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ABSTRACT: Genetic algorithms (GAs) are search algorithms that are used to solve optimization problems in 

theoretical computer science. Job shop scheduling (JSS) problem is a combinatorial optimization problem where 

main goal is to find a schedule with minimum makespan for processing of j jobs on a set of m machines. The 

schedule for jobs processing in JSS problem is subjected to some constraints, such as only one operation of a job 

can be processed on one machine at a time, operations of a job has to be processed in a certain order and  

preemption of any operation is forbidden. In this article, we have suggested a new genetic algorithm (GA) to solve 

the JSS problem which uses a new genetic representation (coding) for scheduling of jobs and machine distribution. 

Followed by genetic representation, an initial population is randomly generated. Then crossover and mutation 

operator of GA are applied on the population for the creation of new off-springs until some stopping criterion is 

reached. Furthermore, experiments are performed to show the performance and applicability of proposed GA. 
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1. INTRODUCTION 
Scheduling of operations is considered the most critical issues 

in the manufacturing processes management and planning. 
Scheduling is concerned with jobs assignment to production 

resources and specifying the sequence in order to optimize 

certain objective functions. In manufacturing environment, 

scheduling depends on the environment of the shop floor 

such as job-shop, flow-shop and open-shop [1]. Job Shop 

Scheduling (JSS) problem can be explained as: a job set j 

contains n jobs and these jobs are processed on one of the 

machine selected from machine set m. Each job is comprised 

of operations O = O1, O2, ..., On. Each machine can process 

one operation of a job at a time and when an operation is 

assigned to a machine, the machine must complete processing 

of operation without any interruption. Furthermore, 

operations of the job have to be processed in a certain given 

order. The problem is to find the schedule for operations on 

machines, keeping in mind the precedence constraints that 

will minimize the makespan. Makespan (Cmax) is the time in 

which all operations of each job are completed.  

Job-shop scheduling is a well-known and strongly NP-hard 

problem [2] and has also proven to be computationally 

challenging. JSS problem analysis provides relevant insight 

into the solution of the scheduling problems that are faced in 

more complicated and realistic systems. Therefore, heuristics 

are preferred for job shop scheduling [3]. GA is considered 

the best-known optimizing technique for a class of 

combinatorial problems [4, 5]. 

Genetic algorithms (GAs) introduced by Holland [6], are 

search algorithms based on evolutionary process. GAs are 

well-known to solve optimization problems in theoretical 

computer science. In GA, if the solution in the population is 

suitably encoded and by mimicking the process of GA, it has 

the ability to evolve solutions to the problems of real world 

[7]. Analysis of GAs have begun years ago to understand the 

working of genetic algorithms and how to use them to get the 

best solution [8]. In applying GA to a problem, a suitable 

representation (encoding) for the given problem must be 

designed. A fitness function is also required which is used to 

select individuals solutions from population. During run, 

selected solutions go through crossover (reproduction) and 

mutation operation to generate new off-spring. Main idea 

here is that off-springs will perform better than their 

corresponding parents. First GA based technique for 

scheduling problem was proposed by Davis [9] in 1985. After 

that GAs have been frequently used to solve the scheduling 

problems. In this study we have presented a GA to solve the 

JSS problem.  

The rest of the article is divided in three main sections. In 

Section 2, literature review in the area of GA and JSS 

problem is discussed. In Section 3, proposed GA is presented 

by detailing the strategies of encoding scheme, the fitness 

function, the criteria for selection, crossover and mutation 

operators adopted for the generation of off-springs. 

Experiments are performed in Section 4 to show the 

performance of proposed GA and conclusions are drawn in 

Section 5.  

2. LITERATURE REVIEW 
In literature, various GA approaches have been used to solve 

the JSS problem. These approaches are different from one 

another on the basis of representation scheme and GA that are 

used, the constraints handling and the pursued goals. 

