SPHERICAL GROWTH SERIES OF THE FREE PRODUCT $\mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{\boldsymbol{n}}$

Zaffar Iqbal ${ }^{1}$, Iftikhar Ahmad ${ }^{2}$, Shamsa Aslam ${ }^{3}$
Department of Mathematics, University of Gujrat,
${ }^{1}$ (Corresponding) zaffar.iqbal@uog.edu.pk, , contact: 00923455703461.
${ }^{2}$ Department of Mathematics, University of Gujrat, dr.iftikhar@uog.edu.pk
${ }^{3}$ Department of Mathematics, University of Gujrat, shamsa.aslam@uog.edu.pk

ABSTRACTS: The computations of A. Machi for the spherical growth series of $\mathbb{Z}_{\mathbf{2}} * \mathbb{Z}_{\mathbf{3}}$ are given in [1]. We generalize this idea and compute the spherical growth series of the modular group $\mathbb{Z}_{m} * \mathbb{Z}_{n}$.

Keywords: word length, free product, spherical growth series.

1. INTRODUCTION

In geometric group theory the spherical growth function is the study of combinatorial aspect of the elements in a finitely generated group G. Spherical growth series provides an invariant of a group. A. Machi [1] compute the spherical growth series of $\mathbb{Z}_{2} * \mathbb{Z}_{3}$ are given. We generalize this idea and compute the spherical growth series of the modular group $\mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{n}$. We start with few basic definitions.
Definition 1. [1] Le G be a finitely generated group and let S and S^{-1} be a finite set of generators of G and their inverses, respectively. The word length of $g \in G$ is denoted by $l_{S}(g)$ and is defined as the least non-negative integer n for which there exist $s_{1}, s_{2}, \ldots, s_{n} \in S \cup S^{-1}$ such that $g=s_{1} \cdots s_{n}$.
Definition 2. [1] The spherical growth function of the group G with generating set S associates to a non-negative integer k the number $\sigma(k)$ of the element $g \in G$ such that $l_{S}(g)=k$, the number of elements of G of word length k. The spherical growth series (SGS) of G is the formal power series $\mathbf{S}_{G}(t)=\sum_{k=0}^{\infty} \sigma(k) t^{k}$, where $\sigma(0)=1$.
In this paper, for different groups with the given generating set S, we consider the words of length exactly k and find their corresponding spherical growth series.
Definition 3. [1] Let G and H be two groups. The free product $G * H$ of G and H is a group whose elements are the words of the form $g_{1} h_{1} g_{2} h_{2} \cdots g_{n} h_{n}$, where $g_{i} \in G$ and $h_{i} \in H$ with the condition that g_{1} and h_{n} are possibly identities of G and H, respectively.
The free product $G * H$ of two groups is a group that contains the elements of both G and H. In this product G and H are subgroups and the elements of these subgroups are generators of $G * H$. If G and H are non-trivial then $G * H$ is always infinite.

2. Spherical Growth Series of Free Groups and of Free Abelian Groups

There corresponds a growth function to each given group G with a finite generating set S. The growth function, an invariant of the group, generates a series of the group G called the growth series of the group G.
In this section we present SGS of the free groups and the free abelian groups. We start with a famous result regarding the SGS as a proposition.
Proposition 1 [3]. Let G_{1} and G_{2} be two groups generated by finite sets S_{1} and S_{2}, respectively. Then the SGS of the direct product $G_{1} \times G_{2}$, finitely generated by $S=\left(S_{1} \times\{1\}\right) \cup$

$$
\left(\{1\} \times S_{2}\right) \text { is given by } \quad \mathbf{S}_{G_{1} \times G_{2}}(t)=\mathbf{S}_{G_{1}} \mathbf{S}_{G_{2}} .
$$

