
Sci.Int.(Lahore),27(4),3171-3177,2015 ISSN 1013-5316; CODEN: SINTE 8 3171

July-August

A RELATIVE STUDY OF LOAD BALANCING AND MANAGEMENT
TECHNIQUES IN A DISTRIBUTED SYSTEM: THE IUB CASE STUDY

Dost Muhammad Khan
1
, Najia Saher

 2
, Faisal Shahzad

3
, Nawaz Mohamudally

4

1, 2, 3 Department of Computer Science & IT, The Islamia University of Bahawalpur, Pakistan

E-mail: khan.dostkhan@iub.edu.pk, {najiasaher, faisalsd}@gmail.com
4 School of Innovative Technologies and Engineering (SITE), University of Technology, MAURITIUS, alimohamudally@utm.intnet.mu

ABSTRACT: Nowadays, an appropriate distribution and management of load across the various systems in distributed

environment is indispensable due to the heavy load of users’ requests particularly on the main server. The problem of

congestion and slow processing of user requests can be solved by using a suitable Load-Balancer which helps the user to get

faster and consistent response time by directing the traffic to the least loaded and most responsive system. In this paper we

discuss various load balancing and management techniques that are commonly used and furthermore, we make a relative study

of these load balancing techniques after deploying them in a distributed system of the IUB.

Key-words: Cluster, Load-Balancer, Round Robin, EquiLoad, SITE-A, Weighted Round Robin

1. INTRODUCTION
Load balancing is an even distribution of the load amongst

all serving entities in a distributed environment. Load

balancing and management is a process of grouping the

servers participate in the same service to do the same work.

The main purpose of load balancing and management is to

increase availability, improve throughput, reliability,

maintain stability, optimize resource utilization and provide

fault tolerant capability. As the number of servers grows, the

risk of a failure increases and such failures must be handled

carefully. The ability to maintain unaffected service during

any number of simultaneous failures is termed as high

availability [16-18]. Load balancing is very essential in

distributed systems to improve the quality of service by

managing loads that change over time. The incoming

requests demand the even distribution among the available

systems in order to avoid resource bottlenecks and the full

utilization of available resources. Load balancing also

provides horizontal scaling e.g., adding computing resources

in order to address increased loads [19]. The main purpose of

load balancing and management in a distributed system is to

transfer the work submitted by users to a lightly loaded

member server instead of a heavily loaded member server.

Improved Performance, Equality of Job, Fault Tolerance,

Modifiability and System‟s Stability are some of the main

objectives of load balancing and management.

The wide spread of networks has imposed new needs that

required new paradigms and new technologies. There are

several network technologies available which support user-

level communication between processing a shared-memory.

The client-server architectures are commonly used in

distributed environment due to optimization, modularly, no

wastage of resources, reliability, availability and provides

graphical user interface aid. The ever growing amount of

data that are stored in distributed form over networks of

heterogeneous and autonomous sources poses several

problems such as network bandwidth, communication,

autonomy preservation, scalability, data buffering and

privacy protection. The client-server computing is an

environment that satisfies the business needs by

appropriately allocating the application processing between

the client and the server processors. The client requests

services from the server; the server processes the request and

returns the result to the client [1-2]. Figure 1 depicts a client-

server model.

User Interface

Data Processing/

Business Rules

Data Storage

Figure 1. A Client-server Model

One of the primary advantages of client-server architecture is

that as data storage needs grow without affecting clients the

way data is stored can be changed. The middle layer of

system is commonly referred to as the application server can

thus concentrate on centralizing business rule processing.

The client-server model is based on the idea that one

computer specializing in information presentation displays

the data stored and processed on a remote machine. A multi-

user application is a slight variation on the typical client-

server application. The only difference is that information

passes from one client through the server to other clients. On

a typical client-server application, information flows only

from the client to the server and then back. In an ideal

environment, the server side of the application handles all

common processing and the client side handles user-specific

processing [1-2, 12-15]. In client-server based networking

environment where the main server remains under stress due

to the heavy load of users‟ requests therefore, a load-balancer

is essential.

