
Sci.Int.(Lahore),27(4),3193-3197,2015 ISSN 1013-5316; CODEN: SINTE 8 3193

July-August

PERFORMANCE ANALYSIS OF LINUX TCP CONGESTION CONTROL
TECHNIQUES

Usman Ahmad, Md Asri Bin Ngadi*
Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia,

UTM Johor Bahru, 81310, Johor, Malaysia.

[e-mail: usman.ahmad82@yahoo.com, dr.asri@utm.my.]

*Corresponding author: Md Asri Bin Ngadi

ABSTRACT—Transmission Control Protocol (TCP) is a core protocol of the Internet protocol suit, which aims to provide the

data reliability transmission among computers. Long distance networks spanning several continents are growing in importance

and many multinational companies are now centralizing their data centers for economical reasons. While high performance of

TCP in these networks is critical for the effective operation of their data centers, it is commonly reported that TCP substantially

underutilized network bandwidth in these environments. Effective congestion control in the network is critical issue for the

efficiency of network resources. Since after development of the TCP, many TCP congestion control techniques are proposed to

solve the congestion issue for many network conditions (e.g., wired networks, wireless networks and satellite links). Now days,

Linux operating system has 14 different congestion control techniques inside the TCP. The aim of this paper is to offer a

comparative analysis of behavior of these 14 Linux congestion control techniques, in term of congestion window behavior, rate of

packet loss and throughput in wired network scenarios.

Index Terms—Congestion window, Packet loss rate, throughput, wired network

1. INTRODUCTION
The transmission control protocol (TCP) plays a critical role in

the Internet infrastructure by providing a connection-oriented,

reliable, byte-stream service [1]. TCP uses three way

handshaking for connection establishment and four way

handshaking for connection termination. Secondly, it creates a

flow and error control mechanism. TCP uses a sliding window

to achieve flow control and uses time-out, acknowledgment

packet and re-transmission for error control. TCP was

originally designed for short distance local area networks

(LAN), but distance among nodes and capacity of bandwidth

increased rapidly. Reliable communication and congestion

control are two major functions of TCP. TCP provides

congestion control mechanisms to prevent the network from

congestion collapses [2,3,4,5] and for achieving high

performance. To avoid such kind of congestion collapses, TCP

congestion control uses packet conservation principle [2].

According to the this principle packet will not enter in the

network until last transmitted data have been acknowledge or

lost. To avoid the congestion sender controls the amount of

data by using a variable called (cwnd) and this variable

determine the limit that how much data need to be send by the

sender. Receiver side also inform to sender about this capacity

by a variable called (rwnd), with the help of these two

variables TCP send minimum amount of data congestion

window (cwnd) and receiver window (rwnd).

There are four basic algorithms inside the congestion control

mechanism which are slow start, congestion avoidance, fast

re-transmit and fast recovery. TCP slow start algorithm is used

to find out the unknown capacity of the available bandwidth.

In slow start phase sender increase the size of congestion

window by one after receiving each ACK and after that

increases exponentially per RTT. The Equation 1, shows the

exponential increment after receiving ACK. The slow start

exits and enter into the congestion avoidance phase when the

value of the congestion window (cwnd) increases than the

given variable called slow start threshold (ssthresh). In

congestion avoidance phase sender side increases the size of

congestion window by 1/cwnd after each ACK. That means

congestion window increases gradually by one packet per

every round trip time (RTT), on the other hand the size of

congestion window decreases by half of its original size after

Figure 1: Packet Drop Rate of Congestion Control Techniques

1:  cwndcwndACK (1)

receiving three duplicates or packet loss.The typical behavior

of congestion window is shown in Figure 1. The Equation 2

and 3 shows the behavior of congestion window during

congestion avoidance after receiveing ACK and after loss

event.

cwnd
cwndcwndACK

1
: 

(2)

cwndcwndLoss 
2

1
:

 (3)

For the reliable and better transmission, TCP must have a

mechanism for detecting packet loss and re-transmit it. Before

sending the data TCP associates a unique number with data

called sequence number and receiver sends the ACK packet

with next sequence number to the sender after receiving the

packet. This is called cumulative ACK and when the packet

loss, receiver send the duplicate ACK to sender with same

sequence number. There is a re-transmit timer maintained by

TCP, when ever sender receives cumulative ACK, TCP resets

the timer. TCP assumes packet is lost when the sender does not

receive any ACK during the given time and re-transmit it

again. Re-transmit the data after timeout is very inefficient

mailto:usman.ahmad82@yahoo.com
mailto:dr.asri@utm.my.

