
Sci.Int.(Lahore),27(4),3179-3184,2015 ISSN 1013-5316; CODEN: SINTE 8 3179

July-August

AUTOMATED SOFTWARE REQUIREMENTS MANAGEMENT TOOLS:
A METHODOLOGY FOR PROJECT SUCCESS

1 Faisal Adnan, 2 Imran Haider Naqvi,
1 COMSATS Institute of Information Technology, Lahore.

2 CIF, COMSATS Institute of Information Technology, Lahore

ei.netsolian@gmail.com

drimranhaider@ciitlahore.edu.pk

ABSTRACT: This paper provides an insight of automated software requirements management and its role in project success

(PS). Different features of automated software requirements management tools were critically reviewed. The underlying

associations among software requirements management, software requirements traceability, changing requirements, using

automated software requirements management tools and rework with PS were explored through a survey conducted among the

software houses. This study found a lack of proficiency in automated SRM skills and practices among the software projects

which caused rework in software development life cycle. This study is a novel contribution in exploring the role of automated

software requirements management tools as an effective methodology for project success.

Keywords: Software Requirements Management Tools, Project success, Rework, Software Requirements Management, Software

Requirements Traceability, Changing Requirements.

1. INTRODUCTION
Project success (PS) is achieved through effective

requirements management process in scope management

knowledge area. PS should be measured in terms of

completing the project within scope, time, cost, quality,

resource and risk [1]. PS could be ensured via project

management (PM) tools and techniques. PM ten knowledge

areas include integration, scope, time, cost, quality, human

resource, communications, risk, procurement and

stakeholder management. The ten knowledge areas and five

process groups (initiating, planning, executing, monitoring

and controlling along with closing) provide adequate

guidelines for ensuring PS. A well-structured requirements

engineering (RE) process improves the overall software

productivity [2]. PS is ensured by RE which is a legitimate

phase of software development life cycle (SDLC) which

consists of requirement definition and SRM phases [3].

Software requirements definition phase leads to software

requirements specification (SRS) document. Software

requirements management process consisted of requirements

documentation; requirements change management and

requirements traceability [4]. SRM controls changing

requirements and requirements traceability based on the SRS

document given as an input to SRM process. SRS document

help as an agreement of understanding between clients and

project team members.

 1.1 RATIONALE OF STUDY

Rework emerged as the most frequent burning issue which

adversely affected PS. Major cause of project failure was

poor SRM [5]. Literature does not provide adequate

guidelines for rework reduction through the SRMT.

Literature showed that SRM, SRT, CR were the rework

factors closely linked with PS. An empirical research for

exploring the associations with factors of rework was hence

intended to quantify the role of automated Software

requirements management (SRMT) in PS.

1.2 PROBLEM STATEMENT

PS is adversely affected by rework phenomenon. [6]

Depicted that 40-100% rework was present in requirements

gathering phase and the cause of rework in software projects

was lack of a structured approach for SRM in SDLC.

1.3 RESEARCH QUESTIONS

Based on literature review the following research questions

were proposed for this study.

1).What is the impact of SRM on Project Success?

2).Whether SRT on Project Success?

3).Whether CR impact Project Success?

4). How SRMT impact Project Success?

5).What is the underlying relationship of rework with

Project Success.

6).How much Project Success could be ensured by SRMT.

7).How much rework could be reduced by SRMT.

