
 Sci.Int.(Lahore),27(4),3131-3133,2015 ISSN 1013-5316; CODEN: SINTE 8 3131

July-August

APPROACH TO PERFORM COMBINATIONAL DIVIDER BASED FLOATING
POINT CALCULATIONS USING VHDL COMPONENT

Syed Tahir Hussain Rizvi, Muhammad Yaqoob Javed, Amer Saeed and Haleema Asif
Department of Electrical Engineering, University of Central Punjab, Lahore, Pakistan

tahir.rizvi@ucp.edu.pk

ABSTRACT - In this paper, a synthesizable model to support floating point calculations is described using combinational

divider. This model is suitable to implement trigonometric equations in FPGA devices. Combinational Division Algorithm,

approach to use floating point numbers and implementation of look-up tables to provide values of trigonometric function (cosine,

inverse cosine etc) in Very High Speed Integrated Circuits Hardware Description Language is briefly introduced. Along the

model, test bench waveform is generated for functional verification. Spartan 3 devices are used for implementation. Maximum

delay and resource utilization are compared from accuracy point of view (value of up to how many decimal points are required).

Index Terms -VHDL, Floating Point Numbers, Combinational Divider, FPGA, Timing Analysis

I. INTRODUCTION
To control any operation in real-time environment, a number

of complex algorithms have to be performed repeatedly which

involves use of non-algebraic and arithmetic operations (like

addition, multiplication, division, cosine inverse, square roots

etc) [1]. To find solution of such algorithms, massive

computational power is required.

Concurrent Motion control system can be used to accelerate

speed of such computations. Field Programmable Gate Arrays

Kits can execute multiple processes concurrently to perform

high speed computations. Due to this ability, FPGAs are in

great demand. Algorithms designed in Hardware Description

Languages (HDL) can be directly implemented on FPGA kit.

FPGA is a complete package of logic blocks. Connectivity of

these logic blocks to achieve desired function is defined

according to code written in HDL. All blocks work

concurrently which make the FPGA best choice for faster

execution of processes. In FPGA, large size values can be

processed due to support of arbitrary length of data arrays.

FPGA does not support floating point numbers, but floating

point Intellectual Property core based FPGA can be used to

achieve accurate results, but tradeoff is between accuracy and

cost.

In the widely used HDL languages (VHDL and Verilog),

division operation is not synthesizable. Division is basic

arithmetic operation required in computation of different of

parameters. In power systems, if it is required to compute

power factor of a system, then it can be find using (1)

 ⁄ (1)
In above equation, it is required to divide two quantities which

are not supported in VHDL. Further, if it is required to find

phase angle, then formula is

 (2)
Main problem is to deal with floating numbers obtained by

division operation and to find cosine inverse which is not

supported in VHDL [2][3].

Similarly, in robotics, Inverse Kinematics algorithm is a

mathematical tool to compute movement of a robotic structure.

If point in Cartesian coordinate (targeted location) and lengths

of mechanical links are known, angle of joints required to

reach at targeted position can be calculated using inverse

kinematics algorithm. Equation (3) is for robotic arm having

two joints, where x and y are coordinates/position where arm

has to move, l1 and l2 are lengths of two links and θ2 is the

angle of second joint. Similarly an equation of θ1 can be used

to find rotational angle of joint 1.

 ⁄ (3)
This equation requires division, support of floating point

numbers and inverse trigonometric function which are not

supported by VHDL [4]. Similarly, numerous equations

require all these functions to be performed.

So, in this paper, a synthesizable model of divider that can be

extended up to n-bits is presented. This model gives remainder

and quotient which are used by a second synthesizable model

for providing floating point number. This model provides

floating number representation which can be used in look-up

tables to provide values of trigonometric function (cosine,

inverse cosine etc).

II. THE DIVIDER MODEL IN VHDL

Very High Speed Integrated Circuits Hardware Description

Language (VHDL) is used to describe hardware in terms of

software. Any digital circuit can be implemented using text

based description. VHDL is concurrent language, so

mathematical calculations and algorithms can be executed in

parallel to speed up the processes. VHDL does not have built-

in synthesizable functions of division , square root, cosine and

tangent inverse.

Synthesizable model of divider comes from algorithm which is

explained in [2][5]. Simple comparison technique is used to

perform division operation as shown in TABLE I.