3194 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3193-3197,2015

July-August

because the re-transmission time out (RTO) is longer than

RTT and sender sites idle and wait for the timeout without

sending any data.

TCP fast re-transmission [7] mechanism reduces the time that

a sender waits before re-transmitting a lost packet. Thus when

receiver receive abnormal data or out of order data then it

immediately sends the duplicate ACK to the sender and if

sender receives three ACK that means packet loss, then the

sender immediately re-transmit the lost segment to the receiver

without any wait. After lost segment sent by fast re-transmit

the fast recovery is used to make TCP operates in congestion

avoidance phase instead of slow start, which improves the

performance of TCP.

Many of high speed TCPs are proposed to improve the

efficiency of network and classified into three main categories

namely, loss-based, delay-based and loss-delay based. In

loss-base protocols packet loss is used as indication of

congestion in the network. Some proposed protocols in this

category are HS-TCP [8, 9, 10, 11, 12, 13]. In delay-based

protocols only delay or round trip time (RTT) information is

used for the indication of congestion. Many delay-based

protocols are proposed such as [14, 15, 16]. Loss and delay

based protocols are combine both delay and loss information

to detect congestion in the network. Some proposed protocols

in this category are [17] and [18].

2. RELATED WORK

Tahoe was the first TCP variant proposed with congestion

control technique. One of the main principal of its operation is

that the rate of new packet sent into the network must be close

to the rate at which the receiver returns the acknowledgments.

In versions earlier than Tahoe sources and multiple segments

into the network until the advertised receiver window is full.

This over aggressive behavior may cause problem when there

are slower links between the sender and receiver. TCP Tahoe

includes three new techniques, which are slow start,

congestion avoidance and fast re-transmit. TCP Tahoe also

adds a new window to the sender side called congestion

window (cwnd). TCP sender side must not transmit more than

the minimum of the congestion window and receiver window

(rwnd). TCP Tahoe, even with its limitations, was a major

breakthrough in congestion control and played a critical part in

the prevention of congestion collapses in the Internet. Tahoe

sets the guidelines and principles for which virtually every

new TCP implementation should respect or, at least consider.

Tahoe is followed by Reno [3].

Reno used many characteristics of Tahoe but proposed two

new changes to improve the performance of Tahoe. TCP Reno

inceases its congestion window by Equation 4 and upon packet

loss decreases it congestion window by Equation 5. Reno

changes the approach of Tahoe of detection of three

acknowledgments. The basic idea of Reno is that after

detecting packet loss through duplicate acknowledgments, the

Reno did not use the technique of Slow Start, it continues the

sending data. The main thing is that sender still receiving

acknowledgments and still send packets, until the load of

congestion is not going to heavy. Reno introduced a new

approach called fast recovery. According to Reno technique

when duplicate acknowledgment will receive then fast

re-transmit technique will activated and resend the lost packet.

This approach is very near to Tahoe, after that Reno will start

fast recovery. In the fast recovery process the half value of

congestion window is saved in ssthresh and new value of the

congestion window is set to half of the congestion window and

add three times the segment size. This can be done because the

three acknowledgments received by sender is like three packet

left the network [2]. In Reno algorithm when re-transmit time

will expire then the Reno will enter in slow start phase, which

is the phase of Tahoe. The technique of Reno is better as

compared to Tahoe regarding single packet loss in congestion

window, but like Tahoe the Reno is not behave well when

more that one packets loss in single window. Many researchers

optimized the standard TCP protocol by modify the congestion

control technique to prevent the network by congestion

collapses. The problem of congestion collapses happens when

there is no any congestion control technique and end to end

flow mechanism which tells the network about lost packets

[19] and this may become a very sever problem as a large

capacity of bandwidth can be wasted due to these lost packets.