The rest of the paper is organized as follows: Section 2

reviews the load balancing and management techniques,

Section 3 is about deploying these techniques over a

distributed system of the IUB which is the Methodology of

the paper. In Section 4 we discuss the results and dicussion

and finally Section 5 presents the conclusion.

3172 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3171-3177,2015

Juky-August

2. Load Balancing and Management Techniques

The techniques or algorithms are further divided into

homogeneous and heterogeneous servers. The problem of

congestion and slow user-request processing speeds can be

solved by using a single large powerful server. This solution

soon fails because of the enormous network traffic. The

second solution is replicating the server information over

many geographically separated independent servers called

“mirrored-server” architecture. This will solve the problem

of congestion but with a number of disadvantages including

huge loss of network and computer resources and lack of

control on the request distribution by server system. A

promising and efficient approach is the development of

distributed architecture where the user-requests can be routed

among several server nodes. This solution of distributed

servers being managed under a single system provides us

with improved throughput performance. Thus a server

system with ease of manageability, greater availability and

scalability of the servers is attained. This will increase user

satisfaction because the user get faster, more consistent

response time, directing traffic to the least loaded and most

responsive servers and also prevent servers from getting

overloaded.

Figure 2 depicts a simple load-balancer in a client-server

architecture where the requests of a client for the services

terminate at Load-Balancer which in turn forwards the

requests to the servers based on various load balancing

algorithms and mechanisms.

Figure 2. A Load-Balancer in a Client-Server Model [16-17]

Load balancing and management techniques are classified

into two types namely Static Load Balancing and Dynamic

Load Balancing. The main purpose of these techniques is to

improve performance by redistributing the workload among

available server nodes [20-21]. A comparison of static and

dynamic load balancing techniques is drawn using different

measures in [16-17].

2.1. Round Robin Technique

Assignment of jobs in a Round Robin to each of the member

servers is suitable for homogeneous servers with same

processing capabilities and size of jobs (data to be

transferred) are almost same from each client. In such

situations, there is no need of introducing processing

overheads in selecting the appropriate server for redirection

of data transfer request. IP addresses of the member servers

are stored in a dynamic array (vector) and addresses are

fetched on turn basis from zero index position to the last

index of the vector. This is a cyclic process. The algorithm is

given below:

Step 1: Initialize pointer to zero: index = 0

Step 2: Loop till Index = size of the vector – 1

Step 3: Get IP address from the location pointed by Index

Step 4: Increment Index by 1

Step 5: If Index = size of the vector – 1, re-initialize pointer

with zero

Step 6: Loop end

We test this algorithm on four member servers connected to

the cluster manger and the IP addresses of the servers are

stored in a vector at the cluster manger. On first request,

request is routed to server with IP address at index = 0

(192.168.0.1) and index is incremented. On second request,

request is routed to server with IP address at index = 1

(192.168.0.2) and index is incremented. On third request,

request is routed to server with IP address at index = 2

(192.168.0.3) and index is incremented. On fourth request,

request is routed to server with IP address at index = 3

(192.168.0.4) and index is re-initialized to zero because it

reaches the end of the vector. This is illustrated in Table 1.

Table 1. Vector Table

IP Address Index number

192.168.0.1 0

192.168.0.2 1

192.168.0.3 2

192.168.0.4 3

The above cycle is repeated for the next four requests and so

on. Meanwhile the size of the vector can change as more

member servers can get connected or any of the connected

servers may get disconnected [3-5].

2.2. Weighted Round Robin Technique
This scheme is suitable for heterogeneous servers (cluster-

members) where processing capabilities of machines are

already known and the size of jobs submitted from the clients

are same because load is assigned to each member according

to its capability. Weighted Round Robin Fashion Technique

algorithm is given below:

The weight factors of all the member servers are calculated

and stored in a vector. For each request, IP address of the

server with highest weight factor is selected, weight factor is

decremented by 1 and the same process is repeated for next

requests. When the weight factors of all member servers

become zero, the process of calculation of weight factors is

repeated. This is done after every 10 requests because

meanwhile there could be change in the number of connected

servers.

