INTUITIONISTIC FUZZY TOPOLOGY: FUZZY μ -STRONG SEMI CONTINUITY AND FUZZY μ -STRONG SEMI RETRACTS

Mohammed M. Khalaf

Department of Mathematics, Faculty of Science, Al-Azahar University, Assuit, Egypt.

Current Address : Al-zulfi College of Science, Majmaah University, KSA

Khalfmohammed 2003 @yahoo.com

ABSTRACT The concept of a fuzzy retract was introduced by Rodabaugh in 1981 and The concept of a intuitionistic fuzzy topology (IFT) was introduced by Coker 1997. The aim of this paper is to introduce a new concepts of fuzzy of Intuitionistic fuzzy μ -strongly semi open set of a nonempty set X and define an Intuitionistic fuzzy μ -strong semi continuity and Intuitionistic fuzzy μ -strongly semi retract. Also we prove that the product and the graph of two Intuitionistic fuzzy μ -strong semi continuity . The concept of Intuitionistic fuzzy μ -strongly semi retract are introduced, the relations between these new concepts are discussed.

Keywords IF_{μ} - strongly semiopen, IF_{μ} - strongly semi continuous, IF_{μ} - retract and IF_{μ} - neighbourhood retract, IF_{μ} - strongly

semiretract

1-INTRODUCTION

The notions of Intuitionistic fuzzy retracts are introduced by Hanafy and khalaf [6]. In [4,5] weaker forms of Intuitionistic fuzzy continuity between of Intuitionistic fuzzy topological space are introduced. In this work we introduced and explain in section 2 a new notions of Intuitionistic fuzzy open sets (IF_µ- open sets) are studied. in section 3 many results of IF_µ- strongly semi continuous are obtained, finely in section 4 we define IF_µ-retract and IF_µ- neighborhood retract Finley in section 5 IF_µ- strongly semi retract as applications of IF_µ- strongly semi continuous. The relations between all these concepts are discussed.

Definition 1.1 [1] Let *X* be a nonempty set. An IF-set *A* is an object of the form $A = \{x, \mu_A(x), \nu_A(x) : x \in X\}$. where the functions $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ denote respectively, the degree of membership function (namely $\mu_A(x)$ and the degree of non-membership function (namely $\nu_A(x)$ of A, $0 \le \mu_A(x) + \nu_A(x) \le 1$, for each $x \in X$). An IF-set $A = \{x, \mu_A(x), \nu_A(x) : x \in X\}$ can be written in the form $A = \{x, \mu_A, \nu_A\}$

Definition 1.2 [1] Let $A = \{x, \mu_A, v_A\}$, $B = \{x, \mu_B, v_B\}$ $A = \{x, \mu_A, v_A\}(t \in J)$. be IF -set on X and $f: X \to Y$ a function Then,

- (*i*) $A = \{x, \mu_A, v_A\}$
- (*ii*) $A \leq B \Leftrightarrow$ for each $x \in X[\mu_A \leq \mu_B \text{ and } \nu_A \geq \nu_B]$
- (*iii*) $A = B \iff A \le B$ and $B \le A$
- (iv) $\wedge A = \{x, \wedge \mu_A, \vee v_A\}$ [7]
- (v) $\forall A = \{x, \forall \mu_A, \land \nu_A\}$ [7]

Definition 1.3 [6] Let *A* be an IF-set of an IF-ts (X, δ) . Then A is called :

(i) An IF-regular open (IF-ro, for short) set if A =

int(cl(A))

(ii) An IF-semi open (IF-so, for short) set if $A \le cl(int(A))$ (iii) An IF-preopen (IF-po, for short) set if $A \le int(cl(A))$ (iv) An IF-strongly semi open (IF-so, for short) set if $A \le int(cl(int(A)))$

(v) An IF-semi-preopen (IF-spo, for short) set if $A \le cl(int(cl(A)))$

Their complements are called IF-semi closed, IF-pre closed, IF-strongly semi closed and IF-semi-pre closed sets **Definition 1.3** [1] Let *X* and *Y* be two nonempty sets and $f: X \rightarrow Y$ be a function

(i) If $B = \{y, \mu_A(y), v_A(y) : y \in Y\}$ is an IFS in Y, then

us, IF_{μ} -retract and IF_{μ} - neighbourhood retract, IF_{μ} – struct

the pre image of B under f (denoted by $f^{\leftarrow}(B)$) is defined by $f^{\leftarrow}(B) = \{x, f^{\leftarrow}(\mu_s(x), f^{\leftarrow}(v_s(x): x \in X)\}$

(*ii*) If $A = \{x, \lambda_A(y), \nu_A(y) : x \in X\}$ is an IFS in X, then the Image of A under f(denoted f(A)) is defined by $f(A) = \{x, f(\lambda_A)(y), (f((\nu_A(y))')' : y \in Y)\}$

Definition 1.4 [6] Let (X, δ) be a IF –ts, and $A \subset X$, Then, the F-subspace (A, δ_A) is called a IF – retract (for short, IFR) of (X, δ) if there exists a IF-continuous mapping $r : (X, \delta) \rightarrow (A, \delta_A)$ such that r(a) = a for all $a \in A$. In this case r is called an IF-retraction

Definition 1.5 [6] Let (X, δ) be a IF –ts .Then (A, δ_A) is said to be IF-Neighborhood retract (IF – nbd R) of (X, δ) if (A, δ_A) is a IFR of (Y, δ_Y) , Such that $A \subset Y \subset X$, $1_Y \in \delta$.