TCP congestion control techniques perform well when the

available bandwidth is low but in the presence of high

bandwidth it does not perform well [20], this is due to long

time to increase the congestion window size which can not

fully utilize the available bandwidth [21].











cwnd
cwndcwnd

1

(4)











2

cwnd
cwndcwnd

(5)

To solve the issue many high speed variants of TCP has been

proposed and implemented such as Reno [14], High Speed

TCP [8], Scalable TCP (STCP) [9], BIC TCP [11,10] (HTCP),

Compound TCP (CTCP) [18], Fast TCP [16], TCP Illionois

[17], and TCP CUBIC [12]. All these congestion control

techniques of TCP are proposed according to hardware,

network and data transfer demands. Now a days network and

hardware is more sophisticated and need to transfer heavy

amount of data. The exiting congestion control techniques

have many problems related to fairness, rate of packet loss,

throughput and low link utilization. Existing congestion

control techniques have severe problem of RTT unfairness and

achieving full available bandwidth on the given link because

the congestion window increase rate gets larger as the window

grow [22]. To solve this problem TCP BIC [11] was proposed

which also improves the TCP friendliness and bandwidth

scalability. The proposed congestion control algorithm uses

two types of window size control polices called additive

increase and binary search increase. In the presences of large

congestion window additive increase with large increment

ensure the RTT unfairness and good scalability and when the

size of congestion window is small the binary search increase

the TCP friendliness [11].

Sci.Int.(Lahore),27(4),3193-3197,2015 ISSN 1013-5316; CODEN: SINTE 8 3195

July-August

Figure 2: Concave and Convex function of CUBIC

The next enhanced version of BIC is TCP CUBIC [12].

CUBIC replace the concave and convex windows growth

function of BIC by Cubic function as shown in Figure 2. The

key feature of the TCP CUBIC is that the growth of congestion

window depends between two consecutive congestion events.

CUBIC replaced by TCP BIC in 2006 as a default TCP for

Linux, but TCP CUBIC still have many problems related to

slow start phase of TCP, slow convergence, RTT fairness and

friendliness. TCP CUBIC is high speed TCP variant which is

the default protocol of Linux. In high bandwidth delay product

TCP CUBIC may can achieve full utilization of available

bandwidth, but TCP CUBIC has shortcomings in term of

convergence speed [23].

3. METHODOLOGY

To evaluate the performance of these fourteen congestion

control techniques, many experimental tests are conducted by

using NS-2 having version 2.35 and Linux operating having

version Fedora 16 . NS-2 is widely used simulation tool to

evaluate the many performance metrics, like goodput,

efficiency, convergence time, fairness and friendliness,

behavior of congestion window, packet loss rate and

throughput. The main aim of this simulation experiment is to

analysis the performance of many congestion control

techniques in wired network environment. For the simulation,

wired network topology is configured with four nodes. One

node represents the sender of the data, second node represents

the receiver of data and other 2 nodes are routers between

these two sender and receiver nodes for the completion of

network topology. A brief discussion about network scenarios

is discussed in next subsection.

Fig. 3. Network Scenario, Test Bed

4. SIMULATION TOPOLOGY

To simulate the tests, a four nodes test-bed is used as shown in

Figure 3, n0 represents data sending node, n3 represents data

receiving node and n1, n2 represent routers between sending

and receiving nodes. In this scenario, data communication

between nodes n0 and n3 is done in four different data flows;

detail is given in Table 1. Complete NS-2 wired simulation

parameters are shown in Table 2. Routers n1- n2 link speed

and queue-limit is 11Mb and 15 respectively. Traffic type,

windows size and packet size is Linux TCP, 9000 and 3500

respectively. For all wired scenario simulations, routers link

speed, routers queue limit, traffic type, windows size and

packet size is constant. In wired scenario flow 1 and flow 2,

link speed between nodes and router is 1024 MB, propagation

between nodes and routers is 200ms and propagation between

routers is 250ms. While in wired flow 1a and 2a, link speed

between nodes and router is 100 MB, propagation between

nodes and routers is 250ms and propagation between routers is

350ms. FTP traffic is used as main traffic from node n0 to n3.

In wired flow 2 and 2a, UDB traffic at rate 10Mb and packet

size 3500 is used as extra background traffic. The simulations

have been conducted by varying the TCP congestion control

techniques, configured with TCP Linux and simulation time is

120 seconds.

4. RESULTS AND DISCUSSION

The simulation results are divided into three parts. In first part

the behavior of congestion window is evaluated in wired

network scenarios, in second part analysis of packet drop rate

is done and in part the throughput of these fourteen variants is

evaluated.