IP addresses and strengths of member servers are stored in

two different vectors in a manner that corresponding

positions in both the vectors indicate the information about a

server. A third vector is used to store the calculated weight

factors of member servers. Weight factor determines the

number of requests to be routed to the member server out of

every 10 requests. Weight factor of certain member server is

calculated using this formula: Weight factor = total strength

of member servers/sum of strengths of all servers*10 (the

figure is rounded off to a whole number). There are four

member servers connected to the cluster manger and the IP

Sci.Int.(Lahore),27(4),3171-3177,2015 ISSN 1013-5316; CODEN: SINTE 8 3173

July-August

addresses and strengths of the servers are stored in two

vectors. IP addresses of the connected servers are stored in a

vector table shown in Table 2.

Table 2. Vector Table

IP Address Index number

192.168.0.1 0

192.168.0.2 1

192.168.0.3 2

192.168.0.4 3

Strengths of the connected servers are stored in a vector

shown below in Table 3.

Table 3. Strength Table

Strength Index number

8 0

10 1

4 2

2 3

Calculated weight factors of the connected servers are stored

in a vector. This is calculated after every 10 requests. The

results are shown in Table 4.

Table 4. Weight Table

Weight Factor Index number

8 / 24 *10 = 3 0

10 / 24 *10 = 4 1

4 / 24 * 10 = 2 2

2 / 24 * 10 = 1 3

According to this weight factor table, the request has value

„3‟ is routed to server 192.168.0.1, value „4‟ to 192.168.0.2,

value „2‟ to 192.168.0.3 and the value „1‟ is routed to

192.168.0.4.

For the first request, IP address of server with maximum

weight factor (index = 1, IP = 192.168.0.2) is chosen and

weight factor of server is decremented. The contents of the

weight factor vector after first request is shown in Table 5.

Table 5. Weight Table

Weight Factor Index number

3 0

3 1

2 2

1 3

For the second request, IP address of the server with

maximum weight factor (at index = 0, IP = 192.168.0.1) is

chosen and weight factor of the server is decremented. Table

6 shows the weight table after second request.

Table 6. Weight Table

Weight Factor Index number

2 0

3 1

2 2

1 3

Similarly, all the requests are chosen respectively, the final

contents of the weight table are shown in Table 7.

Table 7. Weight Table

Weight Factor Index number

0 0

0 1

0 2

0 3

Now weight factors are recalculated and the same cycle

discussed able is repeated [3-5].

2.3. EquiLoad Technique

Load balancing using EquiLoad ensures that each member

server can take equal load from the LoadBalancer. If using

EquiLoad then each member server can get equal size of

request from the main server.

Assuming that the number of back-end servers is, EquiLoad

policy requires partitioning the possible request sizes into N

intervals, [(s0 0; s1), (s1; s2),……, (sN1; sN1)], so that

server 1 is responsible for satisfying request of size between

si1 and si. In practice the size corresponding to an incoming

request might not be available to the front-end dispatcher but

this problem can be solved using a two-stage allocation

policy. First the dispatcher assigns each incoming request

very quickly to one of N back-end servers using simple

policy such as Round- Robin which is even easier to

implement. When server 1 receives a request from dispatcher

it looks up to size s and if si1 s<si it will put the request in its

queue otherwise it will reallocates it to the server j satisfying

sj1 s<sj (any server i receives from another server is instead

en-queued immediately since it is guaranteed to be in the

correct size range). Letting the back-end servers reallocate

requests among themselves is very sensible, since the size of

information is certainly available to them.

Assume there are four member servers connected to the

cluster manger and IP addresses of the servers are stored in a

vector. This is explained by using Round Robin fashion of

load assignment and illustrated in Table 8.

Table 8. Vector Table

IP Address Index number

192.168.0.1 0

192.168.0.2 1

192.168.0.3 2

192.168.0.4 3

There are ten requests arrive from client. Now main server

will use EquiLoad policy and then assign a equal number of

request to each member server. First request will be routed to

server with IP address at index=0 (192.168.0.1) and IP

address is returned to the client. Second request is routed to

sever with IP address at index=1 (192.168.0.2) and IP

address is return to the client. Third request will be routed to

server with IP address at index=2 (192.168.0.3). Now this

process will continue and then each member server can find

equal request size from main server [3-5].