2. LITERATURE REVIEW
Poor requirement gathering was primary cause in 37% of

software projects failure during the year 2014[7]. Poor SRM

was the primary cause of project failure almost half of the

time, when software projects do not meet their original goals

and business objectives. Majority of organizations lacked

maturity in the SRM process due to lack of availability of

necessary skilled workforce. The executive management,

project sponsors and other project stakeholders were found

reluctant to achieve excellence in SRM process. PS could be

ensured by capturing valid, reliable, concise, feasible,

consistent, verifiable, traceable and maintainable

requirements in the scope management knowledge area. It

was found that 5.1% of every dollar spent on software

projects was wasted due to poor SRM which means that

US$51 million was wasted for every US$1 billion spent on

software projects [8]. The effect of poor SRM was even

worst for low performance organizations (which completed

60% or fewer projects on time, within budget and meet

original goals) in which half of the software projects were

unsuccessful. High performance organizations stressed on

effective SRM as a core competency for PS. Aaron et al.

also found that poor communication among the project

stakeholders was the primary cause of project failure which

negatively affected SRM process in 75% projects more than

any other area, like schedule or budget. [9] Suggested that

poor SRM caused 48% of problems in SDLC. Data collected

from high performance organizations (which achieved 80%

or more projects on time, within budget and meet original

goals), confirmed that only 11% of the projects were

mailto:ei.netsolian@gmail.com
mailto:drimranhaider@ciitlahore.edu.pk

3180 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3179-3184 ,2015

July-August

unsuccessful. The waste of money due to poor SRM

remained within bearable limits of just 1 cent for every

dollar spent in high performing organizations as compared to

10 cents loss by low performing organizations. SRM as part

of project management managed constantly CR in SDLC

[10]. Complete, concise and well-structured SRM process

was critical for PS [11]. Poor SRM remained one of the top

three critical factors of project failure. SRM helped in

project team collaboration to harness innovation. [12]

Reported that lack of SRM lead to project failure. Effective

RM helped software teams in reducing project schedule and

budget overruns. Software teams were unhappy in assigning

adequate resources for SRM. A study in telecommunications

and banking sectors indicated that successful projects

allocated 28% overall resources and 38.6% of schedule for

SRM process, while on an average 15.7% of project

resources and effort was used for SRM [13].

Putting more effort and resources for SRM process increased

the likelihood to meet the stakeholder demands and ensured

PS. NASA projects data found that the projects which

invested more than 10% resources on SRM resulted in low

project cost and less schedule overruns compared to the

projects which invested less effort to SRM processes and

methodologies [14]. Automated SRM through SRMT

facilitated in SRT which enhanced the productivity of

software projects. SRT is a necessary part of effective RM in

SDLC [15]. Clearly visible requirements through the SRMT

improved team’s communication. Centralized requirements

repository provided by automated SRM through SRMT

supported project teams to streamline the SDLC process.

SRMT facilitated in managing the verifiability / quality of

CR. Critical features which made SRMT most important for

PS, varied with project nature and industry requirements.

Software industry used various SRMT depending on the

nature, complexity and the specific needs of the software

product. Commonly used SRMT in software industry and

their features are listed in Table 1.

High performance organizations recognized the importance

of automated SRM processes and practices for PS. Features

provided by SRMT like SRT, changing requirements impact

analysis, requirements validation and coverage analysis

provided a road map for PS. SRMT helped software project

teams in rapid application development to stay competitive

in the industry and provided fastest access to the market.

SRMT helped in streamlining communication gap among

project stakeholders and in tailoring the rework [16].

Effective SRM during the initial stages of the project life

cycle doubled chances of PS and reduced project overruns

by almost 87% [17]. Software projects faced rapidly CR

throughout SDLC which caused schedule delays and budget

overruns. Software teams faced lack of requirements

visibility & were unable to determine rework required due to

rapidly changing software requirements in the projects

which caused rework in SDLC. Data showed that RM

defects caused 70-85% of rework cost [18]. Rework cost

upraised as software headed towards completion. [19]

Suggested that during a specific reporting period in SDLC,

10-20% of rework effort were commonly accepted. Software

projects faced a lot of rework which required up to 80% of

the total work effort [20]. Literature showed that rework

during the programming/coding phase caused 200 times

more as compared with rework performed during the

requirements analysis phase [21]. SRMT helped project

teams to estimate CR impact on overall PS. Customer’s

satisfaction & effective communication among project

stakeholders was found critical for PS.

