host machine, Android 

mobiles, to detect malware. Since this method solely depends 

on network traffic, it can detect any malware that causes a 

moderate to high network traffic even if the malware is new 

or encrypted. This is due to the fact that self-updating 

malware, and some other types, change the network traffic 

and make it distinguishable from the regular one. The 

malware detection system in this solution has four main 

components, which are Features Extraction, Features 

Aggregation, Local Learner, and Anomaly Detector. Table 1 

summarizes these components. 

The main component for detecting malware is the Anomaly 

Detector. This component relies on predicted values assigned 

by the Local Learner for all the chosen features (i.e. the 

aggregated features during the Features Aggregation 

process). The Anomaly Detector continually monitors the 

network traffic of an application to observe the values of the 

selected features and compare them with the predicted ones. 

The probability of classifying an event as abnormal and 

consequently a malware is found by multiplying the 

evaluated differences between the predicted and observed 

values of all the features. Equation 3 calculates the 

probability of classifying a feature x as abnormal, where A(x) 

is the predicted, B(x) is the observed value, and dist denotes 

the distance between the two values.   
 

Table 1 The main components of Shabati’s malware detection 

system [4]. 

Features Extraction Extracts certain information from the 

network traffic of a running application.  

Features Aggregation Aggregates the extracted data to 

represent the application’s traffic.  

Local Learner Learns the application network pattern 

by adapting the cross-feature analysis 

approach using Decision table and  

REPTree algorithms. It takes place 

whenever an application is installed or 

updated.  

Anomaly Detector Analyzes the network behavior for 

detecting any deviations from the 

regular traffic.   
 

 

P(B(x) is abnormal) = 1- dist (A(x), B(x))                                          
 

The researchers conducted several experiments with benign, 

self-written malware, and real malware applications. The 

benign applications encompassed Gmail, WhatsApp, 

Facebook. The self-written malware applications were 

created to imitate the behavior of self-updating malware. The 

real malware were normal applications injected by real 

malware such as PJApps trojan. After conducting these 

experiments, the researchers found that this mechanism gives 

the best results when extracting a specific set of features, 

such as the average of the sent and received bytes and data as 

well as using the Decision Table and REPTree algorithms. 

Using these specified features and algorithms provides a high 

detection rate of malware, especially the self-updating 

malware where the detection rate is between 90-100% and 

the false positive rate doesn't exceed 10%. In addition to the 

high detection rate, the resources consumption in this 

mechanism is acceptable where it consumes while learning 

applications' traffic less than 2% of the mobile's memory and 

about 14% of the CPU. 
 

C. Generic malware detection techniques 
 
 

Wang et al [1] [5] proposed an Android malware detection 

platform based on text semantics of the collected traffic, 

namely TextDriod. It analyzes the request header of 

HTTP/HTTPS traffic since it contains lots of text semantics. 

It is deployed in the server and this server has a connection 

with the gateway to collect the traffic, see Figure 3. 
 

 
Figure 3 TextDriod Detection Model 
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Figure 4 shows the TextDriod detection process that goes 

through five different stages, which are: 

Figure 4 TextDriod’s process 

1. Traffic collection 

A traffic collection platform consists of Con2trol Center, App 

& Traffic Storage server, and traffic collection server is used 

to collect all the mobile traffic. The collected traffic contains 

a different type of traffic which are the execution and data of 

the app that is generated by the apps. The data traffic is a set 

of HTTP/HTTPS flows that are mixed of all apps' data traffic.  

2. Traffic Preprocessing 

Once the data traffic is received from the collection platform, 

firstly, the flow extraction process takes a place which is an 

algorithm that takes the mixed traffic as an input and extracts 

a collection of documents, each document contains the 

request header of a single HTTP/HTTPS flow.  

Secondly, flow segmentation process that splits the 

document’s strings into single words by using special 

characters which are (, : ; &) . Additionally, it removes the 

meaningless words such as the .jpg, .png, the, is, were, 

content-length, and en-us.  

3. N-Gram Generation  

N-gram method is one of the natural language processing 

(NLP) methods that is used to identify the sequence of words 

in the flow in order to give semantic information about the 

flow. That is done by observing the occurrence of the n-th 

word if the occurrence of each word is depending upon the 

previews words (n-1) or not. For example, if the words are 

independent of each other, then we substitute the letter N to 

be 1 (1-gram), if two words are depended in each other, then 

we substitute the letter N to be 2 (2-gram). This step provides 

contextual information in order to know if there is a 

relationship between multiple words.  The outputted 

meaningful word sets called features. 

