
 Sci.Int.(Lahore),27(4),3367-3371,2015 ISSN 1013-5316; CODEN: SINTE 8 3367

July-August

SOLVING JOB SHOP SCHEDULING PROBLEM WITH GENETIC
ALGORITHM

Saleha Noor
1
, M. IkramUllah Lali

1
, M. Saqib Nawaz

2*

1Department of Computer Science & IT, University of Sargodha, Sargodha, Pakistan
2Department of Computer Science, The University of Lahore, Sargodha Campus, Pakistan

*
saqib_dola@yahoo.com

ABSTRACT: Genetic algorithms (GAs) are search algorithms that are used to solve optimization problems in

theoretical computer science. Job shop scheduling (JSS) problem is a combinatorial optimization problem where

main goal is to find a schedule with minimum makespan for processing of j jobs on a set of m machines. The

schedule for jobs processing in JSS problem is subjected to some constraints, such as only one operation of a job

can be processed on one machine at a time, operations of a job has to be processed in a certain order and

preemption of any operation is forbidden. In this article, we have suggested a new genetic algorithm (GA) to solve

the JSS problem which uses a new genetic representation (coding) for scheduling of jobs and machine distribution.

Followed by genetic representation, an initial population is randomly generated. Then crossover and mutation

operator of GA are applied on the population for the creation of new off-springs until some stopping criterion is

reached. Furthermore, experiments are performed to show the performance and applicability of proposed GA.

Keywords: Crossover Operator; Genetic Algorithms; Job Shop Scheduling; Mutation Operator; Makespan.

1. INTRODUCTION
Scheduling of operations is considered the most critical issues

in the manufacturing processes management and planning.
Scheduling is concerned with jobs assignment to production

resources and specifying the sequence in order to optimize

certain objective functions. In manufacturing environment,

scheduling depends on the environment of the shop floor

such as job-shop, flow-shop and open-shop [1]. Job Shop

Scheduling (JSS) problem can be explained as: a job set j

contains n jobs and these jobs are processed on one of the

machine selected from machine set m. Each job is comprised

of operations O = O1, O2, ..., On. Each machine can process

one operation of a job at a time and when an operation is

assigned to a machine, the machine must complete processing

of operation without any interruption. Furthermore,

operations of the job have to be processed in a certain given

order. The problem is to find the schedule for operations on

machines, keeping in mind the precedence constraints that

will minimize the makespan. Makespan (Cmax) is the time in

which all operations of each job are completed.

Job-shop scheduling is a well-known and strongly NP-hard

problem [2] and has also proven to be computationally

challenging. JSS problem analysis provides relevant insight

into the solution of the scheduling problems that are faced in

more complicated and realistic systems. Therefore, heuristics

are preferred for job shop scheduling [3]. GA is considered

the best-known optimizing technique for a class of

combinatorial problems [4, 5].

Genetic algorithms (GAs) introduced by Holland [6], are

search algorithms based on evolutionary process. GAs are

well-known to solve optimization problems in theoretical

computer science. In GA, if the solution in the population is

suitably encoded and by mimicking the process of GA, it has

the ability to evolve solutions to the problems of real world

[7]. Analysis of GAs have begun years ago to understand the

working of genetic algorithms and how to use them to get the

best solution [8]. In applying GA to a problem, a suitable

representation (encoding) for the given problem must be

designed. A fitness function is also required which is used to

select individuals solutions from population. During run,

selected solutions go through crossover (reproduction) and

mutation operation to generate new off-spring. Main idea

here is that off-springs will perform better than their

corresponding parents. First GA based technique for

scheduling problem was proposed by Davis [9] in 1985. After

that GAs have been frequently used to solve the scheduling

problems. In this study we have presented a GA to solve the

JSS problem.

The rest of the article is divided in three main sections. In

Section 2, literature review in the area of GA and JSS

problem is discussed. In Section 3, proposed GA is presented

by detailing the strategies of encoding scheme, the fitness

function, the criteria for selection, crossover and mutation

operators adopted for the generation of off-springs.

