SPHERICAL GROWTH SERIES OF THE FREE PRODUCT $\mathbb{Z}_m * \mathbb{Z}_n$

Zaffar Iqbal¹, Iftikhar Ahmad², Shamsa Aslam³

Department of Mathematics, University of Gujrat,

¹(Corresponding) <u>zaffar.iqbal@uog.edu.pk</u>, contact: 00923455703461.

²Department of Mathematics, University of Gujrat,

dr.iftikhar@uog.edu.pk

³Department of Mathematics, University of Gujrat,

<u>shamsa.aslam@uog.edu.pk</u>

ABSTRACTS: The computations of A. Machi for the spherical growth series of $\mathbb{Z}_2 * \mathbb{Z}_3$ are given in [1]. We generalize this idea and compute the spherical growth series of the modular group $\mathbb{Z}_m * \mathbb{Z}_n$.

Keywords: word length, free product, spherical growth series.

1. INTRODUCTION

In geometric group theory the spherical growth function is the study of combinatorial aspect of the elements in a finitely generated group G. Spherical growth series provides an invariant of a group. A. Machi [1] compute the spherical growth series of $\mathbb{Z}_2 * \mathbb{Z}_3$ are given. We generalize this idea and compute the spherical growth series of the modular group $\mathbb{Z}_m * \mathbb{Z}_n$. We start with few basic definitions.

Definition 1. [1] Le *G* be a finitely generated group and let *S* and S^{-1} be a finite set of generators of *G* and their inverses, respectively. The word length of $g \in G$ is denoted by $l_S(g)$ and is defined as the least non-negative integer *n* for which there exist $s_1, s_2, ..., s_n \in S \cup S^{-1}$ such that $g = s_1 \cdots s_n$.

Definition 2. [1] The *spherical growth function* of the group *G* with generating set *S* associates to a non-negative integer *k* the number $\sigma(k)$ of the element $g \in G$ such that $l_S(g) = k$, the number of elements of *G* of word length *k*. The *spherical growth series* (SGS) of *G* is the formal power series

$$\mathbf{S}_{G}(t) = \sum_{k=0}^{\infty} \sigma(k) t^{k}$$
, where $\sigma(0) = 1$.

In this paper, for different groups with the given generating set S, we consider the words of length exactly k and find their corresponding spherical growth series.

Definition 3. [1] Let *G* and *H* be two groups. The free product G * H of *G* and *H* is a group whose elements are the words of the form $g_1h_1g_2h_2\cdots g_nh_n$, where $g_i \in G$ and $h_i \in H$ with the condition that g_1 and h_n are possibly identities of *G* and *H*, respectively.

The free product G * H of two groups is a group that contains the elements of both G and H. In this product G and H are subgroups and the elements of these subgroups are generators of G * H. If G and H are non-trivial then G * H is always infinite.

2. Spherical Growth Series of Free Groups and of Free Abelian Groups

There corresponds a growth function to each given group G with a finite generating set S. The growth function, an invariant of the group, generates a series of the group G called the growth series of the group G.

In this section we present SGS of the free groups and the free abelian groups. We start with a famous result regarding the SGS as a proposition.

Proposition 1 [3]. Let G_1 and G_2 be two groups generated by finite sets S_1 and S_2 , respectively. Then the SGS of the direct product $G_1 \times G_2$, finitely generated by $S = (S_1 \times \{1\}) \cup$

({1} × S₂) is given by $\mathbf{S}_{G_1 \times G_2}(t) = \mathbf{S}_{G_1} \mathbf{S}_{G_2}$.

The SGS of the free group with one generator is given in the following example.

Example 1. The SGS of $F_1[X]$, the free group generated by $X = \{x_1\}$ is $\mathbf{S}_{F_1[X]}(t) = \frac{1}{1-t}$, with one element of each length.

In the next example the SGS of the free group with n generators is computed by easy computations.

Example 2. The SGS of
$$F_n[X]$$
, the free group generated by $X = \{x_i; i = 1, 2, ..., n\}$ is $\mathbf{S}_{F_n[X]}(t) = \frac{1}{1-nt}$ such that $\sigma(k) = n^k \ \forall \ k \ge 1$.