4. Feature Selection 

The previous stage generates lots of features that are not that 

much significant for the malware detection model, thus, the 

chi-square test is used to filter them out. the chi-square test is 

a statistical test used to determine if the observed distribution 

of categorical variables significantly differs from the 

expected one or not, meaning, to distinguish if the observed 

distribution is malware traffic or benign traffic. That is done 

by using a measurement method that assigns each feature chi-

squared test value which is the feature’s frequency in the 

specific traffic. The chi-squared test value formula is:  

  (   )  
(         )

 

    
 

If the result of this formula exceeds the threshold, that means 

the selected feature and the specified category are dependent 

on each other. If they are dependent that means this feature is 

significant to this category, otherwise, the feature is 

insignificant to this category. The resulted sets of the selected 

and weighted N-gram sequences is called bag-of-word. 

5. Flow Header Visualization 

The last step of the proposed platform is to visualize the 

detected traffic by representing it in a word cloud format. 

That is done by using the word and its weight. The 

researchers use the font size and the font color to represent 

the words, meaning, the word with high frequency will be 

larger and more vivid than the word with low frequency.  

The used machine learning is a Support Vector Machine 

(SVM) algorithm. Since it should be trained to detect the 

malware, the conducted consists of two steps which are : 

 Word Vectorization: 

It converts the bag-of-words into numeric vectors, that is 

done by replacing each N-gram sequences that exist in the 

flow with binary values. If the N-gram sequence exists, then 

the corresponding binary value is "1", otherwise, the binary 

value is "0". Such an encoding process, each HTTP flow 

transformed into a numeric vector. 

 Model Building: 

It is a process of identifying the malicious traffic by finding 

out the source of this traffic by using Support Vector 

Machine (SVM) algorithm. The SVM algorithm works by 

learning the features of the malicious traffic and benign 

traffic, then constructs multiple hyperplanes which is a line 

that separates the two classes. Those multiple hyperplanes are 

compared and select the one that has a maximum margin 

between the two classes. After that, the detection model 

calculates the detection function which is a combination of 

the weight vector and the feature vector, as equation below 

shows, if the F(x) > 0 that indicates malicious activity, while 

F(x) < 0 indicates a benign activity. 

 ( )  ⟨   ⟩ 

This proposed detection model is applied in the test set, it 

detects and identifies 99.15% of the malware and its 

misjudgment rate is 0.45%, in case that the N value of N-

gram sequence is 1 and the number of features is 600, which 

is the optimal level. On the other hand, once the detection 

model is applied in a real-world environment, it detects 

76.99% of the all malware application. Additionally, the 

model has the ability to detect 54.81% of the new malware 

types that are not be detected by anti-virus. 

In 2019, Wang et al. [6] have proposed another mechanism 

that is similar to the previous one, however, the features set 

has been extended to include features from the TCP flow. 

These features are the uploaded/downloaded bytes, the 

number of uploaded/downloaded packets per one session, and 

their average bytes. Including TCP flow features assists in 

detecting malware that uses HTTPs instead of HTTP. The 

learning-based for the detection in this mechanism uses the 

C4.5 decision tree algorithm where a tuple of tree nodes, 

branches, and leaf nodes represent the feature's name, value, 

and class respectively.   

The researchers did an experiment with more than 10,000 

tuples of HTTP and 24,000 for TCP. Based on this 

experiment, it is found that the detection rate of malware 

varies based on the malware family and the number of its 
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initial training samples, and the used model (i.e. HTTP or 

TCP). By that, a malware from an unknown family type that 

had no training samples is hard to be detected by this 

mechanism unless it has similar features with a malware 

family that had many samples. Therefore, this mechanism 

needs to be continually trained with samples of different 

malware types. As for the model type, when binding both of 

the models, the detection rate increases approximately by 

50%. However, when using one model only, then relying on 

HTTP model would give a higher detection rate by 5%. 