2.4. SITA-E Technique

Size Interval Task Assignment with Equal Load is called

SITA-E. The SITA-E algorithm is based on the observation:

if task size variability were very small (c2 < 1) FCFS would

outperform PS for a single queue. Therefore, SITA-E‟s goal

is to reduce the variability of tasks arriving at each host. It

achieves this by partitioning tasks among hosts, according to

their sizes. Surprisingly this method is even able to

3174 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3171-3177,2015

Juky-August

compensate for high variability of a heavy-tailed distribution.

SITA-E has additional advantage that it has a static policy

and therefore has a simple implementation. In this policy

when a request arrives its size will be determined and only

specific member server is assigned to the client. SITA-E

relies on the assumption that the distribution of the size of

incoming requests is known and further this distribution has

mean M. In SITA-E each host only accepts tasks whose size

falls within a specified size interval where this size range is

chosen such that each host receives equal work in

expectation. Specially let F(x) = PfX denote the cumulative

distribution function of request sizes and F(x) = PfX = xg the

corresponding density function. Let „k‟ denote the smallest

possible request size, „p‟ denote the largest possible request

size and „h‟ be the number of hosts. Assume there are four

member servers connected to the cluster manager and the IP

addresses of the servers are stored in a vector. This is

explained by using Round Robin fashion of load assignment,

illustrated in Table 9.

Table 9. Vector Table

IP Address Index number

192.168.0.1 0

192.168.0.2 1

192.168.0.3 2

192.168.0.4 3

Strengths of the connected servers are stored in a vector

shown in Table 10.

Table 10. Strength Table

Strength Index number

8 0

10 1

4 2

2 3

Calculated weight factors of the connected servers are stored

in vector shown in Table 11. This is calculated after every 10

requests.

Table 11. Weight Table

Weight Factor Index number

8 / 24 *10 = 3 0

10 / 24 *10 = 4 1

4 / 24 * 10 = 2 2

2 / 24 * 10 = 1 3

In this policy each member server is assigned a strength so if

the job size is less then 1024 kb it will be routed to index =3

and IP=192.168.0.4.If the higher size job which is more then

2 or 3 Mb then higher strength server is assigned to the client

request i.e. index=1 and IP=192.168.0.2. Each server can

utilize its power on the large processing request [3-5].

3. METHODOLOGY

The Islamia University of Bahawalpur (IUB) has almost ten

thousand users that utilize the facilities of networking and

Internet for their research and academic purposes. As more

users are switching over to Internet and networking day by

day, the problem of congestion and slow user-request

processing speeds due to heavy loads of users and traffic

occurs in the network. So, there is indeed a need of some

type of technique that will make the processing of server

faster and easier for the users. The load management in

client-server system is capable of transferring the load of

request from main server to the member servers or clients

[22]. A cluster approach is used, a cluster server system

consist of four independent servers that works together [6-7].

Figure 3 depicts a clustered-based distributed system of the

IUB.

Figure 3. A Clustered-based Distributed System of the IUB

The servers have been designed with the multithreading

capabilities which will process the data transfer request from

the multiple clients simultaneously. Socket communication

has been used for the communication between client and

server. The Load Management System is equipped with the

techniques or algorithms that can be used according to the

requirements [6-7]. The implemented architecture with

multithreading capabilities of the server is shown in Figure 4.

Figure 4. A Server running ‘n’ Threads

Initially, server opens Server Socket and dedicates a thread to

listen to requests. Then the client initiates request for

connection to server and consequently, server opens

dedicated socket for the client. The Communication Handler

object starts a separate dedicated thread at server side for the

client and client starts its thread to communicate with the

thread at server side. The system has three main components,

namely, Cluster Manager Module: running on a machine

with powerful hardware and is responsible for managing the

activities of member servers in the cluster like redirection of

load to the appropriate member server. Member Server

Module: software component the instance running on

multiple machines and this component actually serves the

data transfer request after being redirected from cluster

manager and Client Module: software component which

requests the data transfer [8-11].