Experiments are performed in Section 4 to show the

performance of proposed GA and conclusions are drawn in

Section 5.

2. LITERATURE REVIEW
In literature, various GA approaches have been used to solve

the JSS problem. These approaches are different from one

another on the basis of representation scheme and GA that are

used, the constraints handling and the pursued goals.

However, all approaches have one common thing: knowledge

is required in order to generate the competitive schedules for

processing of jobs. In 1985, Davis [9] first used the GA to

solve the JSS problem. Jain and Meeran [10] provide a

comprehensive survey of methods which are used to address

JSS problem. They concluded that among various techniques

to address JSS problem, meta-heuristic technique is best for

JSS problem. The combined use of heuristic and a GA is

called as meta-heuristics. With the growth in the popularity of

GA in the mid 1980's, different researchers used GA to solve

the JSS problem.

A two-row chromosome structure is defined by Li and Chen

[11] that is based on the working order of procedures and

machine distribution to minimize the makespan in JSS

problem. Lee et al. [12] proposed a framework that utilizes

GA along with machine learning and heuristics space to find

the sequence of job release order and the sequence for

dispatching jobs at each individual machine. According to

Onwubolu and Davendra [13], GA is the best technique that

3368 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3367-3371 ,2015

July-August

is used to optimize JSS problem. Whereas some researchers,

Bierwirth et al. [14], Meeran and Morshed [15] have opinion

that hybrid GA performance to optimize JSS problem is far

better than standard GA.

To address job shop problem, numbers of techniques other

than GAs are also used in practice such as enumerative

technique, approximation based approach and artificial neural

networks. Williamson et al. [16] demonstrate that deciding

the presence of a schedule with a makespan of three could be

carried out in polynomial time as long as the aggregate

preparing time needed by all the operations on each one

machine is close to three. The fundamental centering of

enumerative methodologies for the job shop is climb and

bound techniques. The two most regular branching

procedures are Generating Active Schedules (GAS) and

Settling Essential Conicts (SEC) proposed by Lageweg et al.

[17]. For practical application, standard GA may not be

flexible enough and this becomes increasingly apparent when

problem is complicated. Furthermore, Uckun et al. [18]

concluded that GAs rapidly inclined towards possible

solutions.

3. PROPOSED GENETIC ALGORITHM
 The overall structure of our proposed GA is described in

following steps:

1. Representation: Each chromosome (solution) in the

population is represented in a format on which further

GA operators will be applied;

2. Selection: Selection of solutions from the population for

reproduction;

3. Off-spring generation: New solutions are obtained by

changing the operations sequence (order crossover) and

by changing the assignment of machines to the

operations (uniform crossover);

4. Mutation: Randomly flips some bits in a schedule;

5. Fitness function: Makespan of each schedule obtained

after step 4 is computed;

6. Termination criterion: Fixed number of generations is

reached. When termination criterion is reached, GA

returns the best schedule along with the corresponding

makespan as output.

The above six steps that we have used to solve the JSS

problem are explained next.

3.1. Encoding Scheme

Encoding is a crucial and vital element of GA. Finding

optimal solution for a problem using GA depends greatly on

encoding scheme. GA generally process populations of

strings. Initial population is randomly generated. Each

chromosome represents a solution (schedule) for the JSS

problem. Assignments of jobs operations to the machines in

the schedules are described by the genes of the chromosomes

and the order of operation that appears in the chromosome

represents operations sequence. In our proposed GA, we have

used three row structure to represent candidate chromosome

(schedule). Figure 1 shows three row structure for a 4×4 JSS

problem.

 O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24

 3 1 2 3 3 1 1 4 4 4 3 2 2 4 4 2

 0 0 O31 0 O21 0 O32 O41O22O33O11O42O12O43O13O23

Figure 1. Encoding scheme

In Figure 1, first row represents the operations of jobs. For

example O31 implies operation 1 of Job3 (J3), O21 implies

operation 1 of Job2 (J2), O33 implies operation 3 of Job3 (J3),

O43 implies operation 3 of Job4 (J4) and so on. Second row

represents machine distribution for each operation. 3 implies

that operation O31 will go to machine number 3 for

processing, 1 implies that machine 1 is assigned to operation

O21 and so on. Third row shows operation dependencies of

jobs operations. Here, 0 implies that for O31 to be executed

there is no precedence restriction exits. Same is also the case

for first operation of other jobs. O31 implies that processing of

operation O32 will start when operation O31 is processed.

