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ABSTRACTS: The computations of A. Machi for the spherical growth series of       are given in [1]. We generalize this idea 

and compute the spherical growth series of the modular group      . 
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1. INTRODUCTION 
In geometric group theory the spherical growth function is the 

study of combinatorial aspect of the elements in a finitely 

generated group  . Spherical growth series provides an 

invariant of a group. A. Machi [1] compute the spherical 

growth series of       are given. We generalize this idea 

and compute the spherical growth series of the modular 

group      . We start with few basic definitions. 

Definition 1. [1] Le   be a finitely generated group and let   

and     be a finite set of generators of   and their inverses, 

respectively. The word length of     is denoted by       

and is defined as the least non-negative integer n  for which 

there exist                  such that        . 

Definition 2. [1] The spherical growth function of the group   

with generating set   associates to a non-negative integer   

the number      of the element    such that        , 

the number of elements of   of word length  . The spherical 

growth series (SGS) of   is the formal power series 
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In this paper, for different groups with the given generating set 

 , we consider the words of length exactly   and find their 

corresponding spherical growth series. 

Definition 3. [1] Let   and   be two groups. The free 

product     of    and   is a group whose elements are 

the words of the form              , where      and 

     with the condition that    and    are possibly 

identities of   and  , respectively. 

The free product     of two groups is a group that contains 

the elements of both   and  . In this product   and   are 

subgroups and the elements of these subgroups are generators 

of    . If   and   are non-trivial then     is always 

infinite. 

2. Spherical Growth Series of Free Groups and 
of Free Abelian Groups 

There corresponds a growth function to each given group   

with a finite generating set  . The growth function, an 

invariant of the group, generates a series of the group   called 

the growth series of the group    
In this section we present SGS of the free groups and the free 

abelian groups. We start with a famous result regarding the 

SGS as a proposition. 

Proposition 1 [3]. Let    and   be two groups generated by 

finite sets    and   , respectively. Then the SGS of the direct 

product      , finitely generated by            

         is given by  .)(
2121 GGGG t SSS   

The SGS of the free group with one generator is given in the 

following example. 

Example 1. The SGS of      , the free group generated by 

       is 
tXF t



1
1

][ )(
1

S , with one element of each 

length. 

In the next example the SGS of the free group with   

generators is computed by easy computations. 

Example 2. The SGS of      , the free group generated by 

                 is ntXF t
n 


1

1
][ )(S  such that 

knk )( 1 k . 

Example 3. [1] Considering the infinite cyclic group   with 

generating set      , we have       ,       , and 

            . Therefore the spherical growth series is 
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Example 4 . [1] For the infinite cyclic group   with natural 

generator 1, the corresponding SGS is given by 
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Example 3 and Example 4 show that the spherical growth 

series of any particular group   is not unique, it depends 

greatly on the choice of generating set  . 

Example 5 [2]. Consider the free abelian group    with 

natural set of generators, if we let            (n 

times) then by using the Proposition 1 and Example 4 the SGS 

of     is given by .)(
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3. Spherical Growth Series of       
In this section we find the SGS of the free product      . 

The computations of A. Machi for the SGS of       are 

given in [1]. 

Example 6. [1] The SGS of the free product       is given 

by .
21

231
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In order to compute the SGS of the free product      , we 

are using the following notations: let 

                   and                    be 

two finitely generated abelian groups. To avoid the ambiguity 
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in the products, we set      ;             and 

     ;            . So we have       

               and                       In     

we have 1,,2,1;1  

 mixx imi   and in    we have

.1,,2,1;1  

 njyy jnj   Let 

][],[],[
22

1
2

nmm nmm    and ].[
2

1 nn  Also let  

},,,,,{ 11 nm yyxxS    be the set of generators for the 

free product        Let },,,,,{ 11

111





 mm xxxxX   

and }.,,,,,{ 11

111





 nn yyyyY   Let us denote by 

)(ka  and by )(kb  the number of words in the free 

product       of length   in 11 YX  ending at any word 

of 1X (respectively at any word of 1Y ). Let )(wla  and 

)(wlb  denote the word length of        , where w  

ends at any word of 1X  (respectively at any word of ).1Y
 

Also for    we define the following sets:  

},1)(;{  kwlwP a   

},)(;{ kwlwQ b  })(;{ kwlwU a    

and }.1)(;{  kwlwV b Suppose that )(tdS  

represents the SGS of a group whose words ends at d and is 

defined as .)()(
1

k

d
k

d tkt 
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Lemma 1. The SGS of the free product       is given by 
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Proof. Since           and                    are 

finitely generated abelian groups generated by   and  , 

respectively and },,,,{ 211 nyyyxS    be the generating 

set for the free product      . For    , let

},:{ 1212  pp XwYyywX , 

},:{ 2112 pp XwwxX  }:{ 1212  pp YyyxY  and 

}.,:{ 2112 pp YwYyywY   The sets of words of 

length   ending at any word of 1X  are given in the table 

given below.  

Table 1. 
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3

6

2

5
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1
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Also the sets of words of length   ending at any word of 1Y  

are given in the following table: 

Table 2. 



3

5

2

4

2

3

2

1

)1(5

)1(4

)1(3
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 Now to find recurrence relations between the words of Table 

1 and Table 2, we define a function  PQf :   by  

.)( 1wxwf   It is clear that f is bijective. It follows that  

)()1( kk ba    for all      By defining another 

bijective function, VUh :  by  

},,,,{;)( 1211  nii yyyYywywh   it is clear 

that )()1()1( knk ab   for all    . 

In terms of the series )(taS  and )(tbS  the recurrence 

relations above are used to find the following linear system.  
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Hence .)(1)( )( ttt ba SS 
 
Also  
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Therefore .)(1)1()( )( ttnt ab SS  By using Equation 

2 in Equation 1 we get  
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Also putting Equation 1 in Equation 2 we have  
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Hence the corresponding SGS of the free product       is  
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4. Spherical Growth Series of       

Theorem. The SGS of the free product       is given by  

.
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Since                    and                    

are finitely generated abelian groups generated by a  and ,b  

respectively and },,,,,,,{ 2121 nm yyyxxxS  
 
be 

the set of generators for the free product      . First of all 

for Np , let us define  
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Now the sets of words of length   ending at any word of 1X  

are written in the table given below.  

Table 3. 


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And the words of length   ending at any word of 1Y  are 

shown in the following table:  

Table 4. 


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To find recurrence relations between the words of Table 3 and 

Table 4, we define a bijective function PQf : by

}.,,,{;)( 121  mii xxxXxwxwf   It follows 

that )()1()1( kmk ba   for all    . We define 

another bijective function  VUh :  by 

}.,,,{;)( 121  nii yyyYywywh   Now it is 

clear that  )()1()1( knk ab    for all    . In 

terms of the series )(taS  and )(tbS  the recurrence 

relations above are used to find the following linear system.  
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Therefore .)(1)1()( )( ttmt ba SS   Also we have
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Hence .)(1)1()( )( ttnt ab SS  Putting Equation 3 in 

Equation 4 we have
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 Also putting Equation 4 in Equation 3 we get  
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Finally the SGS of the free product       is given as  
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!Unexpected End of Formula 
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