The SGS of the free group with one generator is given in the following example.
Example 1. The SGS of $F_{1}[X]$, the free group generated by $X=\left\{x_{1}\right\}$ is $\mathbf{S}_{F_{1}[X]}(t)=\frac{1}{1-t}$, with one element of each length.
In the next example the SGS of the free group with n generators is computed by easy computations.
Example 2. The SGS of $F_{n}[X]$, the free group generated by $X=\left\{x_{i} ; i=1,2, \ldots, n\right\} \quad$ is $\quad \mathbf{S}_{F_{n}[X]}(t)=\frac{1}{1-n t} \quad$ such that $\sigma(k)=n^{k} \forall k \geq 1$.
Example 3. [1] Considering the infinite cyclic group \mathbb{Z} with generating set $\{2,3\}$, we have $\sigma(1)=4, \sigma(2)=8$, and $\sigma(k)=6 \forall k \geq 3$. Therefore the spherical growth series is $\mathrm{S}_{\mathrm{Z}}(t)=\frac{1+3 t+4 t^{2}-2 t^{3}}{1-t}$.
Example 4 . [1] For the infinite cyclic group \mathbb{Z} with natural generator 1 , the corresponding SGS is given by $\mathrm{S}_{\mathrm{Z}}(t)=\frac{1+t}{1-t}$.
Example 3 and Example 4 show that the spherical growth series of any particular group G is not unique, it depends greatly on the choice of generating set S.
Example 5 [2]. Consider the free abelian group \mathbb{Z}^{n} with natural set of generators, if we let $\mathbb{Z}^{n}=\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ (n times) then by using the Proposition 1 and Example 4 the SGS
of \mathbb{Z}^{n} is given by $\mathrm{S}_{Z^{n}}(t)=\left(\frac{1+t}{1-t}\right)^{n}$.

3. Spherical Growth Series of $\mathbb{Z}_{2} * \mathbb{Z}_{n}$

In this section we find the SGS of the free product $\mathbb{Z}_{2} * \mathbb{Z}_{\boldsymbol{n}}$. The computations of A. Machi for the SGS of $\mathbb{Z}_{2} * \mathbb{Z}_{3}$ are given in [1].
Example 6. [1] The SGS of the free product $\mathbb{Z}_{2} * \mathbb{Z}_{3}$ is given by $\mathrm{S}_{\mathrm{Z}_{2} * Z_{3}}(t)=\frac{1+3 t+2 t^{2}}{1-2 t^{2}}$.
In order to compute the SGS of the free product $\mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{\boldsymbol{n}}$, we are using the following notations: let $\mathbb{Z}_{m}=\left\{1, a, a^{2}, \ldots, a^{m-1}\right\}$ and $\mathbb{Z}_{n}=\left\{1, b, b^{2}, \ldots, b^{n-1}\right\}$ be two finitely generated abelian groups. To avoid the ambiguity
in the products, we set $a^{i}=x_{i} ; i=1,2, \ldots, m-1$ and $b^{j}=y_{j} ; j=1,2, \ldots, n-1$. So we have $\mathbb{Z}_{m}=\{1$, $\left.x_{1}, x_{2}, \ldots, x_{m-1}\right\}$ and $\mathbb{Z}_{n}=\left\{1, y_{1}, y_{2}, \ldots, y_{n-1}\right\}$. In \mathbb{Z}_{m}, we have $x_{i}=x_{m-i}^{-1} ; i=1,2, \ldots, m-1$ and in \mathbb{Z}_{n}, we have $y_{j}=y_{n-j}^{-1} ; j=1,2, \ldots, n-1$.

Let
$m^{\prime}=\left[\frac{m}{2}\right], m^{\prime \prime}=\left[\frac{m-1}{2}\right], n^{\prime}=\left[\frac{n}{2}\right]$ and $n^{\prime \prime}=\left[\frac{n-1}{2}\right]$. Also let $S=\left\{x_{1}, \ldots, x_{m^{\prime}}, y_{1}, \ldots, y_{n^{\prime}}\right\}$ be the set of generators for the free product $\mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{\boldsymbol{n}}$. Let $X_{1}=\left\{x_{1}, \ldots, x_{m^{\prime}}, x_{1}^{-1}, \ldots, x_{m^{\prime \prime}}^{-1}\right\}$ and $Y_{1}=\left\{y_{1}, \ldots, y_{n^{\prime}}, y_{1}^{-1}, \ldots, y_{n^{\prime \prime}}^{-1}\right\}$. Let us denote by $\sigma_{a}(k)$ and by $\sigma_{b}(k)$ the number of words in the free product $\mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{\boldsymbol{n}}$ of length k in $X_{1} \cup Y_{1}$ ending at any word of X_{1} (respectively at any word of Y_{1}). Let $l_{a}(w)$ and $l_{b}(w)$ denote the word length of $w \in \mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{\boldsymbol{n}}$, where w ends at any word of X_{1} (respectively at any word of Y_{1}). Also for $k \geq 1$ we define the following sets: $P=\left\{w ; l_{a}(w)=k+1\right\}$,

$$
Q=\left\{w ; l_{b}(w)=k\right\}, \quad U=\left\{w ; l_{a}(w)=k\right\}
$$

and $V=\left\{w ; l_{b}(w)=k+1\right\}$. Suppose that $\mathbf{S}_{d}(t)$ represents the SGS of a group whose words ends at d and is defined as $\mathbf{S}_{d}(t)=\sum_{k=1}^{\infty} \sigma_{d}(k) t^{k}$.