2. ANALYSIS OF CONGESTION WINDOW

BEHAVIOUR

In this section the behavior of congestion window is discussed.

The trace files are obtained after simulation by NS-2 and

organized in statistical tool SPSS. The resultant graph shows

the combine behavior of congestion window for all fourteen

TCP congestion control techniques. In Figure 4, the

congestion control technique of TCP Hybla increases its

congestion window size very aggressively to obtain the given

bandwidth as compare to other techniques, which also leads

3196 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3193-3197,2015

July-August

towards burst packet losses , that’s why TCP Hybla is no more

in any network. After that the congestion window behavior of

TCP Highspeed, Scalable TCP, TCP Veno and YeAH is near

to similar, Highspeed TCP is more friendly as compare to

other two variants. TCP Vegas and TCP Reno are the oldest

congestion control techniques, so the in these congestion

control techniques the growth of congestion window is very

slow as shown in Figure 4. The congestion window behavior

of TCP LP is very similar to to TCP Reno. The behavior of

TCP BIC and YeAH TCP is also similar.

Figure 4: Behaviour of Congestion Control Technique

5. ANALYSIS OF PACKET DROP RATE

In this section packet drop rate is calculated and discussed.

The mean of packet drop is taken of all flows and evaluated in

SPSS. With same wired network scenario the results of packet

drop are taken from flows of fourteen congestion control

techniques by using NS-2 and its trace files. Its is observed that

TCP Hybla has high packet drop rate while TCP Compound

and TCP CUBIC have low packet drop rate as compare to

other congestion control technique as shown in Figure 5. The

packet drop rate of Highspeed TCP, Hamiton TCP, TCP

Illinois and scalble TCP is 70% same, therefore drop rate of

TCP Vegas, TCP Westwood and YeAH TCP are 80% same

with each other. However we can say that the packet loss rate

of TCP BIC, TCP Compund and TCP CUBIC is low as

compare to other congestion control techniques.

Figure 5: Packet Drop Rate of Congestion Control Techniques

6. ANALYSIS OF THROUGHPUT

In this section throughput is evaluated and discussed. The

mean throughput is taken of all flows and evaluated in

statistical tool SPSS. With the same network scenario,

throughput results are taken from four flows of fourteen

congestion control techniques for the analysis. I divided the

simulation in two phases. In first phase these techniques are

evaluated during the first ten seconds and in second phase

these are evaluated during first fifteen seconds. In first phase

TCP Hyble showed the highest throughout and TCP Veno

showed the lowest throughput in Figure 6. It is surprised that

TCP Compound, Highspeed TCP, TCP LP, TCP Reno, TCP

Vegas and TCP Westwood shows the same mean throughput

during the first ten seconds as shown in Figure 6. The behavior

of TCP Hybla, TCP CUBIC, Highspeed TCP is same in

throughput analysis and in cwnd analysis section.

It is concluded that the behavior of cwnd effected the over all

throughput of the network. We can not say that TCP Hybla is

performing well between all fourteen congestion control

techniques because the rate of packet loss of TCP Hybla is

very high as compare to other TCP congestion control

techniques. So after intensive analysis it is concluded that TCP

CUBIC is on the top of all other congestion technique and

thats why it is default congestion control technique in Linux

operating system.

Figure 6: Throughput after first 10 seconds

Figure 7: Throughput after first 15 seconds

7. CONCLUSION

TCP is a wide spread protocol on the Internet for the

transmission of data. With the passage of time many

congestion control techniques are proposed to solve the

congestion problem for many network scenarios. As a result

Sci.Int.(Lahore),27(4),3193-3197,2015 ISSN 1013-5316; CODEN: SINTE 8 3197

July-August

14 congestion control techniques are included in Linux

operating system, from the classic technique (TCP Reno), and

then many improved versions like TCP Vegas, TCP Veno,

TCP Weswood, TCP Illinois, Scalable TCP, YeAH TCP, TCP

BIC, TCP CUBIC and other are introduced.

In this paper comparative analysis is offered in term of

behavior of congestion window, packet loss and throughput of

14 congestion control techniques in wired network topology.