Definition 1.6 [6] Let (X, δ) be a IF –ts, and $A \subset X$, then the IF - subspace (A, δ_A) is called a IF - semi retract (for short, IFSR) (resp. IF – pre retract, IF – strongly semi retract and IF –semi pre retract) (IFPR, IFSSR, IFSPR) of (X, δ) if there exists a IF-semicontinuous (resp. IF-pre continuous, IF –strongly Semi continuous, IFsemi pre continuous) mapping $r: (X, \delta) \rightarrow (A, \delta_A)$ such that $r(a) = a \forall a \in A$. In this case, f is called an IFsemi retraction (resp., -IF pre retraction, IF-strongly semi retraction, IF- semi pre retraction)

Definition 1.7 [6] Let (X, δ) be an IF –ts .Then (A, δ_A) is said to be an IF- neighborhood semi retract, (for short, IF-nbd SR) (resp. IF-nbd pre retract, IF-nbd strongly semi retract, IF-nbd semi pre retract.) (for short, IF-nbd PR, IF-nbd SSR, IF-nbd SPR) of (X, δ) . (A, δ_A) is IFSR (resp. IFPR,IFSSR,IFSPR.) of

 (Y, δ_Y) , such that $A \subset Y \subset X$, $1_Y \in \delta$

2. IF_µ- semiopen, IF_µ- preopen, IF_µ- strongly semiopen and IF_µ- semi preopen sets

Definition 2.1 Let (X, δ) be a IF-ts, $\mu \in IFS(X)$, $\nu \in \mathcal{A}_{\mu}$. Then ν is called

(i) a IF_{μ} -semi open (briefly, IF_{μ} so) set if there exist $\lambda \in \delta \mu$. such that $\lambda \leq \nu \leq Cl_{\mu}(\lambda)$ (or, $\nu \leq Cl_{\mu}(Int_{\mu}(\nu))$).

(ii) a IF_{μ}-preopen (briefly, IF_{μ}po) set if $\nu \leq$ Int_{μ} ($Cl_{\mu}(\nu)$).

(iii) a IF_µ-regular open (briefly, IF_µro) set if $\nu \leq \text{Int}_{\mu}(Cl_{\mu}(\nu))$.

(iv) a IF_{μ}- strongly semi open (briefly, IF_{μ}sso) set if there exists $\lambda \in \delta \mu$ such that $\lambda \leq \nu \leq \text{Int}_{\mu}(\text{Cl}_{\mu}(\lambda))$. (or , $\nu \leq \text{Int}_{\mu}(\text{Cl}_{\mu}(\text{Int}_{\mu}(\nu)))$

(v) a IF_{μ} -semi preopen (briefly, IF_{μ} spo) set if there exists a IF_{μ} - preopen set λ such that $\lambda \leq \nu \leq Cl_{\mu}(\lambda)$ (or, $\nu \leq Cl_{\mu}(Int_{\mu}(Cl_{\mu}(\nu)))$

Their complements are called IF_{μ} -semi closed (briefly, $IF_{\mu}sc$), IF_{μ} -pre closed (briefly, $IF_{\mu}pc$), IF_{μ} -regular closed (briefly, $IF_{\mu}sc$), IF_{μ} -regular closed (briefly, $IF_{\mu}sc$), IF_{μ} -semipre closed (briefly, $IF_{\mu}spc$) set . $IF_{\mu}sc$), IF_{μ} -semipre closed (briefly, $IF_{\mu}spc$) set . $IF_{\mu}SO$, $IF_{\mu}PO$, $IF_{\mu}RO$, $IF_{\mu}SSO$ and $IF_{\mu}SPO$ (resp. $IF_{\mu}SC$, $IF_{\mu}PC$, $IF_{\mu}RC$, $IF_{\mu}SSC$, $IF_{\mu}SPC$) will always denote the family of IF_{μ} -semi open, IF_{μ} -preopen, IF_{μ} -regular open, IF_{μ} - strongly semi open, IF_{μ} - regular closed , IF_{μ} - strongly semiclosed, IF_{μ} - semi preclosed) sets

Remark 2.1 The implications between these different notions of IF- sets are given by the following diagram. IF $_{\mu}$ ro (IF $_{\mu}$ rc)

 $\begin{array}{ll} \downarrow \implies & \text{IF}_{\mu}\text{so} \ (\text{IF}_{\mu}\text{sc} \) \\ \text{IF}_{\mu}\text{o} \ (\text{IF}_{\mu} \ \text{c} \) \implies & \text{IF}_{\mu}\text{sso} \ (\text{IF}_{\mu} \ \text{ssc} \) \\ \implies & \text{IF}_{\mu}\text{spo} \ (\text{IF}_{\mu}\text{spc}) \\ \implies & \text{IF}_{\mu}\text{po} \ (\text{IF}_{\mu}\text{pc}) \end{array}$

But the converse need not to be true, in general as shown by the following examples

Example 2.1 Let X = Y = [0,1], Let (X, δ) IF-ts where, $\delta = \left\{ 0, 1, C_{0.7,0.3} C_{\alpha,\beta} : 0 \le \alpha \le \frac{1}{2}, 0 \le \beta \le \frac{1}{2} \right\}, \mu = C_{0.5,0.5}$. Then $C_{0.1,0.3}$ is an IF_µ- semi preopen set but not IF_µ-preopen set, $C_{0.1,0.5}$ is an IF_µ- semi open set but not IF_µ-strongly semi open set, $C_{0.2,0.6}$ is an IF_µ- semi preopen set but not IF_µ- semi open set,

Example 2.2 Let $X = \{a, b\}$ $\delta = \{\underline{0}, \underline{1}, \lambda\}$ and, $\mu \in IFS(X)$ are defined by,

$$\lambda = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.3}\right), \left(\frac{a}{0.4}, \frac{b}{0.5}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.1}, \frac{b}{0.7}\right), \left(\frac{a}{0.8}, \frac{b}{0.3}\right) \rangle$$

$$\theta = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.2}\right), \left(\frac{a}{0.7}, \frac{b}{0.7}\right) \rangle$$

 θ is an $\mathrm{IF}_{\mu}\text{-}\operatorname{preopen}$ set but not $\mathrm{IF}_{\mu}\text{-}\operatorname{strongly}$ semi open set .

Example 2.3 Let $X = \{a, b\}$ $\delta = \{ \underline{0}, \underline{1}, \lambda \}$ and, $\mu \in IFS(X)$ are defined by .

$$\lambda_{1} = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.5}\right), \left(\frac{a}{0.3}, \frac{b}{0.2}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.7}\right), \left(\frac{a}{0.5}, \frac{b}{0.1}\right) \rangle$$

$$\lambda_{2} = \langle x, \left(\frac{a}{0.1}, \frac{b}{0.4}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$

$$\theta = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.6}\right), \left(\frac{a}{0.4}, \frac{b}{0.1}\right) \rangle$$

 θ is an IF_µ- strongly semi open set but not IF_µ- open set., λ_1 IF_µ- open set but not IF_µ-regular open set. **Theorem 2.1**

(a) The μ -closure of a IF $_{\mu}$ - preopen set is a IF $_{\mu}$ -regular closed set ,

(b) The μ -interior of a IF_{μ} - preclosed set is a IF_{μ}-

regular open set

Proof . It is obvious

Theorem 2.2

(i) The intersection of two IF_{μ} - regular open sets is IF_{μ} -regular open,

(ii) The union of two IF_{μ} - regular closed sets is a IF_{μ} -

regular closed

Proof. It is obvious.