Example 3. [1] Considering the infinite cyclic group \mathbb{Z} with generating set {2,3}, we have $\sigma(1) = 4$, $\sigma(2) = 8$, and $\sigma(k) = 6 \forall k \ge 3$. Therefore the spherical growth series is $\mathbf{S}_{Z}(t) = \frac{1+3t+4t^{2}-2t^{3}}{1-t}.$

Example 4. [1] For the infinite cyclic group \mathbb{Z} with natural generator 1, the corresponding SGS is given by $\mathbf{s}_{-}(t) = \frac{1+t}{2}$

$$\mathbf{S}_{\mathsf{Z}}(t) = \frac{1+t}{1-t}.$$

Example 3 and Example 4 show that the spherical growth series of any particular group G is not unique, it depends greatly on the choice of generating set S.

Example 5 [2]. Consider the free abelian group \mathbb{Z}^n with natural set of generators, if we let $\mathbb{Z}^n = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ (n times) then by using the Proposition 1 and Example 4 the SGS

of
$$\mathbb{Z}^n$$
 is given by $\mathbf{S}_{\mathbb{Z}^n}(t) = \left(\frac{1+t}{1-t}\right)^n$.

3. Spherical Growth Series of $\mathbb{Z}_2 * \mathbb{Z}_n$

In this section we find the SGS of the free product $\mathbb{Z}_2 * \mathbb{Z}_n$. The computations of A. Machi for the SGS of $\mathbb{Z}_2 * \mathbb{Z}_3$ are given in [1].

Example 6. [1] The SGS of the free product $\mathbb{Z}_2 * \mathbb{Z}_3$ is given $1 + 2t + 2t^2$

by
$$\mathbf{S}_{Z_2*Z_3}(t) = \frac{1+3t+2t}{1-2t^2}$$
.

In order to compute the SGS of the free product $\mathbb{Z}_m * \mathbb{Z}_n$, we are using the following notations: let $\mathbb{Z}_m = \{1, a, a^2, ..., a^{m-1}\}$ and $\mathbb{Z}_n = \{1, b, b^2, ..., b^{n-1}\}$ be two finitely generated abelian groups. To avoid the ambiguity

in the products, we set $a^i = x_i$; i = 1, 2, ..., m - 1 and $b^{j} = y_{j}$; j = 1, 2, ..., n - 1. So we have $\mathbb{Z}_{m} = \{1, ..., n - 1\}$ x_1, x_2, \dots, x_{m-1} and $\mathbb{Z}_n = \{1, y_1, y_2, \dots, y_{n-1}\}$. In \mathbb{Z}_m , we have $x_i = x_{m-i}^{-1}$; i = 1, 2, ..., m-1 and in \mathbb{Z}_n , we have $y_i = y_{n-i}^{-1}; j = 1, 2, ..., n-1.$ Let $m' = [\frac{m}{2}], m'' = [\frac{m-1}{2}], n' = [\frac{n}{2}] \text{ and } n'' = [\frac{n-1}{2}].$ Also let $S = \{x_1, \dots, x_{m'}, y_1, \dots, y_{n'}\}$ be the set of generators for the free product $\mathbb{Z}_{m} * \mathbb{Z}_{n}$. Let $X_{1} = \{x_{1}, \dots, x_{m'}, x_{1}^{-1}, \dots, x_{m''}^{-1}\}$ and $Y_1 = \{y_1, \dots, y_{n'}, y_1^{-1}, \dots, y_{n''}^{-1}\}$. Let us denote by $\sigma_{_a}(k)$ and by $\sigma_{_b}(k)$ the number of words in the free product $\mathbb{Z}_m * \mathbb{Z}_n$ of length k in $X_1 \cup Y_1$ ending at any word of X_1 (respectively at any word of Y_1). Let $l_a(w)$ and $l_{b}(w)$ denote the word length of $w \in \mathbb{Z}_{m} * \mathbb{Z}_{n}$, where w ends at any word of X_1 (respectively at any word of Y_1). Also for $k \ge 1$ we define the following sets: $P = \{w; l_a(w) = k+1\},\$

$$Q = \{w; l_b(w) = k\}, U = \{w; l_a(w) = k\}$$

and $V = \{w; l_b(w) = k+1\}$. Suppose that $\mathbf{S}_d(t)$ represents the SGS of a group whose words ends at d and is defined as $\mathbf{S}_d(t) = \sum_{k=1}^{\infty} \sigma_d(k) t^k$.