However, all approaches have one common thing: knowledge 

is required in order to generate the competitive schedules for 

processing of jobs. In 1985, Davis [9] first used the GA to 

solve the JSS problem. Jain and Meeran [10] provide a 

comprehensive survey of methods which are used to address 

JSS problem. They concluded that among various techniques 

to address JSS problem, meta-heuristic technique is best for 

JSS problem. The combined use of heuristic and a GA is 

called as meta-heuristics. With the growth in the popularity of 

GA in the mid 1980's, different researchers used GA to solve 

the JSS problem. 

A two-row chromosome structure is defined by Li and Chen 

[11] that is based on the working order of procedures and 

machine distribution to minimize the makespan in JSS 

problem. Lee et al. [12] proposed a framework that utilizes 

GA along with machine learning and heuristics space to find 

the sequence of job release order and the sequence for 

dispatching jobs at each individual machine. According to 

Onwubolu and Davendra [13], GA is the best technique that 
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is used to optimize JSS problem. Whereas some researchers, 

Bierwirth et al. [14], Meeran and Morshed [15] have opinion 

that hybrid GA performance to optimize JSS problem is far 

better than standard GA. 

To address job shop problem, numbers of techniques other 

than GAs are also used in practice such as enumerative 

technique, approximation based approach and artificial neural 

networks. Williamson et al. [16] demonstrate that deciding 

the presence of a schedule with a makespan of three could be 

carried out in polynomial time as long as the aggregate 

preparing time needed by all the operations on each one 

machine is close to three. The fundamental centering of 

enumerative methodologies for the job shop is climb and 

bound techniques. The two most regular branching 

procedures are Generating Active Schedules (GAS) and 

Settling Essential Conicts (SEC) proposed by Lageweg et al. 

[17]. For practical application, standard GA may not be 

flexible enough and this becomes increasingly apparent when 

problem is complicated. Furthermore, Uckun et al. [18] 

concluded that GAs rapidly inclined towards possible 

solutions.  

3. PROPOSED GENETIC ALGORITHM 
 The overall structure of our proposed GA is described in 

following steps:  

1. Representation: Each chromosome (solution) in the 

population is represented in a format on which further 

GA operators will be applied; 

2. Selection: Selection of solutions from the population for 

reproduction; 

3. Off-spring generation: New solutions are obtained by 

changing the operations sequence (order crossover) and 

by changing the assignment of machines to the 

operations (uniform crossover); 

4. Mutation: Randomly flips some bits in a schedule; 

5. Fitness function: Makespan of each schedule obtained 

after step 4 is computed; 

6. Termination criterion: Fixed number of generations is 

reached. When termination criterion is reached, GA 

returns the best schedule along with the corresponding 

makespan as output. 

The above six steps that we have used to solve the JSS 

problem are explained next.  

3.1. Encoding Scheme  

Encoding is a crucial and vital element of GA. Finding 

optimal solution for a problem using GA depends greatly on 

encoding scheme. GA generally process populations of 

strings. Initial population is randomly generated. Each 

chromosome represents a solution (schedule) for the JSS 

problem. Assignments of jobs operations to the machines in 

the schedules are described by the genes of the chromosomes 

and the order of operation that appears in the chromosome 

represents operations sequence. In our proposed GA, we have 

used three row structure to represent candidate chromosome 

(schedule). Figure 1 shows three row structure for a 4×4 JSS 

problem. 

 

        O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24 

           3   1    2   3   3    1    1   4   4    4    3   2    2   4    4   2 

          0  0   O31  0  O21 0  O32 O41O22O33O11O42O12O43O13O23 

Figure 1. Encoding scheme 

In Figure 1, first row represents the operations of jobs. For 

example O31 implies operation 1 of Job3 (J3), O21 implies 

operation 1 of Job2 (J2), O33 implies operation 3 of Job3 (J3), 

O43 implies operation 3 of Job4 (J4) and so on. Second row 

represents machine distribution for each operation. 3 implies 

that operation O31 will go to machine number 3 for 

processing, 1 implies that machine 1 is assigned to operation 

O21 and so on. Third row shows operation dependencies of 

jobs operations. Here, 0 implies that for O31 to be executed 

there is no precedence restriction exits. Same is also the case 

for first operation of other jobs. O31 implies that processing of 

operation O32 will start when operation O31 is processed. 