Main Server

for the IUB

Server for Faculty

Members

Server for the

Administration

Server for

the Library

Server for

the Students

Sci.Int.(Lahore),27(4),3171-3177,2015 ISSN 1013-5316; CODEN: SINTE 8 3175

July-August

Figure 5 shows the sequence diagram an interaction between

Server Helper and Server.

Figure 5. A Sequence diagram of Server Helper and Server

In the first step, a Server Helper initiates a request for the

socket connection and after establishing the connection a

socket is returned i.e. server opens Server Socket and

dedicates a thread to listen the requests. Then the client

initiates request for connection to server and consequently,

server opens dedicated socket for the client. In this way the

server tickles the requests of the clients in a client-server

based distributed system [8-11]. The activity diagram of the

system is shown in Figure 6.

Figure 6. An Activity Diagram of the System

The explanation of Figure 6 is: a user requests for the

connection with server, the server opens the connection

through I/O Streams and finally the user asks for the IP of

the server, the server also returns its IP. Similarly, the client

requests for the connection with the server after establishing

the connection through I/O Streams. Finally the client

request for the File Transfer and after completing the request

the server sends the completion message to the client [8-11].

4. RESULTS AND DISCUSSION
We test the above discussed load balancing and management

techniques on a cluster-based distributed system of The

Islamia University of Bahawalpur, Pakistan. The techniques

or algorithms are further divided into homogeneous and

heterogeneous servers. The problem of congestion and slow

user-request processing speeds can be solved by using a

single large powerful server. This solution soon fails because

of the enormous network traffic. The second solution is

replicating the server information over many geographically

separated independent servers called “mirrored-server”

architecture. This will solve the problem of congestion but

with a number of disadvantages including huge loss of

network and computer resources and lack of control on the

request distribution by server system. A promising and

efficient approach is the development of distributed

architecture where the user-requests can be routed among

several server nodes. This solution of distributed servers

being managed under a single system provides us with

improved throughput performance. Thus a server system

with ease of manageability, greater availability and

scalability of the servers is attained. This will increase user

satisfaction because the user get faster, more consistent

response time, directing traffic to the least loaded and most

responsive servers and also prevent servers from getting

overloaded. Preferred users and mission critical application

traffic can be given higher priority by the LoadBalancer.

Servers and the network resources can be allocated for high

priority users and applications with the bandwidth

management feature. Mission critical application and user

accessing these applications will get consistently good

performance. The Round Robin technique is simple and very

predictable. This approach uses the cyclic process. All the

member servers using this technique are suitable for

homogeneous environment with same processing

capabilities. The weakness of this approach is there is some

chance of convoying, i.e. when one server is significantly

slower than the others. It also has no knowledge about load

of the back-end server. The EquiLoad approach is the best

for load balancing with its nature. It assigns the equal load to

each member server so that all the member servers will have

the equal size of jobs. It is the best for homogeneous

environment. Weighted Round Robin technique is easy to

implement and it has the awareness of the different

capabilities of the servers. It is much suitable for the

heterogeneous environment. The drawback of this technique

is that the weight is manually assigned by the administrator

and also the ungraceful degradation in case of overload.

SITA-E technique is easy to implement. It has an additional

advantage that it has a static policy and therefore has a

simple implementation. In this policy when a request arrives

its size will be determined and only specific member server

is assigned to the client. It is much suitable for the

heterogeneous environment. The drawback of this technique

is that the weight is manually assigned by the administrator

and also the ungraceful degradation in case of overload.

3176 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3171-3177,2015

Juky-August

Table 12 summaries the comparison of all these techniques.

Table 12. A Comparison of Load Balancing & Management

Techniques

The result derived from the above table is, „EquiLoad

Technique‟ is appropriate for homogeneous environment and

„SITE-A Technique‟ is suitable for heterogeneous situation.

Furthermore, these four techniques of load balancing and

management are tested on the job load, multiple of „10‟ and

their processing time (in nanoseconds) shown in Table 13.