Such kind of Analysis showed that the behavior of congestion

window is depend upon the packet losses. In this analysis ,

TCP CUBIC performed well in term of congestion window

behavior and packet loss, that’s why it is a default congestion

control technique in current Linux operating system.

 REFERENCES

[1] Postel, J. Transmission control protocol, (1981)

[2] Jacobson, V. Congestion avoidance and control. In

ACMSIGCOMMComputer Communication Review, vol.

18. ACM, 314-329, (1988).

[3] Allman,M., Paxson, V., Stevens,W. et al.. TCP congestion

 control. Baiocchi, (1999)

[4] Nagle, J. Congestion control in IP/TCP internetworks

(1984)

[5] Floyd, S. Congestion control principles. Floyd, (2000)

[6] Rohrer, J. P., Perrins, E. and Sterbenz, J. P. End-to-end

disruption-tolerant transport protocol issues and design for

airborne telemetry networks. In Proceedings of the

International Telemetering Conference,(San Diego, CA)

(2008).

[7] Krevat, E., Vasudevan, V., Phanishayee, A., Andersen, D.

G., Ganger, G. R., Gibson, G. A. and Seshan, S.. On

application-level approaches to avoiding TCP throughput

 collapse in cluster-based storage systems. In Proceedings

of the 2nd international workshop on Petascale

data storage: held in conjunction with

Supercomputing€™07. ACM, (2007).

[8] Floyd, S. HighSpeed TCP for large congestion windows.

(2003)

[9] Kelly, T. Scalable TCP: Improving performance in

 highspeed wide area networks. ACM SIGCOMM

Computer Communication Review. 33(2), (2003)

[10] Leith, D. and Shorten, R. (2004). H-TCP: TCP for

high-speed and long-distance networks. In Proceedings of

PFLDnet, vol. 4 (2004).

[11] Xu, L., Harfoush, K. and Rhee, I. Binary increase

 congestion control (BIC) for fast long-distance networks.

In INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications

Societies, vol. 4. IEEE, Xu,W. (2004).

[12] Ha, S., Rhee, I. and Xu, L. CUBIC: a new TCP-friendly

 high-speed TCP variant. Selected Areas in

Communications, Journal IEEE on. 42(5), (2008).

[13] Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M. Y. and

Wang, R. TCP westwood: Bandwidth estimation for

enhanced transport over wireless links. In Proceedings of

the 7th annual international conference on Mobile

computing and networking. ACM, (2001).

[14] Floyd, S., Henderson, T. and Gurtov, A. The NewReno

modification to TCPs fast recovery algorithm. Technical

report. RFC 2582, April, (1999).

[15] Brakmo, L. and Peterson, L. TCP Vegas: End to end

congestion avoidance on a global Internet. Selected Areas

in Communications, IEEE Journal on. 13(8), (1995)

[16] Wei, D., Jin, C., Low, S. and Hegde, S. FAST TCP:

motivation, architecture, algorithms, performance.

IEEE/ACM Transactions on Networking (ToN). 14(6),

(2006).

[17] Liu, S., Bas Â¸ar, T. and Srikant, R. TCP-Illinois: A

loss-and delay-based congestion control algorithm for

high-speed networks. IEEE/ACM Transactions on

Networking (ToN). 65(6), (2008).

[18] Song, K. T. J., Zhang, Q. and Sridharan, M. Compound

TCP: A scalable and TCP-friendly congestion control for

igh-speed networks. Proceedings of PFLDnet (2006).

[19] Floyd, S. and Fall, K. Promoting the use of end-to-end

 congestion control in the Internet. IEEE/ACM

Transactions on Networking (TON). 7(4), (1999).

[20] Qureshi, B., Othman, M., Subramaniam, S. andWati, N.

A. QTCP: Improving Throughput Performance Evaluation

 with High-Speed Networks. Arabian Journal for

Science and Engineering, (2012).

[21] Pan, X.-z., Su, F.-j. and Ping, L. d. CW-HSTCP: Fair

TCP in high-speed networks. JOURNAL-ZHEJIANG

UNIVERSITY SCIENCE. 7(2), 172 (2006)

[22] Caoa. CUBIC with faster convergence: An Improved

CUBIC Fast Convergence Mechanism. (2002)

[23] Leith, D., Shorten, R. and McCullagh, G. Experimental

evaluation of Cubic- TCP, (2008).