3.2. Parent Selection 

After the representation of schedule, next step is the selection 

of schedules from the population. Selected schedules are 

called parent schedules. Different techniques are used for the 

selection of parent schedules. In order to avoid the premature 

convergence, we randomly choose two schedules from the 

population. This means that all the individuals (schedules) in 

the population have the same chances of selection as parents.  

3.3. Crossover Operator 

Crossover operator of GA is used to exchange the operations 

of jobs and assignment of particular operation to a machine in 

two selected parent in order to minimize the makespan. In our 

proposed algorithm, we have used order crossover for 

operations shuffling between two parent schedules. Whereas, 

uniform crossover operator is used for shuffling of machines 

assignment to operations. 
3.3.1. Order Crossover  

We have used order crossover [19] to breed child schedules 

from parent’s schedules. We have put 2 restrictions on order 

crossover operator to meet precedence constraints. These 

restrictions are following: 

 Crossover points must be greater than 
   

 
, where J 

represents total number of jobs and O represents total number 

of operations.  

 No consecutive execution of operations of same job. 

We have explained order crossover with a simple example. 

Let two selected parent schedules are: 
P1:O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24 

P2: O11O21O12O41O22O31O13O42O23O14O32O43O33O44O34O24 

Select any two random crossover points j and k for instance (j 

= 13 and k = 16). The substring s(P1), obtained from the 

parent P1, contain those operations of P1 that occupy the 

positions between j and k, s(P1) = O13O44O14O24. We now 

delete in P2 the operations s(P1), obtaining:  

P2` =  O11O21O12O41O22O31O42O23O32O43O33O34. 

Finally, we insert in P2` the substring s(P1) resulting in the 

new schedule:  
O11O21O12O41O22 O31O42O23O32O43O33O34O13O44O14O24 

Thus, after the order crossover, we obtain a schedule which 

has between j and k the corresponding operations from P1 and 

in the other positions, the operations of list P2` which is 

obtained as the difference between the elements of P2 and 
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s(P1). The resultant off-springs after order crossover 

operation are:  
OS1: O31O21O32O41O22O11O42O23O12O13O14O43O33O44O34O24 

OS2: O11O21O12O41O22O31O42O23O32O33O34O43O13O44O14O24 
Resultant off-spring schedules show that precedence 

constraints for operations are satisfied. Every operation is 

being executed after the execution of its dependent operation. 
3.3.2. Uniform Crossover 

In JSS problem, machine assignment to a particular operation 

of a job is known in advance. We have used uniform 

crossover to change machine assignment among operations of 

jobs in order to minimize the makespan. In uniform 

crossover, when same operation of a job in two schedules has 

different machines assignment, then shuffle the machine 

number among them. Working of uniform crossover for 

machine shuffling is explained with following example. Let 

two schedules obtained after order crossover operation are:  
         S1:  O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24 

          M:   2    1    3   4    3    4   1   4    3    4    1   3   1   2   2    1 

         S2:  O11O21O12O41O22O31O13O42O23O14O32O43O33O44O34O24 

          M:   4    4   3    3    3    2   2    2    2   1   3   1    1    4    4   1 

After uniform crossover, new machine assignment to each 

operation in schedules S1 and S2 will be: 
         S1:  O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24 

         M:    2    4    3    3    3   4    1   2   2    4    3   1    2   4   1   1 

         S2:  O11O21O12O41O22O31O13O42O23O14O32O43O33O44O34O24 

         M:    4    1   1    4    3    2   1    4    3    2   3   3    1   2   4    1  

3.4. Mutation Operator 

Lee et al. [20] used precedence preserving shift mutation 

(PPS) operator in their proposed genetic algorithm. We have 

also used PPS operator with little modification. Following 

steps show how our modified PPS operator works and how 

schedules obtained after uniform crossover operator can be 

mutated.  

 Select any position i from the schedule. 