Proposition 2.1

(i) The intersection of any IF_{μ} -semi closed sets is also IF_{μ} -semi closed.

(ii) Any union of any IF_{μ} -semi open sets is also IF_{μ} -semi open

Proof . It is obvious

Theorem 2.3

(i) Arbitrary union of IF_{μ} -strongly semi open sets is IF_{μ} -strongly semi open

(ii) Arbitrary intersection of IF_{μ} -strongly semi closed sets is IF_{μ} -strongly semi closed (iii) Arbitrary union

(intersection) of IF_{μ} - semi preopen (IF_{μ} - semi preclosed) sets is IF_{μ} - semi preopen (IF_{μ} - preclosed)

Proof. It is obvious

Remark 2.2 Let $v_1 \in \mathcal{A}_{\lambda}$ be a F_{λ} -closed set and

 $v_2 \in \mathcal{A}_{\mu}$ be a IF_{μ} - closed set. Then $v_1 \times v_2$ need not be a $F_{\lambda \times \mu}$ - closed set.

Example 2.4 Let λ_1 and λ be IF – sets on X = { a, b }, defined by

$$\lambda_{1} = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.5}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \rangle$$

$$\lambda = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}\right), \left(\frac{a}{0.4}, \frac{b}{0.8}\right) \rangle$$

$$\nu_{1} = \langle x, \left(\frac{a}{0.7}, \frac{b}{0.8}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$
and $\delta = \{ \underline{0}, \underline{1}, \lambda_{1} \}$. Then ν_{1} is a IF _{λ} - closed set. Let λ_{2}
and μ be IF - sets on Y = {x, y}, defined by,

$$\lambda_{2} = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.3}, \frac{b}{0.2}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.1}, \frac{b}{0.6}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$

$$\nu_2 = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.2}\right), \left(\frac{a}{0.1}, \frac{b}{0.1}\right) \rangle$$

and $\gamma = \{ \underline{0}, \underline{1}, \lambda_2 \}$. Then ν_2 is a IF_{μ} -closed set. But - $\nu_1 \times \nu_2$ is not a $IF_{\lambda \times \mu}$ - closed set.

Remark 2.2 An IF_{μ} - semiopen set and a IF_{μ} - preopen set are independent concepts.

Example 2.5 Let λ_1 , λ_2 and μ be IF-sets on X = { a, b }, defined by

$$\lambda_{1} = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.3}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$

$$\lambda_{2} = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.7}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.8}, \frac{b}{0.8}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$

$$v = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.6}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}\right) \rangle$$

and $\delta = \{ \underline{0}, \underline{1}, \lambda_1, \lambda_2 \}$. Then ν is a IF_µ- preopen set, but not IF_µ- semiopen set.

but

Example 2.6 Let λ and μ be IF-sets on $X = \{a, b\}$, defined by

$$\begin{split} \lambda &= \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \rangle \\ \alpha &= \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \rangle \\ \mu &= \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}\right) \rangle \\ \text{and } \delta &= \{ \underline{0}, \underline{1}, \lambda \}. \text{ Then } \alpha \text{ is a } \text{IF}_{\mu}\text{-semiopen set,} \\ \text{not IF}_{\mu}\text{- preopen set.} \end{split}$$

Theorem 2.4. Let (X, δ) be a F-ts, $\mu \in I^X$, $\nu \in \mathcal{A}_{\mu}$. Then the following are equivalent.

- (i) ν is a IF_{μ}-semi closed set,
- (ii) $(\mu \nu)$ is a IF_{μ}- semiopen
- (iii) $\operatorname{Int}_{\mu} \left(\operatorname{Cl}_{\mu}(\nu) \right)^{\prime} \leq \nu$
- (iv) $\operatorname{Cl}_{\mu}(\operatorname{Int}_{\mu}(\mu \nu)) \geq \mu \nu$
- Proof. It is obvious
- 3. IF_{μ} -semi continuous, IF_{μ} precontinuous, IF_{μ} strongly semi continuous and IF_{μ} - semi precontinuous mappings

Definition 3.1 Let $f : (X, \delta) \to (Y, \gamma)$ be a mapping from a IF-ts (X, δ) to another IF-ts (Y, γ) , $\mu \in IFS(X)$. Then, f is called :

(i) a IF_µ-semicontinuous (briefly, IF_µ sc) mapping if for each $v \in \gamma_f \to (\mu)$, we have $\mu \land f^{\leftarrow}(v) \in \text{IF}_{\mu}SO$. (ii) a IF_µ-precontinuous (briefly, IF_µ pc) mapping if for each $v \in \gamma_f \to (\mu)$, we have $\mu \land f^{\leftarrow}(v) \in \text{IF}_{\mu}PO$. (iii) a IF_µ-strongly semi continuous (briefly, IF_µ ssc) mapping if for each

 $\nu \in \gamma_f \longrightarrow (\mu)$, we have $\mu \wedge f^{\leftarrow}(\nu) \in IF_{\mu} SSO$. (iv) a IF_{μ} - semi precontinuous (briefly, $IF_{\mu} spc$) mapping if for each $\nu \in \gamma_f \longrightarrow (\mu)$, we have $\mu \wedge f^{\leftarrow}(\nu) \in$

$IF_{\mu}SPO$

Remark 3.1 The implications between these different concepts are given by the following diagram

 $\Rightarrow IF_{\mu}pc \Rightarrow$ $IFc \Rightarrow IF_{\mu}c \Rightarrow IF_{\mu} ssc$ $IF_{\mu}sp$ $\Rightarrow IF_{\mu}sc \Rightarrow$

Example 3.1 Let X = Y = [0.1], Let (X, δ) and (Y, η) be two IF-ts's where,

 $\delta = \left\{ \begin{array}{l} 0, 1, C_{0.7, 0.3} C_{\alpha, \beta} : 0 \le \alpha \le \frac{1}{2}, 0 \le \beta \le \frac{1}{2} \right\} \text{ and } \\ \eta = \left\{ \begin{array}{l} 0, 1, C_{0.0, 0.5} \end{array} \right\}, \mu = \\ C_{0.3, 0.3} f(x) = x \text{. Then } f : (X, \delta) \longrightarrow (Y, \eta) \text{ is an } \\ \text{IF}_{\mu} \text{-continuous but not IF- continuous mapping .} \end{array} \right.$

Example 3.2 Let X = Y = [0.1], Let (X, δ) and (Y, η) be two IF-ts's where, $\delta = \{0, 1, C_{0.7, 0.3} C_{\alpha, \beta} : 0 \le \alpha \le \frac{1}{2}, 0 \le \beta \le \frac{1}{2}\}$ and $\eta = \{\underline{0}, \underline{1}, C_{0.5, 0.4}, C_{0.1, 0.2}, C_{0.5, 0.2}, C_{0.1, 0.4}, C_{0.5, 0.5}\}, f(x) = x$. Then $f : (X, \delta) \to (Y, \eta)$ is an IF_µ – semi precontinuous but not IF_µ- precontinuous mapping,

also , IF_{μ} – semi continuous but not IF_{μ} –strongly semi continuous mapping .