Lemma 1. The SGS of the free product $\mathbb{Z}_{\mathbf{2}} * \mathbb{Z}_{\boldsymbol{n}}$ is given by $\mathrm{S}_{\mathrm{Z}_{2} * Z_{n}}(t)=\frac{1+n t+(n-1) t^{2}}{1-(n-1) t^{2}}$.

Proof. Since $\mathbb{Z}_{2}=\{1, a\}$ and $\mathbb{Z}_{n}=\left\{1, b, b^{2}, \ldots, b^{n-1}\right\}$ are finitely generated abelian groups generated by a and b, respectively and $S=\left\{x_{1}, y_{1}, y_{2}, \ldots, y_{n^{\prime}}\right\}$ be the generating set for the free product $\mathbb{Z}_{2} * \mathbb{Z}_{n}$. For $p \in \mathbb{N}$, let $X_{2 p}=\left\{y w: y \in Y_{1}, w \in X_{2 p-1}\right\}$
$X_{2 p+1}=\left\{x_{1} w: w \in X_{2 p}\right\}, Y_{2 p}=\left\{x_{1} y: y \in Y_{2 p-1}\right\}$ and $Y_{2 p+1}=\left\{y w: y \in Y_{1}, w \in Y_{2 p}\right\}$. The sets of words of length k ending at any word of X_{1} are given in the table given below.

Table 1.

k	Set of words	$\sigma_{a}(k)=n\left(X_{i}\right)$
1	X_{1}	1
2	X_{2}	$n-1$
3	X_{3}	$n-1$
4	X_{4}	$(n-1)^{2}$
5	X_{5}	$(n-1)^{2}$
6	X_{6}	$(n-1)^{3}$
\vdots	\vdots	\vdots

Also the sets of words of length k ending at any word of Y_{1} are given in the following table:

Table 2.

k	Set of words	$\sigma_{b}(k)=n\left(Y_{i}\right)$
1	Y_{1}	$n-1$
2	Y_{2}	$n-1$
3	Y_{3}	$(n-1)^{2}$
4	Y_{4}	$(n-1)^{2}$
5	Y_{5}	$(n-1)^{3}$
\vdots	\vdots	\vdots

Now to find recurrence relations between the words of Table 1 and Table 2, we define a function $f: Q \rightarrow P$ by $f(w)=w x_{1}$. It is clear that f is bijective. It follows that $\sigma_{a}(k+1)=\sigma_{b}(k)$ for all $k \geq 1$. By defining another bijective function, $h: U \rightarrow V \quad$ by $h(w)=w y_{i} ; \forall y_{i} \in Y_{1}=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$, it is clear that $\sigma_{b}(k+1)=(n-1) \sigma_{a}(k)$ for all $k \geq 1$.

In terms of the series $\mathbf{S}_{a}(t)$ and $\mathbf{S}_{b}(t)$ the recurrence relations above are used to find the following linear system.

$$
\begin{aligned}
\mathbf{S}_{a}(t) & =\sum_{k=1}^{\infty} \sigma_{a}(k) t^{k} \\
& =\sigma_{a}(1) t+\sigma_{a}(2) t^{2}+\sigma_{a}(3) t^{3}+\cdots \\
& =t+t\left(\sigma_{a}(2) t+\sigma_{a}(3) t^{2}+\sigma_{a}(4) t^{3}+\cdots\right) \\
& =t\left(1+\sum_{k=1}^{\infty} \sigma_{a}(k+1) t^{k}\right) \\
& =t\left(1+\sum_{k=1}^{\infty} \sigma_{b}(k) t^{k}\right) .
\end{aligned}
$$

Hence $\mathbf{S}_{a}(t)=t\left(1+\mathbf{S}_{b}(t)\right)$. Also

$$
\begin{aligned}
\mathbf{S}_{b}(t) & =\sum_{k=1}^{\infty} \sigma_{b}(k) t^{k} \\
& =\sigma_{b}(1) t+\sigma_{b}(2) t^{2}+\sigma_{b}(3) t^{3}+\cdots \\
& =(n-1) t+t\left(\sigma_{b}(2) t+\sigma_{b}(3) t^{2}+\cdots\right) \\
& =(n-1) t+t\left(\sum_{k=1}^{\infty} \sigma_{b}(k+1) t^{k}\right) \\
& =(n-1) t+t \sum_{k=1}^{\infty}(n-1) \sigma_{a}(k) t^{k}
\end{aligned}
$$