 Find the position (po) of the predecessor operation 

of operation selected in step 1.  

 Select a position x in range of selected position i and 

po.  

 Move operation at position i to position x.  

 Move operation already at position x and onward 

operations one position ahead. 

Suppose operation at position 16
th

 is selected as shifting 

operation. Its po is 9
th

 position operation. 

                                                 
 

O31O21O32O41O22O11O33O42O23O34O12O43O13O44O14O24 

New schedule obtained after modified PSS operator is: 

O31O21O32O41O22O11O33O42O23O34O12O24O43O13O44O14 

3.5.  Fitness Function 
Main objective of JSS problem is to find a schedule with 

lowest makespan value. The makespan can be calculated 

from the information of the sequence of operation processing 

on each machine, and the operation processing starting times. 

We have selected makespan as the fitness function. Since we 

want to find schedules which have lower values of the 

makespan, therefore, the genetic evolution will prefer 

schedules with lower fitness values. During each generation, 

all the selected schedule are evaluated, and the best individual 

is noted. 

4. RESULT AND DISCUSSIONS 
We have applied the proposed GA to a 4×4 JSS problem 

to inspect the applicability and effectiveness of adopted 

methodology. Operations processing sequence of each 

job and processing time for each operation is given in 

Table 1.  

Table 1. Operations assignment to machines and time required 

for execution of each operation. 
 Machine1  Machine2 Machine2 Machine4 

Job 1 O14(3) O21(5.5) O34(2) O41(8.5) 

Job 2 O13(3.5) O22(5) O31(7) O42(8) 

Job 3 O11(6) O23(4) O32(2.5) O43(2.5) 

Job 4 O12(6.5) O24(4.5) O33(7.5) O44(1) 

Initial population that we considered is 50 and we run the 

GA 30 times under the condition that the crossover rate 

is 0.8 and the mutation rate is 0.2. Result in Table 2 

shows that our proposed GA provides a result as good as 

other methods. It is also clear from Table 2 that the last 

job processed is O44 on machine 4. Therefore, makespan 

value for this JSS problem is 26.5. 

The result in Table 2 also provides information about the 

sequence of job for each machine, starting and the finish time 

for each operation. For example, on machine 1, O21 is started 

at time 0 and finished at 5.5. Then operation O41 is started at 

time 5.5 and ended at time 14 and so on.  The Gantt chart of 

processing route is shown in Figure 2. Obtained makespan 

after each generation is shown in Figure 3. From Figure 3, it 

is clear that the optimum value of makespan is found at 

generation 12. 

 

 
Figure 2. Gantt chart  

.  

po x i 
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Figure 3. Result obtained using the randomly generated 

schedules as initial population 

 

Table 2. Obtained machine assignment to operations and start 

and end time of each operation 

Machine1 Processing 

Time 

Start Time End Time 

O21 5.5 0 5.5 

O41 8.5 5.5 14 

O14 3 16 19 

O34 2 20 22 

Machine2 Processing 

Time 

Start Time End Time 

O22 6.5 5.5 12 

O31 7 0 7 

O42 8 14 24 

O13 3.5 12.5 16 

Machine3 Processing 

Time 

Start Time End Time 

O11 6 0 6 

O32 2.5 7 9.5 

O23 4 12 16 

O43 1.5 24 25.5 

Machine4 Processing 

Time 

Start Time End Time 

O12 6.5 6 12.5 

O33 7.5 9.5 20 

O24 4.5 16 24.5 

O44 1 25.5 26.5 

 

5. CONCLUSION 
This article presented a genetic algorithm (GA) for the job 

shop scheduling (JSS) problem. Computational results show 

that the proposed GA is efficient and effective. GA and JSS 

problem provide a framework for evolutionary computation 

and an insight into the combinatorial optimization problems. 

Although GA has the weakness that it takes a lot of time in 

order to find the better solution yet it offers a flexible 

framework for evolutionary computation. In future, we would 

like to see how proposed GA will be applied on a larger size 

problem in order to see its performance on big problems. 
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