Example 3.3 Let X = Y = [0.1], Let (X, δ) and (Y, η) be two IF-ts's where, $\delta = \{0, 1, C_{0.7, 0.3}, C_{\alpha,\beta} : 0 \le \alpha \le \frac{1}{2}, 0 \le \beta \le \frac{1}{2}\}$ and $\eta = \{\underline{0}, \underline{1}, C_{0.0, 0.7}\}, \mu = C_{0.5, 0.5}f(x) = x$. Then $f : (X, \delta) \rightarrow (Y, \eta)$ is an IF_µ –strongly semi continuous but not IF_µ –continuous mapping, also, IF_µ –semi precontinuous but not IF_µ – semicontinuous mapping. **Example 3.4** Let X = Y = [0.1], Let (X, δ) and

Example 3.4 Let X = Y = [0.1], Let (X, δ) and (Y, η) be two IF-ts's where,

$$\delta = \left\{ 0, 1, C_{0.1,0.2}, C_{0.0,0.5}, C_{0.25,0.2}, C_{\alpha,\beta} : 0 \le \alpha \le \frac{1}{4} \right\},\$$

$$0 \le \beta \le \frac{1}{2} \quad \text{and}$$

$$n = \left\{ 0, 1, C_{0.1,0.5}, C_{0.2,0.2} \right\}, \mu = C_{0.2,0.2}, f(x) = x. \text{ Then}$$

 $\eta = \{ \underline{\upsilon}, \underline{1}, c_{0.1,0.5}, c_{0.3,0.2} \}, \mu = c_{0.2,0.2}, f(x) = x.$ Then, $f: (X, \delta) \to (Y, \eta)$ is an

 IF_{μ} - precontinuous but not IF_{μ} - strongly semi continuous mapping .

Theorem 3.1 Let $f : (X, \delta) \to (Y, \gamma)$ be an IF_{μ} -strongly semi continuous mapping. The following statements are equivalent:

(i) The inverse image of each IF_{μ} -closed set is IF_{μ} -strongly semiclosed

(ii)
$$\left(\operatorname{cl} \left(\operatorname{int} \left(\operatorname{cl} \left(f^{\leftarrow}(\alpha) \right) \right) \right) \right) \leq \left(f^{\leftarrow}(\operatorname{cl} \alpha) \right)$$
. for each $\alpha \in \operatorname{IF}_{\mu}$ -open set of Y
(iii) $f \left(\operatorname{cl} \left(\operatorname{int} \left(\operatorname{cl} \left((\beta) \right) \right) \right) \right) \leq \operatorname{cl}(f(\beta))$. for each $\beta \in \operatorname{cl}(f(\beta))$

IF_{μ}-open set of X

Proof (i) \Rightarrow (ii) Since $cl\alpha$ is IF_{μ} - closed set of Y, $f^{\leftarrow}(cl\alpha)$ is IF_{μ} - strongly semi closed and hence

$$\begin{pmatrix} cl (int (cl (f^{\leftarrow}(\alpha)))) \\ \leq (cl (int (cl (f^{\leftarrow}(cl\alpha))))) \\ \leq (f^{\leftarrow}(cl\alpha)) \\ (ii) \Rightarrow (iii) Let \beta \in IF_{\mu} \text{-open set of X. and } \alpha = f(\beta) . \\ By (ii) (cl (int (cl(\beta)))) \\ \leq (cl (int (cl (\beta)))) \\ \leq (f^{\leftarrow}(cl \alpha)) . Thus f (cl (int (cl ((\beta))))) \\ \leq f(f^{\leftarrow}(cl \alpha)) \leq cl(\alpha) = cl(f(\beta)) \\ (iii) \Rightarrow (i) Let \alpha be an IF_{\mu} - closed set of Y, and f^{\rightarrow}(\alpha) = \beta. By (iii) f(cl(int (cl ((\beta))))) \leq cl(f(\beta)) \leq cl (\alpha = \alpha . Hence, cl (int (cl ((\beta))))) \leq (f^{\leftarrow}(\alpha)), i.e., (cl (int (cl (f^{\leftarrow}(\alpha)))))) \leq (f^{\leftarrow}(\alpha)) and f^{\leftarrow}(\alpha) IF_{\mu} - strongly semiclosed. \\ Definition 3.2 . Let (X, \delta) and (Y, \gamma) be IF-ts's, \lambda \in IFS(X), \mu \in IFS(Y) Then we define \delta_{\lambda} \times \gamma_{\mu} as follows \delta_{\lambda} \times \gamma_{\mu} = \{\eta \times \zeta : \eta \in \delta_{\lambda}, \zeta \in \gamma_{\mu}\} \\ Lemma 2.1 Let (X, \delta) and (Y, \gamma) . be IF-ts's, \lambda \in IFS(X), \mu \in IFS(Y) \\ Then, \delta_{\lambda} \times \gamma_{\mu} = (\delta \times \gamma)_{\lambda \times \mu} \\ Proof Follows directly from definition (3.2) \\ Theorem 3.2 (Coker 1996) Let (X, \delta), (Y, \gamma) and (Z, \rho) \\ be IF-ts's, \mu \in IFS(X), f: X \rightarrow Y and g: Y \rightarrow Z be mappings. If f is IF_{\mu}-$$