3.2. Parent Selection

After the representation of schedule, next step is the selection

of schedules from the population. Selected schedules are

called parent schedules. Different techniques are used for the

selection of parent schedules. In order to avoid the premature

convergence, we randomly choose two schedules from the

population. This means that all the individuals (schedules) in

the population have the same chances of selection as parents.

3.3. Crossover Operator

Crossover operator of GA is used to exchange the operations

of jobs and assignment of particular operation to a machine in

two selected parent in order to minimize the makespan. In our

proposed algorithm, we have used order crossover for

operations shuffling between two parent schedules. Whereas,

uniform crossover operator is used for shuffling of machines

assignment to operations.
3.3.1. Order Crossover

We have used order crossover [19] to breed child schedules

from parent’s schedules. We have put 2 restrictions on order

crossover operator to meet precedence constraints. These

restrictions are following:

 Crossover points must be greater than

, where J

represents total number of jobs and O represents total number

of operations.

 No consecutive execution of operations of same job.

We have explained order crossover with a simple example.

Let two selected parent schedules are:
P1:O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24

P2: O11O21O12O41O22O31O13O42O23O14O32O43O33O44O34O24

Select any two random crossover points j and k for instance (j

= 13 and k = 16). The substring s(P1), obtained from the

parent P1, contain those operations of P1 that occupy the

positions between j and k, s(P1) = O13O44O14O24. We now

delete in P2 the operations s(P1), obtaining:

P2` = O11O21O12O41O22O31O42O23O32O43O33O34.

Finally, we insert in P2` the substring s(P1) resulting in the

new schedule:
O11O21O12O41O22 O31O42O23O32O43O33O34O13O44O14O24

Thus, after the order crossover, we obtain a schedule which

has between j and k the corresponding operations from P1 and

in the other positions, the operations of list P2` which is

obtained as the difference between the elements of P2 and

 Sci.Int.(Lahore),27(4),3367-3371,2015 ISSN 1013-5316; CODEN: SINTE 8 3369

July-August

s(P1). The resultant off-springs after order crossover

operation are:
OS1: O31O21O32O41O22O11O42O23O12O13O14O43O33O44O34O24

OS2: O11O21O12O41O22O31O42O23O32O33O34O43O13O44O14O24
Resultant off-spring schedules show that precedence

constraints for operations are satisfied. Every operation is

being executed after the execution of its dependent operation.
3.3.2. Uniform Crossover

In JSS problem, machine assignment to a particular operation

of a job is known in advance. We have used uniform

crossover to change machine assignment among operations of

jobs in order to minimize the makespan. In uniform

crossover, when same operation of a job in two schedules has

different machines assignment, then shuffle the machine

number among them. Working of uniform crossover for

machine shuffling is explained with following example. Let

two schedules obtained after order crossover operation are:
 S1: O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24

 M: 2 1 3 4 3 4 1 4 3 4 1 3 1 2 2 1

 S2: O11O21O12O41O22O31O13O42O23O14O32O43O33O44O34O24

 M: 4 4 3 3 3 2 2 2 2 1 3 1 1 4 4 1

After uniform crossover, new machine assignment to each

operation in schedules S1 and S2 will be:
 S1: O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24

 M: 2 4 3 3 3 4 1 2 2 4 3 1 2 4 1 1

 S2: O11O21O12O41O22O31O13O42O23O14O32O43O33O44O34O24

 M: 4 1 1 4 3 2 1 4 3 2 3 3 1 2 4 1

3.4. Mutation Operator

Lee et al. [20] used precedence preserving shift mutation

(PPS) operator in their proposed genetic algorithm. We have

also used PPS operator with little modification. Following

steps show how our modified PPS operator works and how

schedules obtained after uniform crossover operator can be

mutated.