SRMT facilitated in tracking both the projects as well as

requirements current completion status to inform the project

stakeholders about the most up to date status of requirements

implementation. [22] Showed that automated SRM through

the SRMT ensured 75% increase in productivity and 69%

net reduction in rework cost. [23] Found that devoting more

schedule and effort to SRM process yields quick and

efficient delivery of software projects.
Table 1: Commonly used SRMT features adopted from [30]

A. Clear visibility of requirements to all stakeholders.

B. Dynamically linked requirements with different

artefacts.

C. Permanent and secure storage location for

requirements management.

D. Live requirements traceability/ prioritization/

addition/deletion/modification.

E. Requirement change management and

upward/downward change impact assessment.

F. Integration with other tools for improved

communication.

G. Checklist for requirements quality verification and

testing.

H. Collaborative development of the software product.

I. Scalability to facilitate more end users if project team

size grows.

J. Online repository for project related glossary terms

and references.

K. Requirements secure import/export from other tools.

L. Secure system with different privileges for various

stakeholders.

SRMT

Name

SRMT features

which helped in PS

SRMT features

having security

drawbacks

Requisite

Pro

A, B, C, D, E,

F, H

G, I, J, K, L, I

Case

Complete

A, B, C, D, F, J G, H, I, K, L, I

Analyst

Pro

A, B ,C, D, E, F,

H, L

G, J, K, I

Optimal

Trace

A, B, C, D, F, H G, I, J, K, L, I

DOORS A, B, C, D, E, F,

I, K, L

G, J, K

GMARC A, B, C, D, E F, G, H, I, J, K, L

Objective A, B, C, D, E, H,

J

F, G, I, K, L

RDT A, B, C, D, E, F,

I, L

G ,H ,J ,K

RTM A, B, C, D, E, H,

L

F ,G ,I ,J

Sci.Int.(Lahore),27(4),3179-3184,2015 ISSN 1013-5316; CODEN: SINTE 8 3181

July-August

2.1 RESEARCH HYPOTHESES

H1: SRM is positively related with PS & negatively related

with rework.

H2: SRT is positively related with PS & negatively related

with rework.

H3: CR is negatively related with PS & positively related

with rework.

H4: SRMT is positively related with PS & negatively related

with rework.

H5: Project Success is negatively related with Rework.

3. THEORETICAL FRAMEWORK
[15] Said that SRT was a necessary part of SRM. [17] Found

that effective SRM enhance chances of PS. While [22] found

that using an internal website for automated SRM increased

productivity and streamlined communication among project

stakeholders. This study used SRM, SRT, CR and SRMT as

independent variables and PS as dependent variable to

explore their effect on the PS. Theoretical framework

implied that SRMT was negatively associated with rework

as shown in Figure 1.

Figure 1: Theoretical Framework

4. METHODOLOGY
The research following a pilot study was carried out at the

eighteen software houses. Self-administered questionnaire

was distributed among randomly selected project team

members. It was a correlational study. The study design was

cross sectional. The research subjects were the software

project team members of both accomplished and near to

completion software projects of previous 5 years with

documented evidence of rework and SRMT in software

projects.

The study population included project team members of

CMMI Level II and above or software houses with more

than 15 project team members. A random sample of 224

project team members working on various software projects

was selected from an estimated population of 500 [24]. The

study adopted valid, pretested measurement scales from the

existing literature i.e. [25] used for SRM [26] used for SRT

and CR [27] used for rework while [28] scales were used for

PS. The responses were collected on a 5 point Likert scale

ranked from 1-5 as depicted in Table 2.
Table.2: Coding of data for analysis and interpretation

Strongly Disagree/ Very Little 1

Disagree/ Little 2

Neither Agree Nor Disagree/Neither Little Nor Large 3

Agree/Large 4

Strongly Agree/Very Large 5

Table. 3: Reliability Analysis

 No. of

Items

Cronbach’s

Alpha

Changing Requirements 5 0.731

Software Requirements Traceability 2 0.620

Software requirements Management 4 0.612

Rework 5 0.798

Project Success 7 0.601

IBM SPSS statistics 20 was used for data analysis. Mean +

S.D was reported for SRM, SRT, CR, rework and PS.