Table 13. No. of Jobs and Processing Time

No. of

Jobs

Round

Robin

EquiLoad Weighted Round

Robin

SITE-

A

10 20.2 15.5 25.7 23.4

20 30.3 25.3 35.8 33.0

30 43.5 31.2 46.6 43.4

40 55.7 40.1 58.4 48.5

A graph is drawn between the number of jobs, a multiple

batch of „10‟, and the processing time in „ns‟, as shown in

Figure 7.

Comparison of Load Balancing Techniques

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Number of Jobs (multiple of 10)

P
ro

c
e
s
s
in

g
 T

im
e
 (

n
s
)

Round Robin

EquiLoad

Weighted Round Robin

SITE-A

Figure 7. A Graph between Number of jobs and processing time

(ns)

Figure 7 shows a graph between Number of Jobs (multiple of

10) and Processing Time (ns) for all load balancing

techniques discussed in this paper. The graph shows that

„Weighted Round Robin‟ takes more processing time then

the other techniques. In case of the „SITE-A‟ its processing

time is almost equal to „Weighted Round Robin‟ for the first

three jobs and for the last job it takes less time. In case of the

„Round Robin‟ its processing time is almost less than

„Weighted Round Robin‟ and „SITE-A‟ balancing techniques

for the first three jobs but it is equal to „Weighted Round

Robin‟ for the last job. The „EquiLoad‟ load balancing

technique takes less processing time for balancing and

managing the load as compared to the other techniques

discussed in this paper. The graph shows that the „EquiLoad‟

technique performs better than the other techniques,

therefore, in our case the „EquiLoad‟ load balancing

technique is selected.

5. CONCLUSION
In this paper we present the most commonly used load

balancing and management techniques. There are advantages

of each technique on the other hand limitations are also there.

All techniques are deployed and found they are equally good

for tackling the problem of congestion and overloading of the

main server. In this scenario both homogeneous and

heterogeneous environments are used. However, in

homogeneous environment the EquiLoad provides good

results. In heterogeneous environment the best technique is

Weighted Round Robin where processing capabilities of

machines are already known and the size of jobs submitted

from the clients are the same because load is assigned to each

member according to its capability. This will increase user

satisfaction because the user get faster, more consistent

response time, directing traffic to the least loaded and most

responsive servers and also prevent servers from getting

overloaded. Preferred users and mission critical application

traffic can be given higher priority by the Load-Balancer.

The servers and the network resources can be allocated for

high priority users and applications with the bandwidth

management feature. The mission critical application and

user accessing these applications will get consistently good

performance. We also draw a comparison of these techniques

which reveals that the EduiLoad technique performs better

than the other techniques, therefore, we propose the

EquiLoad technique for the distributed system of the IUB.

We conclude this paper that load balancing and management

in a distributed system where traffic and load is heavy, is the

essential.

Future Work

The number of users in the university network are increasing;

the university is planning to implement a heterogeneous

network. The campuses of the university are situated at

different locations and the two campuses are far away from

the main service provider of the network, this is an example

of n-tier client-server distributed system, the use of

intelligent mobile agents will be further benefited for the

load management and balancing. The intelligent mobile

agents are very commonly used in distributed network

systems given that they are not cumbersome for the network

traffic. Moreover, they overcome network latency, operate in

heterogeneous environment and possess fault-tolerant

behavior.

REFERENCES

[1] R. Buck-Emden, J. Galimow (30 Aug 1996). Client-

server Technology SAP R/3 System (Hardcover)

Publisher: Addison Wesley; Subsequent edition ISBN-

13: 978-0201403503.

[2] Elbert B, Martyna B (1994). Client-server Computing

Architecture, Applications and Distributed Systems

Management, Publishers, Boston * London, ISBN 0-

89006-691-4.

[3]Wikipedia (Encyclopedia),

Network_Load_Balancing_Services,

Sci.Int.(Lahore),27(4),3171-3177,2015 ISSN 1013-5316; CODEN: SINTE 8 3177

July-August

http://en.wikipedia.org/wiki/Network_Load_Balancing

_Services, November 20, 2008.

[4] Wikipedia (Encyclopedia),Weighted_round_robin,

http://en.wikipedia.org/wiki/Weighted_round_robin,

November 20, 2008.