 Select any position i from the schedule.

 Find the position (po) of the predecessor operation

of operation selected in step 1.

 Select a position x in range of selected position i and

po.

 Move operation at position i to position x.

 Move operation already at position x and onward

operations one position ahead.

Suppose operation at position 16
th

 is selected as shifting

operation. Its po is 9
th

 position operation.

O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24

New schedule obtained after modified PSS operator is:

O31O21O32O41O22O11O33O42O23O34O12O24O43O13O44O14

3.5. Fitness Function
Main objective of JSS problem is to find a schedule with

lowest makespan value. The makespan can be calculated

from the information of the sequence of operation processing

on each machine, and the operation processing starting times.

We have selected makespan as the fitness function. Since we

want to find schedules which have lower values of the

makespan, therefore, the genetic evolution will prefer

schedules with lower fitness values. During each generation,

all the selected schedule are evaluated, and the best individual

is noted.

4. RESULT AND DISCUSSIONS
We have applied the proposed GA to a 4×4 JSS problem

to inspect the applicability and effectiveness of adopted

methodology. Operations processing sequence of each

job and processing time for each operation is given in

Table 1.

Table 1. Operations assignment to machines and time required

for execution of each operation.
 Machine1 Machine2 Machine2 Machine4

Job 1 O14(3) O21(5.5) O34(2) O41(8.5)

Job 2 O13(3.5) O22(5) O31(7) O42(8)

Job 3 O11(6) O23(4) O32(2.5) O43(2.5)

Job 4 O12(6.5) O24(4.5) O33(7.5) O44(1)

Initial population that we considered is 50 and we run the

GA 30 times under the condition that the crossover rate

is 0.8 and the mutation rate is 0.2. Result in Table 2

shows that our proposed GA provides a result as good as

other methods. It is also clear from Table 2 that the last

job processed is O44 on machine 4. Therefore, makespan

value for this JSS problem is 26.5.

The result in Table 2 also provides information about the

sequence of job for each machine, starting and the finish time

for each operation. For example, on machine 1, O21 is started

at time 0 and finished at 5.5. Then operation O41 is started at

time 5.5 and ended at time 14 and so on. The Gantt chart of

processing route is shown in Figure 2. Obtained makespan

after each generation is shown in Figure 3. From Figure 3, it

is clear that the optimum value of makespan is found at

generation 12.

Figure 2. Gantt chart

.

po x i

3370 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3367-3371 ,2015

July-August

Figure 3. Result obtained using the randomly generated

schedules as initial population

Table 2. Obtained machine assignment to operations and start

and end time of each operation

Machine1 Processing

Time

Start Time End Time

O21 5.5 0 5.5

O41 8.5 5.5 14

O14 3 16 19

O34 2 20 22

Machine2 Processing

Time

Start Time End Time

O22 6.5 5.5 12

O31 7 0 7

O42 8 14 24

O13 3.5 12.5 16

Machine3 Processing

Time

Start Time End Time

O11 6 0 6

O32 2.5 7 9.5

O23 4 12 16

O43 1.5 24 25.5

Machine4 Processing

Time

Start Time End Time

O12 6.5 6 12.5

O33 7.5 9.5 20

O24 4.5 16 24.5

O44 1 25.5 26.5

5. CONCLUSION
This article presented a genetic algorithm (GA) for the job

shop scheduling (JSS) problem. Computational results show

that the proposed GA is efficient and effective. GA and JSS

problem provide a framework for evolutionary computation

and an insight into the combinatorial optimization problems.

Although GA has the weakness that it takes a lot of time in

order to find the better solution yet it offers a flexible

framework for evolutionary computation. In future, we would

like to see how proposed GA will be applied on a larger size

problem in order to see its performance on big problems.

REFERENCES
1. Phanden, R. K., Jain, A. and Verma, R., “A genetic

algorithm based approach for job shop scheduling.”

Journal of Manufacturing Technology, 23(7): 937-946

(2012).

2. Garey, M. R., Johnson, D. S. and Sethi R., “The

complexity of flow shop and job shop scheduling.”