Reliability of questionnaire was checked through

Cronbach’s alpha. Correlation and regression analysis were

used to test the research hypothesis. Table 3 showed that

Cronbach’s alpha values for SRM, SRT, CR, rework and PS

were within the acceptable range & p-value < 0.05 was

considered statistically significant.
Table 4: Descriptive Statistics of Software Requirements

Management

5. RESULTS & DISCUSSION
PS required a high level of SRM effort. This study

supplemented the findings of [17] and found that a medium

level of SRM effort and project resources was used for the

initial SRM in 39% software projects. Medium level of total

effort and project resources were allocated for SRM process

in 35% projects. This study found that medium numbers of

final software requirements were effectively managed in

45% projects. Poor management of incomplete software

requirements caused extensive rework in SDLC. Results of

this study confirmed that little magnitude of incomplete

software requirements was effectively managed by software

teams in 55% of surveyed projects (Mean:2.38+1.05) as

shown in descriptive statistics of Table 4.

Pearson correlation coefficient data analysis of SRM, SRT

and SRMT showed moderate positive correlation (r=0.576,

r=0.557, r=+0.478, p < 0.01). Significant low negative

correlation was present between CR & PS. Significant

3182 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3179-3184 ,2015

July-August

moderate negative correlation was found between PS &

rework (r= -0.485, p < 0.01) shown in Table 5.

Table 5: CORRELATIONS

Correlations Project

Success

Rework

Software Requirement

Management

.576 -.296

Software Requirement

Traceability

.557 -.346

Changing Requirements -.202 .231

SRMT .478 -.345

Project Success 1 -.485

PS was ensured by assigning more effort and resources for

CR process. This study found that addition/update related

CR were common in software projects which caused

extensive rework in SDLC. Survey statistics of this study

found that CR related to deletion of lines of code were

present in little magnitude (Mean: 1.81+0.83) which were

not the major source of rework in SDLC. This study found

that addition of adaptive changes in SDLC caused extensive

unavoidable rework. This study found that in 77% projects

overall little effort was used for requirements change

process. The magnitude of correct software requirements

was also reported very low in 78% projects (Mean:

1.82+0.92) as shown in Table 6.

Table 6: Descriptive statistics of Changing Requirements

Table 7: Descriptive statistics of Software Requirements

Traceability

This study found that a low to medium level of software

requirements were traceable in SDLC. SRT helped in

rework reduction and projects putting less effort on SRT

faced extensive rework in SDLC. Statistics of this study

concluded that medium numbers of software requirements

were traced throughout SDLC in 42% projects with high

intensity of rework (Mean: 2.67+1.11).

Statistics clinched that in 46% projects a medium level of

effort was spent to ensure that the software requirements

remained traceable to all the project stakeholders. Low to

medium level of effort for SRT caused high rework in

software projects (Mean: 2.61+1.15) as shown in Table 7.

The multiple regression analysis model summary in Figure 2

showed that almost 52% of PS variation was ensured by

SRM, SRT, CR, rework & SRMT.

Figure 2: Multiple Regression Model Summary

This study contributed that effective SRMT ensured a

moderate level of PS & rework reduced significant chances

of overall PS. Figure 3 found that the regression model was

a good fit of the data where F (5,218) = 47.524, p<0.001.
Figure 3: Multiple Regression Anova Statistics

Figure 4 found that SRM, SRT, CR, rework & SRMT

statistically significantly (p<0.05) predicted PS. Thus the

model equation to predict PS is:

PS = 2.02 + 0.372(SRM) + 0.263(SRT) - 0.56(CR) –

0.271(Rework) + 0.156(SRMT).