Therefore $\mathbf{S}_{b}(t)=(n-1) t\left(1+\mathbf{S}_{a}(t)\right)$. By using Equation 2 in Equation 1 we get

$$
\begin{aligned}
\mathbf{S}_{a}(t) & =t\left(1+(n-1) t\left(1+\mathbf{S}_{a}(t)\right)\right) \\
& =t+(n-1) t^{2}+(n-1) t^{2} \mathbf{S}_{a}(t) \\
\Rightarrow \quad \mathbf{S}_{a}(t) & =\frac{t+(n-1) t^{2}}{1-(n-1) t^{2}}
\end{aligned}
$$

Also putting Equation 1 in Equation 2 we have

$$
\begin{aligned}
\mathbf{S}_{b}(t) & =(n-1) t\left(1+t\left(1+\mathbf{S}_{b}(t)\right)\right) \\
& =(n-1) t+(n-1) t^{2}+(n-1) t^{2} \mathbf{S}_{b}(t) \\
\Rightarrow \mathbf{S}_{b}(t) & =\frac{(n-1) t(1+t)}{1-(n-1) t^{2}}
\end{aligned}
$$

Hence the corresponding SGS of the free product $\mathbb{Z}_{2} * \mathbb{Z}_{\boldsymbol{n}}$ is

$$
\begin{aligned}
\mathbf{S}_{\mathrm{Z}_{2} * Z_{n}}(t) & =1+\mathbf{S}_{a}(t)+\mathbf{S}_{b}(t) \\
& =1+\frac{t+(n-1) t^{2}}{1-(n-1) t^{2}}+\frac{(n-1) t(1+t)}{1-(n-1) t^{2}} \\
& =\frac{1+n t+(n-1) t^{2}}{1-(n-1) t^{2}}
\end{aligned}
$$

4. Spherical Growth Series of $\mathbb{Z}_{\boldsymbol{m}} * \mathbb{Z}_{\boldsymbol{n}}$

Theorem. The SGS of the free product $\mathbb{Z}_{m} * \mathbb{Z}_{n}$ is given by
$\mathrm{S}_{\mathrm{Z}_{m} * Z_{n}}(t)=\frac{1+(m+n-2) t+(m-1)(n-1) t^{2}}{1-(m-1)(n-1) t^{2}}$. Proof.
Since $\mathbb{Z}_{m}=\left\{1, a, a^{2}, \ldots, a^{m-1}\right\}$ and $\mathbb{Z}_{n}=\left\{1, b, b^{2}, \ldots, b^{n-1}\right\}$ are finitely generated abelian groups generated by a and b, respectively and $S=\left\{x_{1}, x_{2}, \ldots, x_{m^{\prime}}, y_{1}, y_{2}, \ldots, y_{n^{\prime}}\right\}$ be the set of generators for the free product $Z_{m} * Z_{n}$. First of all for $p \in \mathrm{~N}$, let us define

$$
\begin{aligned}
X_{2 p} & =\left\{y w: \quad y \in Y_{1}, w \in X_{2 p-1}\right\} \\
X_{2 p+1} & =\left\{x w: \quad x \in X_{1}, w \in X_{2 p}\right\} \\
Y_{2 p} & =\left\{x y: \quad x \in X_{1}, y \in Y_{2 p-1}\right\} \\
Y_{2 p+1} & =\left\{y w: \quad y \in Y_{1}, w \in Y_{2 p}\right\}
\end{aligned}
$$

Now the sets of words of length k ending at any word of X_{1} are written in the table given below.

Table 3.

k	Set of words	$\sigma_{a}(k)=n\left(X_{i}\right)$
1	X_{1}	$m-1$
2	X_{2}	$(n-1)(m-1)$
3	X_{3}	$(n-1)(m-1)^{2}$
4	X_{4}	$(n-1)^{2}(m-1)^{2}$
5	X_{5}	$(n-1)^{2}(m-1)^{3}$
\vdots	\vdots	\vdots

And the words of length k ending at any word of Y_{1} are shown in the following table:

Table 4.

k	Set of words	$\sigma_{b}(k)=n\left(Y_{i}\right)$
1	Y_{1}	$n-1$
2	Y_{2}	$(n-1)(m-1)$
3	Y_{3}	$(m-1)(n-1)^{2}$
4	Y_{4}	$(m-1)^{2}(n-1)^{2}$
5	Y_{5}	$(m-1)^{2}(n-1)^{3}$
\vdots	\vdots	\vdots