Mathematical Operational Research, 1(2): 117–129

(1976).

3. Maccarthy, B. L. and Liu, J., “Addressing the gap in

scheduling research: a review of optimization and

heuristic methods in production scheduling.”

International Journal of Production Research, 31(1): 59-

79 (1993).

4. Jia, H. Z., Fuh, J. Y., Nee, A. Y. C. and Zhang, Y. F.,

“Integration of genetic algorithm and Gantt chart for job

shop scheduling in distributed manufacturing systems.”

Computers & Industrial Engineering, 53(2): 313-320

(2007).

5. Bancila, D. and Buzatu, C., “A hybrid algorithm for job

shop scheduling.” In: Proceedings of 6th International

DAAAM Baltic Conference, Industrial Engineering, pp.

1-6 (2008).

6. Holland, J. H., “Adaptation in Natural and Artificial

Systems.” University of Michigan Press, Ann Arbor, MI,

USA (1975).

7. Mathew, T. V., “Genetic algorithm.” Indian Institute of

Technology, Mumbai (2012).

8. Nawaz M. S., Lali M. I. and Pasha M. A., “Formal

verification of crossover operator in genetic algorithms

using Prototype Verification System (PVS)”, In:

Proceedings of 9th IEEE International Conference on

Emerging Technologies, pp. 1-6 (2013).

9. Davis, L., “Job shop scheduling with genetic algorithms.’

In: Proceedings of International Conference on Genetic

Algorithms and their Applications, Vol. 140 (1985).

10. Jain, A. S. and Meeran, S., “Deterministic job-shop

scheduling: past, present and future.” European Journal

of Operational Research, 113(2): 390–434 (1999).

11. Li, Y. and Chen, Y., “A genetic algorithm for job-shop

scheduling.” Journal of Software, 5(3): 269-274 (2010).

12. Lee, C. Y., Piramuthu, S. and Tsai, Y. K., “Job shop

scheduling with a genetic algorithm and machine

learning.” International Journal of Production Research,

35(4): 1171-1191 (1997).

13. Onwubolu, S. and Davendra, D., “Scheduling flow shops

using differential evolution algorithm.” European

Journal of Operational Research, 171(2): 674-692

(2006).

14. Bierwirth, C., Kopfer H., Mattfeld D. C. and Rixen I.,

“Genetic algorithm based scheduling in a dynamic

manufacturing environment.” In: proceedings of

International Conference on Evolutionary Computation,

Vol. 1, pp. 439 (1995).

15. Meeran, S. and Morshed, M. S., “A hybrid genetic tabu

search algorithm for solving job shop scheduling

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

M
ak

e
sp

an

Generations

 Sci.Int.(Lahore),27(4),3367-3371,2015 ISSN 1013-5316; CODEN: SINTE 8 3371

July-August

problems. A case study.” Journal of Intelligent

Manufacturing, 23 (4): 1063-1078 (2012).

16. Williamson, D. P., Hall, L. A., Hoogeveen, J. A.,

Hurkens, C. A. J., Lenstra, J. K., Sevast'Janov, S. V. and

Shmoys, D. B., “Short shop schedules.” Operational

Research, 45 (2): 288-294 (1997).

17. Lageweg, B. J., Lenstra, J. K. and Rinnooy Kan, A. H.

G., “Job-shop scheduling by implicit enumeration.”

Management Science, 24 (4): 441-450 (1997).

18. Uckun, S., Bagchi. S., Kawamura, K. and Miyabe, Y.,

“Managing genetic search in job shop scheduling.”

IEEE Expert, 8 (5): 15-24 (1993).

19. Davis, L., “Applying adaptive algorithms to Epistatic

domains.” In: Proceedings of the International Joint

Conference on Artificial Intelligence, pp. 162-164

(1985).

20. Lee, K. M., Yamakawa. T. and Lee. K. M. “A genetic

algorithm for general machine scheduling problems.”

In: Proceedings of 2nd International Conference on

Knowledge-Based Intelligent Electronic Systems, pp.

60–66 (1998).