Lemma 1. The SGS of the free product $\mathbb{Z}_2 * \mathbb{Z}_n$ is given by $\mathbf{S}_{\mathbb{Z}_2 * \mathbb{Z}_n}(t) = \frac{1 + nt + (n-1)t^2}{1 - (n-1)t^2}.$

Proof. Since $\mathbb{Z}_2 = \{1, a\}$ and $\mathbb{Z}_n = \{1, b, b^2, \dots, b^{n-1}\}$ are finitely generated abelian groups generated by a and b, respectively and $S = \{x_1, y_1, y_2, \dots, y_n'\}$ be the generating set for the free product $\mathbb{Z}_2 * \mathbb{Z}_n$. For $p \in \mathbb{N}$, let $X_{2p} = \{yw : y \in Y_1, w \in X_{2p-1}\}$, $X_{2p+1} = \{x_1w : w \in X_{2p}\}, Y_{2p} = \{x_1y : y \in Y_{2p-1}\}$ and $Y_{2p+1} = \{yw : y \in Y_1, w \in Y_{2p}\}$. The sets of words of length k ending at any word of X_1 are given in the table given below.

k	Set of words	$\sigma_a(k) = n(X_i)$
1	X_1	1
2	X_{2}	n-1
3	X_{3}	n-1
4	X_4	$(n-1)^2$
5	X_{5}	$(n-1)^2$
6	X 6	$(n-1)^3$
:	•	:

Also the sets of words of length k ending at any word of Y_1 are given in the following table:

k	Set of words	$\sigma_b(k) = n(Y_i)$
1	Y_1	n-1
2	<i>Y</i> ₂	n-1
3	Y_3	$(n-1)^2$
4	Y_4	$(n-1)^2$
5	<i>Y</i> ₅	$(n-1)^3$
:	:	:

Now to find recurrence relations between the words of Table 1 and Table 2, we define a function $f: Q \to P$ by $f(w) = wx_1$. It is clear that f is bijective. It follows that $\sigma_a(k+1) = \sigma_b(k)$ for all $k \ge 1$. By defining another bijective function, $h: U \to V$ by $h(w) = wy_i; \forall y_i \in Y_1 = \{y_1, y_2, \dots, y_{n-1}\}$, it is clear that $\sigma_b(k+1) = (n-1)\sigma_a(k)$ for all $k \ge 1$.

In terms of the series $\mathbf{S}_{a}(t)$ and $\mathbf{S}_{b}(t)$ the recurrence relations above are used to find the following linear system.

$$\begin{split} \mathbf{S}_{a}(t) &= \sum_{k=1}^{\infty} \sigma_{a}(k) t^{k} \\ &= \sigma_{a}(1)t + \sigma_{a}(2)t^{2} + \sigma_{a}(3)t^{3} + \cdots \\ &= t + t \left(\sigma_{a}(2)t + \sigma_{a}(3)t^{2} + \sigma_{a}(4)t^{3} + \cdots\right) \\ &= t \left(1 + \sum_{k=1}^{\infty} \sigma_{a}(k+1)t^{k}\right) \\ &= t \left(1 + \sum_{k=1}^{\infty} \sigma_{b}(k)t^{k}\right). \end{split}$$
Hence $\mathbf{S}_{a}(t) = t \left(1 + \mathbf{S}_{b}(t)\right)$. Also

$$\mathbf{S}_{b}(t) = \sum_{k=1}^{\infty} \sigma_{b}(k) t^{k}$$

= $\sigma_{b}(1)t + \sigma_{b}(2)t^{2} + \sigma_{b}(3)t^{3} + \cdots$
= $(n-1)t + t(\sigma_{b}(2)t + \sigma_{b}(3)t^{2} + \cdots)$
= $(n-1)t + t(\sum_{k=1}^{\infty} \sigma_{b}(k+1)t^{k})$
= $(n-1)t + t\sum_{k=1}^{\infty} (n-1)\sigma_{a}(k)t^{k}$.