To find recurrence relations between the words of Table 3 and Table 4, we define a bijective function $f: Q \rightarrow P$ by $f(w)=w x_{i} ; \forall x_{i} \in X=\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$. It follows that $\sigma_{a}(k+1)=(m-1) \sigma_{b}(k)$ for all $k \geq 1$. We define another bijective function $h: U \rightarrow V \quad$ by $h(w)=w y_{i} ; \forall y_{i} \in Y=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$. Now it is clear that $\sigma_{b}(k+1)=(n-1) \sigma_{a}(k)$ for all $k \geq 1$. In terms of the series $\mathrm{S}_{a}(t)$ and $\mathrm{S}_{b}(t)$ the recurrence relations above are used to find the following linear system.

$$
\begin{aligned}
\mathbf{S}_{a}(t) & =\sum_{k=1}^{\infty} \sigma_{a}(k) t^{k} \\
& =\sigma_{a}(1) t+\sigma_{a}(2) t^{2}+\sigma_{a}(3) t^{3}+\cdots \\
& =(m-1) t+t\left(\sigma_{a}(2) t+\sigma_{a}(3) t^{2}+\cdots\right) \\
& =t\left((m-1)+\sum_{k=1}^{\infty} \sigma_{a}(k+1) t^{k}\right) \\
& =t\left((m-1)+\sum_{k=1}^{\infty}(m-1) \sigma_{b}(k) t^{k}\right)
\end{aligned}
$$

Therefore $\mathbf{S}_{a}(t)=(m-1) t\left(1+\mathbf{S}_{b}(t)\right)$. Also we have

$$
\begin{aligned}
\mathbf{S}_{b}(t) & =\sum_{k=1}^{\infty} \sigma_{b}(k) t^{k} \\
& =\sigma_{b}(1) t+\sigma_{b}(2) t^{2}+\sigma_{b}(3) t^{3}+\sigma_{b}(4) t^{4}+\cdots \\
& =(n-1) t+t\left(\sigma_{b}(2) t+\sigma_{b}(3) t^{2}+\sigma_{b}(4) t^{3}+\cdots\right) \\
& =(n-1) t+t\left(\sum_{k=1}^{\infty} \sigma_{b}(k+1) t^{k}\right) \\
& =(n-1) t+t \sum_{k=1}^{\infty}(n-1) \sigma_{a}(k) t^{k} .
\end{aligned}
$$

Hence $\mathbf{S}_{b}(t)=(n-1) t\left(1+\mathbf{S}_{a}(t)\right)$. Putting Equation 3 in
Equation we have

$$
\begin{aligned}
\mathbf{S}_{a}(t) & =(m-1) t\left(1+(n-1) t\left(1+\mathbf{S}_{a}(t)\right)\right) \\
& =(m-1) t+(m-1)(n-1) t^{2}+(m-1)(n-1) t^{2} \mathbf{S}_{a}(t)
\end{aligned}
$$

Hence we have $\mathbf{S}_{a}(t)=\frac{(m-1) t(1+(n-1) t)}{1-(m-1)(n-1) t^{2}}$.
Also putting Equation 4 in Equation 3 we get

$$
\begin{aligned}
\mathbf{S}_{b}(t) & =(n-1) t\left(1+(m-1) t\left(1+\mathbf{S}_{b}(t)\right)\right) \\
& =(n-1) t+(m-1)(n-1) t^{2}+(m-1)(n-1) t^{2} \mathbf{S}_{b}(t) .
\end{aligned}
$$

Therefore we have

$$
\mathbf{S}_{b}(t)=\frac{(n-1) t(1+(m-1) t)}{1-(m-1)(n-1) t^{2}} .
$$

Finally the SGS of the free product $\mathbb{Z}_{m} * \mathbb{Z}_{n}$ is given as

$$
\begin{aligned}
\mathbf{S}_{Z_{m} * Z_{n}}(t) & =1+\mathbf{S}_{a}(t)+\mathbf{S}_{b}(t) \\
& =1+\frac{(m-1) t(1+(n-1) t)}{1-(m-1)(n-1) t^{2}}+\frac{(n-1) t(1+(m-1) t)}{1-(m-1)(n-1) t^{2}} \\
& =\frac{1+(m+n-2) t+(m-1)(n-1) t^{2}}{1-(m-1)(n-1) t^{2}} .
\end{aligned}
$$