As for the resources' consumption, this mechanism is 

considered to be a lightweight detection mechanism since the 

learning and detecting processes are done on a server that 

receives the network traffic from the access point. In addition 

to the process of detecting malware, the server provides a 

meaningful discerption once it detects an application as 

malware to the mobiles. Such messages clarify the feature 

that led to classifying the detected application as malware. 

Nacy, and Sharma [7] proposed a detection technique that 

uses a decision tree model which is a supervised 

classification learning technique that is widely used to 

differentiate each traffic from the other. That is done by 

relaying upon various features that are used to distinguish 

each traffic. Firstly, the researchers conducted an experiment 

in order to find out the distinguishing features which are 

features that can clearly differentiate between malware traffic 

and benign traffic. As a result of that, there are 8 

distinguishing features which are: 

  Average Packet Size 

  Average No of Packets Sent per Flow 

 Average No of Packets Received per Flow 

 Average No of Bytes Sent per Flow 

  Average No of Bytes Received per Flow 

  The ratio of Incoming to Outgoing Bytes  

  Average No of Bytes Received per Second 

  The ratio of Number of Connections to Number of 

Destination IPs.  

In all those features, the malicious traffic has a small value 

compared to the benign one. Thus, if the received traffic has a 

small value of all those features, that means the traffic is from 

malicious application.   

Secondly, the researchers build a detection model which is 

Decision Trees model. The tree is built on the 8 

distinguishing features that are specified above. Therefore, 

once the traffic of an application is forwarded to the Decision 

Tree classifier, the traffic will go through the tree and the last 

node that is reached will give the conclusion about the traffic 

whether it is malicious or not. This detection technique 

detects 90% of the samples, which means it provides high 

accuracy. In contrast, it lacks the opportunity to detect 

encrypted malware traffic. 

II. COMPARISON AND ANALYSIS 

This section compares and analyzes the discussed malware 

detection techniques based on seven different criteria as 

shown in Error! Reference source not found.. These criteria 

are Malware Detection type, Malware Detection rate, the 

used Machine Learning classifiers (ML technique), 

Resources Consumption rate, the Extracted Features to be 

analyzed, the ability of the mechanism to detect malware 

which communicate in encrypted format, and lastly, the rate 

of detecting unknown malware that were not part of its 

training set.  

The following is the analysis results for each criterion:  

 Detected Malware Type 

As shown in Error! Reference source not found., [2, 3] 

proposed a solution that is capable of detecting botnets. On 

the other hand, [4] proposed a solution to detect different type 

of malware which is self-updating. As for [1, 6, 7], they 

proposed a solution that deals with general malware types 

and not specific for a certain malware. The detection scope of 

the security solution considered a vital element that affects 

the idealness of such solution. 

 Detection rate  

As shown in Error! Reference source not found., most of the 

solutions achieved high detection rates which is not less than 

90%. Although the majority of the proposed solutions 

achieved high rates, the classifier detection ability depends 

mainly on the training. If the classifier trained on specific 

applications and tested on applications that have similar 

behavior, the detection rate will be high. On the other hand, if 

the classifier tested with applications that behave differently, 

the detection rate will be  

decreased. Thus, the detection rate criterion cannot be a 

definite factor to identify the ideal solution since each 

solution has its own dataset with certain samples. It needs to 

be combined with other factors to get a clear result.  

 Machine learning technique 

As shown in Error! Reference source not found., each 

proposed solution uses different machine learnings. Each 

solution uses an appropriate classifier for it. Therefore, 

researchers won't use this criterion for the best proposed 

solution decision. 

 Extracted traffic features 

This criterion is various from one solution to the other since it 

depends upon the proposed technique and the type of 

malware that the detection technique is designed to detect it. 

For example, the botnet detection techniques are depended 

upon the TCP packets for the connection between the attacker 

and zombie, in contrast, self-updating detection technique 

depends on the applications’ behavior, and other detection 

techniques rely on another aspect. Therefore, each proposed 

solution uses different features based on the type of malware 

it detects. 