Therefore $\mathbf{S}_{b}(t) = (n-1)t(1+\mathbf{S}_{a}(t))$. By using Equation 2 in Equation 1 we get

> $\mathbf{S}_{a}(t) = t \Big(1 + (n-1)t \big(1 + \mathbf{S}_{a}(t) \big) \Big)$ $= t + (n-1)t^{2} + (n-1)t^{2}\mathbf{S}_{a}(t)$ $\Rightarrow \mathbf{S}_{a}(t) = \frac{t + (n-1)t^{2}}{1 - (n-1)t^{2}}.$

Also putting Equation 1 in Equation 2 we have

$$\mathbf{S}_{b}(t) = (n-1)t \Big(1 + t \Big(1 + \mathbf{S}_{b}(t) \Big) \Big)$$

= $(n-1)t + (n-1)t^{2} + (n-1)t^{2}\mathbf{S}_{b}(t)$
$$\Rightarrow \mathbf{S}_{b}(t) = \frac{(n-1)t(1+t)}{1 - (n-1)t^{2}}.$$

Hence the corresponding SGS of the free product $\mathbb{Z}_2 * \mathbb{Z}_n$ is

$$\mathbf{S}_{Z_{2}*Z_{n}}(t) = 1 + \mathbf{S}_{a}(t) + \mathbf{S}_{b}(t)$$

$$= 1 + \frac{t + (n-1)t^{2}}{1 - (n-1)t^{2}} + \frac{(n-1)t(1+t)}{1 - (n-1)t^{2}}$$

$$= \frac{1 + nt + (n-1)t^{2}}{1 - (n-1)t^{2}}.$$

Spherical Growth Series of $\mathbb{Z}_m * \mathbb{Z}_n$ 4.

Theorem. The SGS of the free product $\mathbb{Z}_m * \mathbb{Z}_n$ is given by

$$\mathbf{S}_{\mathbf{Z}_{m}*\mathbf{Z}_{n}}(t) = \frac{1 + (m+n-2)t + (m-1)(n-1)t^{2}}{1 - (m-1)(n-1)t^{2}} \cdot \text{Proof}_{\mathbf{Z}_{m}*\mathbf{Z}_{n}}(t)$$

Since $\mathbb{Z}_m = \{1, a, a^2, \dots, a^{m-1}\}$ and $\mathbb{Z}_n = \{1, b, b^2, \dots, b^{n-1}\}$ are finitely generated abelian groups generated by a and b, respectively and $S = \{x_1, x_2, ..., x_{m'}, y_1, y_2, ..., y_{n'}\}$ be the set of generators for the free product $Z_m * Z_n$. First of all for $p \in \mathbb{N}$, let us define

$$\begin{split} X_{2p} &= \{ yw : y \in Y_1, w \in X_{2p-1} \} \\ X_{2p+1} &= \{ xw : x \in X_1, w \in X_{2p} \} \\ Y_{2p} &= \{ xy : x \in X_1, y \in Y_{2p-1} \} \\ Y_{2p+1} &= \{ yw : y \in Y_1, w \in Y_{2p} \}. \end{split}$$

Now the sets of words of length k ending at any word of X_1 are written in the table given below.

Table	3.
-------	----

ISSN 1013-5316; CODEN: SINTE 8

k	Set of words	$\sigma_a(k) = n(X_i)$
1	X_1	<i>m</i> -1
2	<i>X</i> ₂	(n-1)(m-1)
3	<i>X</i> ₃	$(n-1)(m-1)^2$
4	X_4	$(n-1)^2(m-1)^2$
5	X_5	$(n-1)^2(m-1)^3$
:	:	:

And the words of length k ending at any word of Y_1 are shown in the following table:

Т	a	bl	e	4.	

k	Set of words	$\sigma_b(k) = n(Y_i)$
1	Y_1	n-1
2	<i>Y</i> ₂	(n-1)(m-1)
3	<i>Y</i> ₃	$(m-1)(n-1)^2$
4	Y_4	$(m-1)^2(n-1)^2$
5	Y ₅	$(m-1)^2(n-1)^3$
:	:	:

To find recurrence relations between the words of Table 3 and Table 4, we define a bijective function $f: Q \rightarrow P$ by $f(w) = wx_i; \forall x_i \in X = \{x_1, x_2, \dots, x_{m-1}\}$. It follows that $\sigma_a(k+1) = (m-1)\sigma_b(k)$ for all $k \ge 1$. We define another bijective function $h: U \rightarrow V$ by $h(w) = wy_i; \forall y_i \in Y = \{y_1, y_2, \dots, y_{n-1}\}$. Now it is clear that $\sigma_{k}(k+1) = (n-1)\sigma_{a}(k)$ for all $k \ge 1$. In terms of the series $\mathbf{S}_{a}(t)$ and $\mathbf{S}_{b}(t)$ the recurrence relations above are used to find the following linear system.