[5] Neosmart.net (Website),

 http://neosmart.net/blog/2008/weighted-round-robin-

dns-solutions/, November 22, 2008.

[6] ACM (Website), http://portal.acm.org/ October 15, 2008.

[7] Kennedy Clark, Kevin Hamilton (1999). CISCO LAN

SWITCHING by CISCO PRESS. ISBN 1-57870-094-

9.

[8] H Richard, Thayer H. (2004), Software Engineering

Project Management. Second Edition, IEEE Computer

Society Order Number BP08000, ISBN 9812-53-095-9.

[9] N Ashok, Kamthane N. (2004), Object-Oriented

Programming, ISBN 81-7808-772-3.

[10] Pressman Roger S. (2008), Software Engineering: A

Practitioner‟s Approach, 5
th

 Edition, McGraw-Hill,

ISBN 0073655783.

[11] Szyperski C. (2004), Component Software beyond

Object-Oriented Programming. 2
nd

 Edition, ISBN 81-

297-0400-5.

[12] Khan, Dost Muhammad., Mohamudally, Nawaz., “From

Mainframe to Cloud Computing: A Study of

Programming Paradigms with the Evolution of Client-

Server Architecture”, Journal of Computing, Volume 4

Issue 12, 2011, pp.: 21-27.

[13] Khan, Dost Muhammad., Saher, Najia., et al, “The

Human Resource Development (HRD) at the Higher

Education and Research Institutions of Pakistan: The

IUB Case Study”, Journal of Computing, Volume 4

Issue 3, 2012, pp.: 120-124.

[14] Khan, Dost Muhammad., Saher, Najia., et al, “The

Integration of Networking and Computerization

towards e-Education and e-Learning at the Higher

Education and Research Institutions of Pakistan”,

International Journal of Computer Science Issues

(IJCSI), Volume 9, Issue 2, 2012 pp.: 546-551.

[15] Khan, Dost Muhammad., Mohamudally, Nawaz., “The

Adaptability of Conventional Data Mining Algorithms

through Intelligent Mobile Agents in Modern

Distributed Systems”, IJCSI International Journal of

Computer Science Issues (IJCSI), Vol. 9, Issue 1, No 1,

January 2012, pp.: 38-46.

[16] Ardhendu Mandal and Subhas Chandra Pal, “An

Empirical Study and Analysis of the Dynamic Load

Balancing Techniques Used in Parallel Computing

Systems”, Proceedings of ICCS-2010, 19-20 Nov,

2010.

[17] P. Beaulah Soundarabai*1, Sandhya Rani A.1, Ritesh

Kumar Sahai1, Thriveni J.2, K.R. Venugopal2 and

L.M. Patnaik, “COMPARATIVE STUDY ON LOAD

BALANCING TECHNIQUES IN DISTRIBUTED

SYSTEMS”, International Journal of Information

Technology and Knowledge Management, December

2012, Volume 6, No. 1, pp. 53-60.

[18] Raman a Kumar K., Mahesh V. Ghatage, “Load

Balancing of Services with Server Initiated

Connections”, ICPWC, 2005.

[19] Branko Radojevic, Mario Žagar, “Analysis of Issues

with Load Balancing Algorithms in Hosted Cloud

Environments”, Opatija, Croatia, MIPRO 2011, May

23-27, 2011.

[20] Hisao Kameda, El-Zoghdy Said Fathy, Inhwan Ryu, Jie

Li, “A Performance Comparison of Dynamic vs. Static

Load Balancing Policies in a Mainframe - Personal

Computer Network Model”, Proceedings of IEEE

Conference on Dedsion and Control Sydney, Australia

December, 2000.

[21] J. Li, C. Kim and Y. Zhang, “Optimal Load Balancing

in Distributed Computer Systems”, Springer, 1997.

[22] Saher, Najia., Khan, Dost Muhammad., et al, “The

Prospects of ERP Systems on Quality of Education and

Research in Higher Education and Research Institutions

of Pakistan”, JOURNAL OF COMPUTING, Volume 4

Issue 3, 2012, pp.: 115-119.