Sci.Int.(Lahore),27(4),3179-3184,2015 ISSN 1013-5316; CODEN: SINTE 8 3183

July-August

Figure 4: Multiple Regression Coefficients Statistics

SRM, SRT & SRMT was positively related with PS while

CR & rework was found negatively related with PS. This

study found that SRM helped in 08% rework reduction, SRT

helped in 12% rework reduction & SRMT helped in 12%

rework reduction while CR enhanced rework magnitude by

5% and decreased PS chances 4%. This study concluded that

rework reduced 23% chances of PS. This study quantified

that with effective SRM, SRT & SRMT up to 33%, 31% &

23% chances of PS could be ensured. Table 8 statistics

concluded that the model was found significant without

introducing product term of rework and SRMT. Where F

(2,221) =58.24 and p-value < alpha (0.000<0.05). The model

was also found significant after introducing the product term

of rework and SRMT. Where F (3,220) =41.75 and P-value

< alpha (i.e. 0.000<0.05).

Table.8: Moderating role of SRMT

The Table 9 statistics depicted that the interaction between

rework and SRMT accounted for more variance. The

coefficient of determination, R
2
 change =0.018 with p-value

0.014 at 95% confidence interval. The model showed that

SRMT potentially significantly moderated the relationship

between rework and PS.

Table 9: Model summary of SRMT as moderator

6. CONCLUSIONS
This study is in agreement with [22] & further contributed

that SRM & SRT through SRMT ensured high chances of

PS. This study concluded that one per cent increase in SRM,

SRT & SRMT increased almost 37%, 26 & 16% chances of

overall PS while one per cent increase in the magnitude of

CR & rework decreased 6% & 27% chances of PS

respectively. This study also contributed that SRMT has

significant moderating role between rework and PS. This

study is in agreement with [16] & revealed that SRMT

helped project teams to analyse the impact of CR and in

streamlining communication gap between project

stakeholders. This study contributed that high PS was

ensured by allocating more effort and resources to CR

process. This study further concluded that frequent

insert/update related CR in SDLC caused extensive rework

while the little magnitude of CR related to deletion of lines

of code required less rework effort in SDLC. It was found

that moderate level of effort and resource allocation for

SRM process was insufficient for PS and rework reduction.

This study conferred the findings of [17] & contributed that

moderate level of PS was ensured with effective SRM, SRT

and SRMT. This study conferred that a low to moderate

level of SRT was insufficient for PS and caused extensive

rework in SDLC. This study is in agreement with [15] &

contributed that higher level of SRT through SRMT helped

in rework reduction and lead to PS.

7. FUTURE RECOMMENDATIONS

1. Current research model determined effect of SRMT in

overall PS. Future research could see the effect of

SRMT among individual phases of SDLC.

2. The current research focused on analysing the overall

rework role in PS. The future research could be more

focused in exploring the role of various rework types in

PS.

3. Future research could help in quantifying the exact

amount of rework present at various stages of the

SDLC.

8. REFERENCES

[1] Guide, A. (2013). Project Management Body of

Knowledge (PMBOK® GUIDE). In Project

Management Institute.

[2] Damian, D., Chisan, J., Vaidyanathasamy, L., & Pal, Y.

(2005). Requirements engineering and downstream

software development: Findings from a case study.

Empirical Software Engineering, 10(3), 255-283.

[3] Hennicker, R., & Koch, N. (2000). A UML-based

methodology for hypermedia design. In ≪ UML≫

2000 - the Unified Modeling Language (pp. 410-424).

Springer Berlin Heidelberg.

[4] Gorschek, T. (2006). Requirements Engineering

supporting technical product management.

[5] Zaineb, G., & Manarvi, I. A. (2011). Identification And

Analysis Of Causes For Software Bug Rejection With

Their Impact Over Testing Efficiency. International

Journal of Software Engineering & Applications

(IJSEA), 2(4).
[6] MicroFocus. (2010). Successful Projects start with high

quality requirements, 1-10.