$$\begin{aligned} \mathbf{S}_{a}(t) &= \sum_{k=1}^{\infty} \sigma_{a}(k) t^{k} \\ &= \sigma_{a}(1)t + \sigma_{a}(2)t^{2} + \sigma_{a}(3)t^{3} + \cdots \\ &= (m-1)t + t \Big(\sigma_{a}(2)t + \sigma_{a}(3)t^{2} + \cdots \Big) \\ &= t \Big((m-1) + \sum_{k=1}^{\infty} \sigma_{a}(k+1)t^{k} \Big) \\ &= t \Big((m-1) + \sum_{k=1}^{\infty} (m-1)\sigma_{b}(k)t^{k} \Big). \end{aligned}$$

Therefore $\mathbf{S}_{a}(t) = (m-1)t\left(1+\mathbf{S}_{b}(t)\right)$. Also we have

July-August

$$\begin{split} \mathbf{S}_{b}(t) &= \sum_{k=1}^{\infty} \sigma_{b}(k) t^{k} \\ &= \sigma_{b}(1)t + \sigma_{b}(2)t^{2} + \sigma_{b}(3)t^{3} + \sigma_{b}(4)t^{4} + \cdots \\ &= (n-1)t + t \Big(\sigma_{b}(2)t + \sigma_{b}(3)t^{2} + \sigma_{b}(4)t^{3} + \cdots \Big) \\ &= (n-1)t + t \Big(\sum_{k=1}^{\infty} \sigma_{b}(k+1)t^{k} \Big) \\ &= (n-1)t + t \sum_{k=1}^{\infty} (n-1)\sigma_{a}(k)t^{k}. \end{split}$$

Hence $\mathbf{S}_{b}(t) = (n-1)t(1+\mathbf{S}_{a}(t))$. Putting Equation 3 in Equation 4 we have $\mathbf{S}_{a}(t) = (m-1)t(1+(n-1)t(1+\mathbf{S}_{a}(t)))$

 $\mathbf{S}_{a}(t) = (m-1)t \Big(1 + (n-1)t \big(1 + \mathbf{S}_{a}(t) \big) \Big)$ = $(m-1)t + (m-1)(n-1)t^{2} + (m-1)(n-1)t^{2}\mathbf{S}_{a}(t)$ Hence we have $\mathbf{S}_{a}(t) = \frac{(m-1)t \Big(1 + (n-1)t \Big)}{1 - (m-1)(n-1)t^{2}}.$

Also putting Equation 4 in Equation 3 we get

$$\mathbf{S}_{b}(t) = (n-1)t \Big(1 + (m-1)t \Big(1 + \mathbf{S}_{b}(t) \Big) \Big)$$

= (n-1)t + (m-1)(n-1)t^{2} + (m-1)(n-1)t^{2} \mathbf{S}_{b}(t).

Therefore we have

$$\mathbf{S}_{b}(t) = \frac{(n-1)t(1+(m-1)t)}{1-(m-1)(n-1)t^{2}}$$

Finally the SGS of the free product $\mathbb{Z}_m * \mathbb{Z}_n$ is given as $\mathbf{S}_{\mathbb{Z}_m * \mathbb{Z}_n}(t) = 1 + \mathbf{S}_a(t) + \mathbf{S}_b(t)$

$$= 1 + \frac{(m-1)t(1+(n-1)t)}{1-(m-1)(n-1)t^2} + \frac{(n-1)t(1+(m-1)t)}{1-(m-1)(n-1)t^2}$$
$$= \frac{1+(m+n-2)t+(m-1)(n-1)t^2}{1-(m-1)(n-1)t^2}.$$

REFERENCES

[1] Pierre de la Harpe, "Topics in Geometric group theory", *Chicago University Press*, 2000.

!Unexpected End of Formula

- [2] R. Grigorchuk, P. D. L. Harpe, "On problems related to growth, entropy and spectrum in group theory", *J DYN CONTROL SYSTJ.*, vol 3, no. 1, p. 51-89 (1997).
- [3] Nick Scott, "Growth of Finitely Generated Groups", Honors Thesis, The University of Melbourne, 2007