continuous and g is

 $IF_{f \to (\mu)}$ - continuous, then gf is IF_{μ} - continuous **Theorem 3.3** Let (X_1, δ_1) , (X_2, δ_2) , (Y_1, γ_1) and (Y_2, γ_2) be IF-ts's, $\lambda \in IFS(X_1)$ and $\mu \in IFS(X_2)$. Then, $f_1 : X_1 \to Y_2$ is IF_{λ} continuous and $f_2: X_2 \rightarrow Y_2$ is IF_{μ} -continuous iff the product . $f_1 \times f_2 : X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ is $IF_{\lambda \times \mu}$ continuous. **Proof** Let $\eta \in (\gamma_1 \times \gamma_2)_{(f_1 \times f_2)} \longrightarrow_{(\lambda \times \mu)}$, i.e., $\eta = (f_1 \times f_2)^{\rightarrow} (\lambda \times \mu) \land (\vee (\lambda_{\alpha} \times \mu_{\beta})), \text{ where }$ λ_{α} 's and μ_{β} 's are IF- open sets of (Y_1, γ_1) and (Y_2, γ_2) , respectively, we want to show that $(\lambda \times \mu) \land (f_1 \times f_2) \leftarrow (\eta) = (\lambda \times \mu) \land$ $(f_1 \times f_2) \leftarrow ((f_1 \times f_2) \rightarrow (\lambda \times \mu) \land (\vee$ $(\lambda_{\alpha} \times \mu_{\beta})) \in (\delta_{1 \times \delta_2})_{\lambda \times \mu}$. Since $f_1 : (X_1, \delta_1) \rightarrow$ $\begin{array}{l} (Y_1, \gamma_1) \quad \text{is IF}_{\lambda} - \text{continuous}, \quad f_1^{\rightarrow}(\lambda) \land \lambda_{\alpha} \in \\ (\gamma_1)_{f_1^{\rightarrow}(\lambda)}, \text{ then } \lambda \land f^{\leftarrow}(f_1^{\rightarrow}(\lambda) \land \lambda_{\alpha}) = \lambda \land \end{array}$ $f \leftarrow (\lambda_{\alpha}) \in (\delta_1)_{\lambda}$. Also, since $f_2 : (X_2, \delta_2) \rightarrow (\delta_1)_{\lambda}$. (Y_2, γ_2) , is IF- continuous, $\mu_\beta \wedge f_2^{\rightarrow}(\mu) \in (\gamma_2)_{f_2^{\rightarrow}(\mu)}$, then $\mu \wedge f^{\leftarrow}(f_2^{\rightarrow}(\mu) \wedge \mu_{\beta} = \mu \wedge f^{\leftarrow}(\mu_{\beta}) \in (\delta_2)_{\mu}$. By using lemma (2.1). We get ($\lambda \land f^{\leftarrow}(\lambda_{\alpha})$) × $(\mu \land f^{\leftarrow}(\mu_{\beta})) = (\lambda \times \mu) \land (f^{\leftarrow}(\lambda_{\alpha}) \times$ $f^{\leftarrow}(\mu_{\beta})) = (\lambda \times \mu) \land (f_1 \times f_2)^{\leftarrow} (\lambda_{\alpha} \times \mu_{\beta}) \in$ $(\delta_{1\times}\delta_2)_{\lambda\times\mu}$, hence, $(\lambda\times\mu) \wedge (f_1\times f_2) \leftarrow (\eta)$ $\in (\delta_{1\times}\delta_2)_{\lambda\times\mu}$ **Conversely**, Let $\nu \in (\gamma_1)_{f_1 \to (\lambda)}$, i. e. $\nu = f_1 \to (\lambda) \land \zeta$ where $\zeta \in \gamma_1, \zeta \times 1 \in$ $\gamma_1 \times \gamma_2$ and $(\zeta \times 1) \land (f_1 \times f_2)^{\rightarrow} (\lambda \times \mu) \in$ $(\gamma_1 \times \gamma_2)_{(f_1 \times f_2) \to (\lambda \times \mu)}$, since $f_1 \times f_2 : X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ is a $IF_{\lambda \times \mu}$ -continuous, we have $(\lambda \times \mu) \land (f_1 \times f_2) \leftarrow ((\zeta \times 1) \land (f_1 \times f_2) \rightarrow (\lambda \times f_2)$ $\mu)) = (\lambda \times \mu) \land (f_1 \times f_2) \leftarrow (\zeta \times 1) = (\lambda \times \mu) \land$ $(f^{\leftarrow}(\zeta) \land 1) = (\lambda \land f^{\leftarrow}(\zeta)) \times \mu \in (\delta_{1 \times} \delta_2)_{(\lambda \times \mu)} =$ $(\delta_1)_{\lambda} \times (\delta_2)_{\mu}$, i.e, $\lambda \wedge f^{\leftarrow}(\zeta) = \lambda \wedge f^{\leftarrow}(f_1^{\rightarrow}(\lambda) \wedge f^{\leftarrow}(\zeta))$ $\zeta) = \lambda \wedge f^{\leftarrow}(\nu) \in (\delta_1)_{\lambda} .$

Hence, f_1 is a IF_{λ}- continuous. The proof with respect to f_2 in the same fashion.

Theorem 3.4 Let (X, δ) , (Y, γ) be IF-ts's and $f: (X, \delta) \to (Y, \gamma)$ be a mapping. Then, the graph $g: (X, \delta) \to (X \times Y, \theta)$ of f is IF_{μ} -continuous iff fis IF_{μ} - continuous, where θ is the F – product topology generated by δ and γ

Proof suppose the graph $g: (X, \delta) \to (X \times Y, \theta)$ is IF_{μ} - continuous . Let

 $\nu \in \gamma_{f \to (\mu)}$, i.e., $\nu = f^{\to}(\mu) \wedge \eta$ where $\eta \in \gamma$, we want to show that,

$$\mu \wedge f^{\leftarrow}(f_1^{\rightarrow}(\mu) \wedge \eta) \in \delta_{\mu} \text{ since } \underline{1} \times \eta \in \mathcal{A}$$

 θ , $g^{\neg}(\mu) \land (\underline{1} \times \eta) \in \theta_{g \to (\mu)}$, then $\mu \wedge g^{\leftarrow} \left(g^{\rightarrow}(\mu) \wedge \left(\underline{1} \times \eta \right) \right) = \mu \wedge g^{\leftarrow} \left(\underline{1} \times \eta \right) =$ $\mu \land \left(\underline{1} \land f^{\leftarrow}(\eta) \right) =$ $\mu \wedge f^{\leftarrow}(\eta) = \mu \wedge f^{\leftarrow}(f^{\rightarrow}(\mu) \wedge \eta) \in \delta_{\mu} \text{ . so } f^{\rightarrow} \text{ is }$ IF_{μ} - continuous