First thing to consider is that number of bits of dividend,

divisor and outputs (Quotient and Remainder) should be the

same. In this case, dividend, divisor and outputs (Quotient and

Remainder) are of 4 bits. If decimal value of dividend is 11

and decimal value of divisor is 3, so for this particular case

values of quotient and remainder would be 3 and 2

respectively.

 Comparison is performed on shifted version of divisor.

Divisor is shifted left to make length of 2n-1 bits (7 bits = (2(4)

- 1)).

If

 Dividend = 11 = 1011

 Divisor = 3 = 0011

 Because

 Dividend = n bits = 4 bits

Divisor = 2n-1 bits = 7 bits (shift left 2n-1 times)

 N steps = 4 steps

Both inputs (dividend and divisor) are compared with each

other. If dividend is less than divisor, value of quotient is 0. If

dividend is greater than divisor, value of quotient would be 1

mailto:tahir.rizvi@ucp.edu.pk

3132 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3131-3133 ,2015

July-August

and divisor would be subtracted from dividend. This new

result would replace the value for next comparison. This

complete operation would be completed in n steps, if inputs are

of 4 bits, then answer would be achieved after 4 iterations.

After last iteration, updated value of dividend would have

remainder and all bits received from comparison would make

value of quotient.
TABLE I

COMBINATIONAL DIVIDER OF 4 BITS

Dividend Comparison Divisor Quotient

Operation

on

Dividend

1011 < 0011000 0 None

1011 < 0001100 0 None

1011 > 0000110 1
Dividend -

Divisor

0101 > 0000011 1
Dividend -

Divisor

0010

(Remainder)

0011

(Quotient)

This technique is used to implement 10 bits of division in

VHDL. As shown in test bench waveform of VHDL model in

Fig. 1, if 147 is divided by 22, so remainder is 15 and quotient

is 6. Similarly, if 70 is divided by 80, so 70 is less than 80, it

can’t be divided, so quotient is 0 and remainder is 70.

Fig. 1 Verification of Division Operation in Test bench Waveform

III. FLOATING POINT REPRESENTATION MODEL

Synthesizable model of the floating point representation comes

from hand-written division. Above defined divider model is

used to get values of quotient and remainder, these value can

be used to extract value after decimal point. If 22 is divided by

7, remainder is 1 and quotient is 3. Now, this remainder can be

used further to take digits after decimal point as shown in Fig

2.

Now value of remainder is 1 that is smaller than divisor 7, it

can’t be directly divided, so we have to multiply remainder

with 10, if value is still smaller multiply again with 10, now

division of this value provides the first digit after decimal

point.

Fig. 2 Algorithm to find Digits after Decimal Points

Description of VHDL component for floating point numbers

is:
entity floating is

Port (a: in STD_LOGIC_VECTOR (9 DOWNTO 0);

b: in STD_LOGIC_VECTOR (9 DOWNTO 0);

int: out STD_LOGIC_VECTOR (11 DOWNTO 0);

d1:out STD_LOGIC_VECTOR (11 DOWNTO 0));

end floating;

architecture Behavioral of floating is

component divider is

PORT (dividend, divisor: IN INTEGER RANGE 0 TO 4095;

quotient: OUT STD_LOGIC_VECTOR (11 DOWNTO 0);

remainder: OUT INTEGER RANGE 0 TO 4095;

err : OUT STD_LOGIC);

end component;

signal quot: STD_LOGIC_VECTOR (11 DOWNTO 0);

signal remain, quot1,remain1: INTEGER RANGE 0 TO

4095;

begin

h11: divider port map (

 dividend =>conv_integer(a),

 divisor =>conv_integer(b),

 quotient =>int,

 remainder =>remain

);

process(remain)

 variable ten:INTEGER RANGE 0 TO 10:=10;

 variable temp:INTEGER RANGE 0 TO 4095:=0;

 begin

 if(remain<conv_integer(b)) then

 temp:=remain *ten;

 end if;

 quot1<=temp;

end process;

h22: divider port map(

 dividend =>quot1,

 divisor =>conv_integer(b),

 quotient =>d1,

 remainder =>remain

);

end Behavioral;

It can be verified using Testbench waveforms shown in Fig. 3,

that after division, integer part is saved in a variable named

“int” and first decimal value is saved in variable d1. If 22 is

divided by 7, so answer is “int.d1” means 3.1

Fig. 3 Floating Point Representation upto First Digit

 Sci.Int.(Lahore),27(4),3131-3133,2015 ISSN 1013-5316; CODEN: SINTE 8 3133

July-August

These steps can be repeated to get floating point value of

desired length. In Fig. 4, it can be viewed that if 22 is divided

by 7, so answer is “int.d1d2d3d4d5” means 3.14285

Fig. 4 Floating Point Representation up to Five Digits

All these value can be concatenated in VHDL and look-up

table of these values can be implemented in VHDL.