 Resources consumption 

An important criterion when comparing between malware 

detection mechanisms is the resources consumption to not 

affect the mobile performance. In [2], the consumed 

resources are low since the mechanism relies on extracting 

the headers only to be aggregated and analyzed. As for [4], 

the learning process consumes high CPU. However, since the 

learning process only takes place when an application is 

installed or updated, then this consumption rate is considered 

to be acceptable. Unlike the aforementioned solutions, the 

proposed mechanisms in [1] and [6] have the lowest rate in 

resources consumption. This is due to the architecture of the 

mechanisms themselves where the learning and detection 

processes are done in a server instead of the mobiles. This 

leads to lower consumption of resources and a better analysis 
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of network traffic since the AP will aggregate all the traffic 

from different mobiles and send them to one server. By that, 

the detection mechanism will be enhanced.  
 

  

Table 2 Comparison Table 

 

Criteria 

References  

[2] [3] [8] [1] [5] [7] [6] 

Detected Malware 

Type 

Botnets  Botnets Self-updating  General General  General  

Detection rate 98% 99.99% 90-100% 99.15% 90% 91% 

ML technique Random Forest  Random Forest 

and KNN 

Decision table and 

REPTree 

SVM Decision Tree Decision Tree 

Resource 

Consumption 

Low Not specified  Low to moderate Low Not specified Low 

 

 

Extracted Traffic 

Features 

 DNS-based 

 TCP-based 

 Origin-

destination 

based 

 HTTP-based 

 Basic  

 Content-based  

 Time-based 

 Connection-

based  

 Avg. 

sent/received bytes 
 Avg. sent/ 
       received data 

 Inner and outer 

avg.  sent/received 

interval 

 HTTP 

Request header   

 

 Eight 

different 

features in a 

HTTP traffic  

 HTTP 

request header 

 TCP flow 

features 

 

Encrypted Traffic Detected  Not specified  Detected Detected Not detected Detected 

Detection of 

Unknown apps  

High  High  High moderate Not specified  Low 

  

 Encrypted traffic 

Network traffic may include encrypted packets, such as 

HTTPs. Such traffic is challenging for some malware 

detection mechanisms as in [5]. However, there are 

mechanisms that use advanced techniques to detect malware 

when analyzing the network traffic even if it was encrypted 

such as the solutions proposed in [1, 2, 4, 6]. This was 

achieved by analyzing the TCP flow. Another approach was 

to create a profile for each application’s regular network 

traffic and use it as a baseline to detect any deviation that 

may be evidence of malware activity. 

 Detection of unknown apps  

As shown in Error! Reference source not found., the 

detection of unknown apps reached high rates in [2, 3, 4, 6] 

achieved low detection rate. Moreover, [1] achieved 

moderate detection rate. These measures constitute a vital 

factor since it represents the classifier ability to detect 

malware that behaves differently. Thus, [2, 3, 4] are more 

qualified in term of new behavioral malware detection than 

the others.   

Although some solutions exceeded the others in specific 

criteria, the best solution measures constitute in a 

comprehensive model. The security has a clear trade-off to 

achieve its goal. Taking these into consideration and based on  

the conducted analysis, TextDriod [1] is considered as the 

best solution to detect malware based on network traffic 

features for different reasons. First, it has a high detection 

rate. Second, it is general for all types of malware. Third, it 

can detect most of the unknown malware that it did not train 

on. Fourth, it can detect encrypted malware traffic. Finally, it 

consumes low resources. 

 

III. CONCLUSION AND FUTURE WORK 

Malware that targeted Android platform is rapidly growing  

 

which increases the threats to its users. Such malware may 

steal users’ information or launch an attack. Some types of 

malware cannot be detected by traditional anti-virus software 

or other detection methods that rely on analyzing malware’s 

code or access rights. As a remedy, network-based detection 

techniques are introduced. This paper discussed several 

machine learning detection techniques, two of them focus on 

detecting botnets malware, one of them focus on detecting 

self-updating malware, and the rest focus on detecting the 

general type of malware. After that, the researchers compared 

and analyzed the discussed techniques based on specified 

criteria which are Malware Detection type, Malware 

Detection rate, the used Machine Learning classifiers, 

Resources Consumption rate, the Extracted Features to be 

analyzed, the ability of the mechanism to detect malware 

which communicate in encrypted format, and lastly, the rate 

of detecting unknown malware that were not part of its 

training set. The result OF this comparison and analysis 

showed that TextDriod detection technique is the most 

powerful one since it detects most of the malware type and it 

has a high detection accuracy rate which is 99.15% with 

0.45% misjudgment.  
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