Conversely, suppose f is IF_{μ} -continuous, let $\xi \in$

 $\theta_{g \to (\mu)}$, i.e. $\xi = g \to (\mu) \land (\lor (\lambda_{\alpha} \lor \mu_{\beta}))$, where $\lambda \alpha$'s and μ_{β} 's are F-open set of δ and γ respectively. Now $\mu \wedge g^{\leftarrow}(\xi) = \mu \wedge g^{\leftarrow}(g^{\rightarrow}(\mu) \wedge (\vee (\lambda_{\alpha} \times$ $\mu_{\beta}))) = \mu \wedge g^{\leftarrow}(\vee(\lambda_{\alpha} \times \mu_{\beta})) =$ $\vee \left(\mu \land (\lambda_{\alpha} \land f^{\leftarrow}(\mu_{\beta})) = \vee (\lambda_{\alpha} \land (\mu \land$ $\left(f^{\leftarrow}(\mu_{\beta}) \right) = \vee \left(\lambda_{\alpha} \wedge \mu \wedge f^{\leftarrow} \left(f^{\rightarrow}(\mu) \wedge f^{\leftarrow}(\mu) \right) \right)$ μ_{β})) $\in \delta_{\mu}$. So $g \rightarrow$ is IF_{μ}- continuous **Proposition 3.1** Let $\mu \in I^X$, $f : (X, \delta) \to (X, \gamma)$ be an injective and IF_{μ} - continuous mapping. Then for each $\nu \in \gamma_{f \to (\mu)}^{c}$ we have $\mu - (\mu \land f^{\leftarrow}(\nu))$ is IF_{μ} semi open (res., IF_µ-preopen, IF_µ-strongly semi open, IF_{μ} -semi preopen) set Proof . It is obvious **Proposition 3.2** Let (X, δ) , (Y, γ) be F-ts's, $\mu \in I^X$ and $f : X \to Y$ be a bijective map. Then, if f is a IF_{μ} -homeomorphism, then f is a IF_{μ} semi continuous (resp. IF_{μ} -precontinuous , IF_{μ} -strongly semi continuous, IF_{μ} - semi pre continuous) mappings Proof . It is obvious **Theorem 3.5** Let (X, δ) , (Y, γ) be IF-ts's, $\mu \in$ IFS(X), If $f : (X, \delta) \to (Y, \gamma)$. is IF_µ-semi continuous and IF_u-precontinuous, then f is IF_ustrongly semi- continuous

Proof The proof is simple and hence omitted **Remark 3.2** a IF_{μ} - semicontinuity and IF_{μ} precontinuity are independent concepts. **Example 3.5** Let $X = \{a, b\}, Y = \{x, y\}, \delta =$ $\{0, 1, \lambda_1\}$ and

 $\gamma = \{ \underline{0}, \underline{1}, \lambda_2 \}$. $\lambda_1, \mu \in IFS(X)$ and $\lambda_2 \in IFS(Y)$ are defined by,

$$\lambda_{1} = \langle x, \left(\frac{a}{0.1}, \frac{b}{0.2}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$
$$\lambda_{2} = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.5}\right), \left(\frac{a}{0.4}, \frac{b}{0.5}\right) \rangle$$
$$\mu = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.6}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}\right) \rangle$$

f(a) = y, f(b) = x Then, f is IF_{μ} -pre continuous but not IF_{μ} - semicontinuous mapping

Example 3.6 Let X = Y = [0, 1], Let (X, δ) and (Y, η) be two IF-ts's where,

$$\delta = \left\{ \begin{array}{l} 0, 1, C_{0.7,0.3}, C_{\alpha,\beta} : 0 \le \alpha \le \frac{1}{2}, 0 \le \beta \le \frac{1}{2} \end{array} \right\} \text{ and} \\ \eta = \left\{ \underline{0}, \underline{1}, C_{0.0,0.3}, C_{0.4,0.2} \right\}, \ \mu = \\ C_{0.2,0.2}f(x) = x \text{. Then } f : (X, \delta) \longrightarrow (Y, \eta) \text{ is an } \mathrm{IF}_{\mu}\text{-} \\ \mathrm{Semicontinuous but not } \mathrm{IF}_{\mu}\text{-} \\ \mathrm{Pre \ continuous \ mapping .} \end{array}$$

4. IF_{μ}-retract and IF_{μ}-neighbourhood retract

Definition 4.1 Let (X, δ) be IF-ts, and $A \subset X$, Then , the IF- subspace (A, δ_A) is called a IF_µ-retract $(IF_{\mu} - R)$ of (X, δ) if there exists a IF_{μ} -continuous mapping $r: (X, \delta) \rightarrow (A, \delta_A)$ such that r(a) = $a \forall a \in A$. In this case r is called a IF_u-retraction **Remark 4.1** Every IF – retract is a IF_{μ} -R, but the converse is not true

Example 4.1 Let λ and μ be IF-sets on $X = \{a, \}$

Remark 4.2 Let (X, δ) be a IF-ts. Since the identity map $id_X : X \to X$ is IF_{μ} -continuous, then X is a IF_{μ} -R or itself.

Proposition 3.1. Let $Z \subset Y \subset X$, $\mu \in \text{IFS}(X)$, $r_1 :$ $(X, \delta) \to (Y, \delta_Y)$ be IF_{μ} -retraction, $r_2 : (Y, \delta_Y)$ $\to (Z, (\delta_Y)_Z)$ be $\text{IF}_{r_1 \to (\mu)^{-}}$ retraction. Then $r_2r_1 : (X, \delta) \to (Z, (\delta_Y)_Z)$ is a IF_{μ} -retraction **Proof** It follows from theorem 3.2 **Proposition 4.2** Let (X, δ) be a IF-ts, $A \subset X$ and $\mu \in IFS(X)$. Then the function $r : (X, \delta) \to (A, \delta_A)$ is IF_{μ} -retraction iff for any IF-ts

 (Y, γ) , every $\operatorname{IF}_{r \to (\mu)}$ - continuous function g: $(A, \delta_A) \to (Y, \gamma)$ has a IF_{μ} -continuous function $\overline{a} : (Y, \delta) \to (Y, \gamma)$ such that $\overline{a} \mid A = \beta$