If we concatenate first two digits, for example, d1 is 2 and d2

is 5, they combine to form 0.25, if it is required to find their

cosine inverse [COS-1(0.25) = 75], so its look-up table can be

implement in VHDL as described through this code.
float<=(d1(3 downto 0)) & (d2(3 downto 0)) ;

with float select

 cos_inv<=

"01001011" when "0010 0101",

"with/select" structure is used in VHDL to apply condition and

assign output to final variable depending on matched

condition.

In command with float select, float is the variable in

which our floating digits are combined in bits and of this we

want to find cosine inverse.

In command cos_inv <= "01001011" when "0010

0101", on right side are the bits on which we want to apply

condition (it is basically value of float) or of whom we want to

find cosine inverse. In this case, that is "0010 0101" = 25 in

hexa decimal representation means 0.25 which is achieved

through proposed combinational division based float point

component.

In command cos_inv <= "01001011" when "0010

0101", on left side are the bits of results which is basically

answer of cosine inverse [COS-1(0.25) = 75]. That is

"01001011" = 75 in decimal.

Similarly a complete look up table of cosine inverse or

required operation can be defined.

Similarly, all decimal points can be concatenated to provide

accurate results as shown in Fig. 5.

Fig. 5 Concatenated Digits after Decimal Point

IV. RESULTS OF IMPLEMENTATION
Above described model of floating point representation is

implemented in Spartan 3 FPGA kit (XC3S200-FT256).

Results of implementation are given below in Table II where

used slices, critical path delay between input and output and

number of Look-up Tables are compared for increasing

number of digits after decimal point. These Results are

obtained from Synthesis report generated from ISE 9.1i.
TABLE II

COMPARISON OF RESULTS
Number

of

Floating

Digits

Maximum

Delay

Look-Up tables

Used
Slices Used

1 65.060 ns 474/3840 = 12 % 264/1920 = 13%

2 67.104 ns 731/3840 = 19 % 406/1920 = 21%

3 67.304 ns 988/3840 = 25 % 548/1920 = 28%

4 67.505 ns 1245/3840 = 32 % 690/1920 = 35%

5 67.705 ns 1502/3840 = 39 % 812/1920 = 42 %

8 68.307 ns 2273/3840 = 59 % 1260/1920 = 65 %

11 68.908 ns 3044/3840 = 79 % 1686/1920 = 87 %

Accuracy of 11 decimal points can be achieved using 1686

slices out of 1920 slices, so nearly 87% of resources are

utilizing. By using larger FPGA like XC3S1500, this model

can be suitable for implementation of floating representation.

If same code is executed in XC3S1500, it will utilize only 12%

of resources because its total slices are 13312. So tradeoff is

between accuracy and resources used but this solution can be

implemented on cheaper hardware kits.

V. CONCLUSION
This paper introduces a synthesizable model to support

floating point calculations. This is a VHDL component which

can be extended to increase accuracy of design.

Implementation results upto 11 decimal places are performed.

Instead of using intellectual property core based FPGA,

algorithm is designed and implemented on cheaper FPGA kit.

Accuracy of result can be increased easily by just minor

modification but tradeoff is between accuracy and resources of

hardware.

REFERENCES

[1] R.R. Singh ; A. Tiwari; V.K. Singh and G.S.Tomar,

“VHDL Environment for Floating Point Arithmetic Logic

Unit -ALU design and Simulation,” International

Conference on Communication Systems and Network

Technologies : 469- 472 (2011)

[2] V. A. Pedroni, Circuit Design with VHDL, 2
nd

 ed., MIT

Press, Cambridge, Massachussetts (2004)

[3] K. Ch. Chang, Digital System Design with VHDL

Synthesis: An Integrated Approach, 1
st
 ed., J. Wiley Inc.

(1999)

[4] N. Sorokin, “Implementation of High-Speed Fixed-Point

Dividers OnFPGA,” Journal of Computer Science &

Technology, 6(1): 8 – 11 (2006)

[5] Z. Fedra and J. Kolouch, “VHDL Procedure for

Combinational Divider,” in 34th International Conference

on Telecommunications and Signal Processing (TSP): 469

– 471 (2011)