[7] A. L. Mark. (2014). PMI’s Pulse of the Profession: The

high cost of low performance, A core competency for

3184 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3179-3184 ,2015

July-August

project and program success. Project Management

Institute.

[8] S. Aaron. P. B. David. & S. C. Tricia. (2014). PMI’s

Pulse of Profession: Requirements Management, A

Core Competency for Project and Program Success.

Project Management Institute.
[9] Hall, T., Beecham, S., & Rainer, A. (2002).

Requirements problems in twelve software companies:

an empirical analysis. IEE Proceedings-

Software, 149(5), 153-160.
[10] Shahid, M., Ibrahim, S., & Mahrin, M. N. R. (2011).

An Evaluation of Requirements Management and

Traceability Tools. World Academy of Science,

Engineering and Technology, WASET.

[11] Verner, J., Cox, K., Bleistein, S., & Cerpa, N. (2007).

Requirements engineering and software project

success: an industrial survey in Australia and the

US. Australasian Journal of Information

Systems, 13(1).
[12] StandishGroup. (2011). Chaos Manifesto: A

Recipe for Success, Standish group international.

[13] Hofmann, H. F., & Lehner, F. (2001). Requirements

engineering as a success factor in software projects.

IEEE software, 18(4), 58-66.
[14] Hooks, I. F., & Farry, K. A. (2001). Customer-centered

products: creating successful products through smart

requirements management. AMACOM Div American

Mgmt Assn.
[15] Nuseibeh, B., & Easterbrook, S. (2000, May).

Requirements engineering: a roadmap. In Proceedings

of the Conference on the Future of Software

Engineering (pp. 35-46). ACM.
[16] Cass, A. G., Osterweil, L. J., & Wise, A. (2009). A

pattern for modeling rework in software development

processes. In Trustworthy Software Development

Processes (pp. 305-316). Springer Berlin Heidelberg.
[17] K. Ellis. (2009). the path to success, IAG Consulting,

Business Analysis Benchmark.
[18] M. T. Gail. (2014). Requirements analysis and

management of cots based systems, a success story.

Cots based software systems, lecture notes in computer

science, 211-215.

[19] Fairley, R. E., & Willshire, M. J. (2005). Iterative

rework: The good, the bad, and the ugly. Computer,

38(9), 34-41.

[20] S. E. Cross. (2002). Annual report, Carnegie Mellon

University, Software Engineering Institute.

[21] Boehm, B. W. (1988). Understanding and controlling

software costs. Journal of Parametrics, 8(1), 32-68.
[22] IBM. (2009). Reducing rework through effective

requirements management, 1-6.

[23] Blackburn, J. D., Scudder, G. D., & Van Wassenhove,

L. N. (1996). Improving speed and productivity of

software development: a global survey of software

developers. Software Engineering, IEEE Transactions

on, 22(12), 875-885.
[24] Sekaran, U. Research Methods for Business: A Skill

Building Approach. 2003. John Willey and Sons, New

York.

[25] Loconsole, A. (2001, April). Measuring the

requirements management key process area.

In Proceedings of the 12th European Software Control

and Metrics Conference (ESCOM’2001).
[26] Shahid Iqbal, S. I., & M. Naeem Ahmed Khan, M. N.

A. K. (2012). Yet another Set of Requirement Metrics

for Software Projects. International Journal of

Software Engineering and Its Applications, 6(1), 19-

28.

[27] Barry, M. R. (2011, March). CertWare: A workbench

for safety case production and analysis. In Proceedings

of the 2011 IEEE Aerospace Conference (pp. 1-10).

IEEE Computer Society.
[28] Naqvi, S. I. H. (2007). Developing a Framework for

effective IT Project Management and Best HR

Practices.
[29] Bokhari, M. U., & Siddiqui, S. T. (2011, March).

Metrics for Requirements Engineering and Automated

Requirements Tools. In Proceedings of the 5th

National Conference.