 $\bar{g}: (X, \delta) \to (Y, \gamma)$ such that $\bar{g} | A = g$ **Proof** Let $r: (X, \delta) \to (A, \delta_A)$ be IF_{μ} -retraction $g: (A, \delta_A) \to (Y, \gamma)$ be $F_{r \to (\mu)}$ continuous function, By Theorem 2.2.2. $\bar{g} = gr: (X, \delta) \to (Y, \gamma)$ is IF_{μ} continuous and $\forall a \in A, \bar{g}(a) = gr(a) = g(a)$ **Conversely**, let $(Y, \gamma) = (A, \delta_A)$, then $g = id_A$. Since g is $IF_{r \to (\mu)}$ - continuous, then g has a fuzzy μ continuous $\bar{g}: (X, \delta) \to (A, \delta_A)$ and $\bar{g} | A = id_A$. **Theorem 4.1** Let (X, δ) be a IF- ts, $A \subset X$ and $r: (X, \delta) \to (A, \delta_A)$ be a mapping such that $r(a) = a \forall a \in A$. Then the graph $g: (X, \delta) \to (X \times A, \theta)$ of r is IF_{μ} -continuous iff r is a IF_{μ} - retraction, where θ is the product topology generated by δ and δ_A

Proof. It follows directly from Theorem 3.3.

Definition 4.2 Let (X, δ) be a IF-ts, $\mu \in \text{IFS}(X)$. Then (A, δ_A) is said to be a IF_{μ}-neighborhood retract $(\text{IF}_{\mu}\text{-nbd } R)$ of (X, δ) if (A, δ_A) is a IF_{$\mu|Y$} – R of (Y, δ_Y) , such that $A \subset Y \subset X$, $1_Y \in \delta$.

Remark 4.3 Every IF_{μ} -R is a IF_{μ} -nbd R, but the converse is not true.

Example 4.2 Let $X = \{a, b, c\}, A = \{a\} \subset X, \lambda_1, \lambda_2$ and μ be IF-sets on X, defined by

$$\lambda_{1} = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}\right) \rangle$$

$$\lambda_{2} = \langle x, \left(\frac{a}{1.0}, \frac{b}{1.0}, \frac{c}{0.0}\right), \left(\frac{a}{0.0}, \frac{b}{0.0}, \frac{c}{1.0}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.8}, \frac{b}{0.8}, \frac{c}{0.5}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}\right) \rangle$$
Consider $\delta = \{0, 1, \lambda, \lambda_{0}, \lambda_{0}$

Consider $\delta = \{ \underline{0}, \underline{1}, \lambda_1, \lambda_2, \lambda_1 \lor \lambda_2, \lambda_1 \land \lambda_2 \}$. Then (A, δ_A) is a IF_µ-nbd R of (X, δ), but not a IF_µ-R of (X, δ).

Proposition 4.3 Let (X, δ) and (Y, γ) be IF-ts's, $A \subset X, B \subset Y$,

 $\lambda \in IFS(X)$ and $\in IFS(Y)$. If (A, δ_A) is a IF_{λ} -nbd R of (X, δ) and (B, γ_B) is a

IF_{μ}-nbd R of (Y, γ), then ($A \times B$, ($\delta \times \gamma$)_{$A \times B$}) is a

3903

IF_{$\lambda \times \mu$}-nbd R of $(X \times Y, \delta \times \gamma)$. **Proof** Since (A, δ_A) is a F_{λ} -nbd R of (X, δ) , then (A, δ_A) is a $IF_{\lambda|U}$ -R of (U, δ_U) such that $A \subset U \subset$ X, $1_{U} \in \delta$, this implies that, there exists a $IF_{\lambda | U}$ continuous mapping $r_1: (U, \delta_{U}) \to (A, (\delta_{U})_A)$ such that $r_1(a) = a \forall a \in A$. Also since (B, γ_B) is a IF_{μ} -nbd R of (Y, γ) , then (B, γ_B) is a $IF_{\mu|V}$ –R of (V, γ_V) such that $B \subset V \subset Y$, $1_V \in \gamma$, this implies that, there exists a $IF_{\mu|V}$ - continuous mapping $r_2: (V, \gamma_V) \rightarrow$ $(B, (\gamma_V)_B)$, such that $r_2(b) = b \forall b \in B$, by using Theorem 3.3 and Lemma 3.1 we have $(r_1 \times r_2)$: $(U \times V, (\delta \times \gamma)_{U \times V}) \rightarrow$ $(A \times B, ((\delta \times \gamma)_{U \times V})_{A \times B}$ is a $\mathrm{IF}_{\lambda \times \mu}$ - continuous mapping , $1_U \times 1_V \in \delta \times \gamma$, and $(r_1 \times r_2) (a, b) = (r_1(a), r_2(b)) =$ $(a, b) \forall (a, b) \in A \times B$. Hence, $A \times B$ is a $IF_{\lambda \times \mu}$ -nbd R of $X \times Y$. **Proposition 3.4.** Let (*X*, δ) and (*Y*, γ) be IF-ts's $\lambda \in$ IFS(X), $\mu \in IFS(Y)$, $A \subset$ $X, B \subset Y$. If (A, δ_A) is a F_{λ} - R of (X, δ) and (B, γ_B) is a $IF_{\mu} - R$ of (Y, γ) , then $(A \times B, (\delta \times \gamma)_{A \times B})$ is a $F_{\lambda \times \mu}$ -R of $(X \times Y, \delta \times \gamma)$ **Proof** The proof is much simpler than that of Proposition 4.3. and hence omitted 5 -IF_{μ} – semiretract , IF_{μ} – preretract , IF_{μ} – strongly semiretract and IF_{μ} – semi preretract **Definition 5.1** Let (X, δ) be a IF-ts , $\mu \in IFS(X)$ and $A \subset X$. Then the F – subspace (A, δ_A) is called a IF_{μ} – semi retract ($IF_{\mu} - SR$) (resp. IF_{μ} - pre retract, IF_{μ} - strongly semiretract and IF_{μ} - semi preretract) (IF_{μ} -PR , IF_{μ} - SSR , IF_{μ} - SPR) of (X, δ) if there exists a IF_{μ}- semi continuous (resp. IF_{μ} - precontinuous, IF_{μ} -strongly semi continuous, IF_{μ} - semi pre continuous) mapping $r:(X,\delta) \to (A,\delta_A)$ such that $r(a) = \forall a \in A$. In this case, f is called a IF_{μ}-semi retraction (resp. - IF_{μ} - perpetration, IF_{μ} - strongly semiretraction, IF_{μ} - semi preretraction) \Rightarrow IF _u-PR \Rightarrow $IF - R \implies IF_{\mu} - R \implies IF_{\mu} - SSR$ IF μ - SPR \Rightarrow IF _u-SR

But, the converse is not true in general, as we indicate the following examples.

Remark 5.1 Example 3.1 shows that a IF_{μ} -R need not to be a IF- retract.

Example 5.1 Let $X = \{a, b\}$, $A = \{a\} \subset X$ and λ_1 , λ_2 and μ be IF-sets on X defined by

$$\begin{split} \lambda_1 &= \langle x , \left(\frac{a}{0.2}, \frac{b}{0.3}, , \frac{c}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}, , \frac{c}{0.6}\right) \rangle \\ \lambda_2 &= \langle x , \left(\frac{a}{0.1}, \frac{b}{0.2}, , \frac{c}{0.3}\right), \left(\frac{a}{0.6}, \frac{b}{0.7}, , \frac{c}{0.7}\right) \rangle \\ \mu &= \langle x , \qquad \left(\frac{a}{0.3}, \frac{b}{04}, , \frac{c}{0.2}\right), \qquad \left(\frac{a}{0.2}, \frac{b}{0.2}, , \frac{c}{0.3}\right) \rangle \\ \text{Consider } \delta &= \{\underline{0}, \underline{1}, \lambda_1, \lambda_2\} \text{ . Then } (A, \delta_A) \text{ is a } IF_{\mu}\text{- SPR}, \\ \text{but not a } IF_{\mu}\text{-}PR, \text{ also }, \quad IF_{\mu}\text{- SR}, \text{ but not a } IF_{\mu}\text{- SSR}. \end{split}$$

Example 5.2. Let $X = \{a, b\}$, $A = \{a\} \subset X$ and λ , μ be IF-sets on X defined by

defined by

$$\lambda = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.6}\right), \left(\frac{a}{0.1}, \frac{b}{0.3}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0..3}, \frac{b}{0.8}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$
Consider $\delta = \{\underline{0}, \underline{1}, \lambda\}$. Then (A, δ_A) is a IF_µ- PR

but not a IF_{μ} -SSR.

Example 5.3. Let $X = \{a, b\}$, $A = \{a\} \subset X$ and λ_1 , λ_2 and μ be IF- sets on X defined by

$$\lambda_{1} = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.3}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$

$$\lambda_{1} = \langle x, \left(\frac{a}{0.6}, \frac{b}{0.4}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.9}\right), \left(\frac{a}{0.2}, \frac{b}{0.1}\right) \rangle$$

Consider $\delta = \{0, 1, 1, 2, 3, 3\}$ Th

Consider $\delta = \{\underline{0}, \underline{1}, \lambda_1, \lambda_2\}$. Then (A, δ_A) is a IF_{μ}-SSR, but not a IF_{μ}-R

Example 5.4 Let $X = \{a, b\}$, $A = \{a\} \subset X$ and λ_1 , λ_2 and μ be IF- sets on X defined by

$$\begin{split} \lambda &= \langle x , \left(\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.3}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.7}\right) \rangle \\ \mu &= \langle x , \left(\frac{a}{0.1}, \frac{b}{0.2}, \frac{c}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.7}, \frac{c}{0.3}\right) \rangle \\ \text{Consider } \delta &= \{\underline{0}, \underline{1}, \lambda\} \text{ . Then } (A, \delta_A) \text{ is a } \text{IF}_{\mu}\text{-} \text{SPR , but } \\ \text{not a } \text{IF}_{\mu}\text{-}\text{SR} \end{split}$$

Proposition 5.1 Let $\mu \in IFS(X)$, (X, δ) be a IF-ts, $A \subset X$ and

 $r: (X, \delta) \rightarrow (A, \delta_A)$ be a mapping such that $r(a) = a \forall a \in A$. If r is a IF_{μ} - precontinuous and IF_{μ} -

semicontinuous, then (A, δ_A) is a IF_µ-SSR of (X, δ) **Proof**. It follows directly from Theorem 3.5

Remark 5.2 A IF_{μ} - semiretract and IF_{μ} - pre retract are independent concepts

Example 5.6 Let $X = \{a, b\}$, $A = \{a\} \subset X$ and λ and μ be IF-sets on X defined by

$$\lambda = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \rangle$$

$$\mu = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.3}\right), \left(\frac{a}{0.4}, \frac{b}{0.5}\right) \rangle$$

onsider $\delta = \{0, 1, \lambda\}$. Then (A, δ)

onsider $\delta = \{\underline{0}, \underline{1}, \lambda\}$. Then (A, δ_A) is a IF_µ-SR of (X, δ) , but not a IF_µ-PR

Example 5.7 Let $X = \{a, b\}$, $A = \{a\} \subset X$ and λ and μ be IF-sets on X defined by $\lambda = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.3}\right), \left(\frac{a}{0.1}, \frac{b}{0.7}\right) \rangle$ $\mu = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.8}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}\right) \rangle$ Consider $\delta = \{\underline{0}, \underline{1}, \lambda\}$. Then (A, δ_A) is a IF $_{\mu}$ - PR of

 (X, δ) , but not a IF_u-SR

CONCLUSION

The purpose of this paper is to define (IF_{μ} - open sets) and many results of IF_{μ} - strongly semi continuous Also, we define IF_{μ} -retract and IF_{μ} - neighborhood retract and IF_{μ} - strongly semi retract as applications of IF_{μ} - strongly semi continuous.

REFERENCES

- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986),87-96
- D. Coker, An introduction to intuitionistic fuzzy Topological Spaces, Fuzzy Sets and Systems 88(1997)81-89
- D. Coker, An introduction to fuzzy subspace in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 4 (4)(1996) 749-764
- H. Gurcay, D. Coker and A. Hayder. On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5(2) (1997), 365-378
- I. M. Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Mathematical Journal, 53(4) (2003), 793-803
- I. M. Hanafy, F.S. Mahmoud and Mohammed .M. Khalaf intuitionistic fuzzy retracts, International journal of logic and intelligent system, 5(1) (2005), 40-45
- 7.S.K.Samanta and T.K. Mondal, Topology on interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119 (2001) 483-494
- 8.L.A Zadeh, Fuzzy sets, Inform. and Control 8(1965)338-353