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ABSTRACT: Motivated by Sukhjinder et al. [1], an estimator of population proportion under a general class of randomized 

response models (RRM) is proposed. The proposed estimator is based on moment generating function and is compared with 

maximum likelihood estimator using the mean squared error as a performance criterion. It has been observed that proposed 

estimator performs better than the maximum likelihood estimator when the argument constant, say t , of the moment 

generating function tends to zero. 
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1. INTRODUCTION 

Having accurate answers to surveys of social issues is 

important, especially when questions are related to a 

respondent’s privacy. Respondents frequently have incentives 

to not tell the truth when questions touch upon moral, legal, 

or other sensitive issues. If we ask sensitive questions, and 

ignore the possibility that the respondents will not tell the 

truth, this will cause estimation error and bias. Therefore, 

methods have been developed to minimize the likelihood of 

error and bias. 

The randomized response technique (RRT) proposed by 

Warner [2] is perhaps the first attempt to obtain reliable 

information for estimating the proportion of a sensitive 

attribute in a population without revealing the respondent’s 

actual status. Furthermore, different modifications of 

Warner’s RRT [2] were developed by various authors, such 

as Greenberg et al. [3], Horvitz et al. [4], Moors [5], 

Raghavarao [6], Mangat and Singh [7], Kuk [8], Mangat [9], 

Mangat and Singh [10, 11], Bhargava and Singh [12], Singh 

et al. [13], Gjestvang and Singh [14], Zaizai [15] and Perri 

[16], Hussain and Shabbir [17, 18, 19, 20], Singh et al. [21], 

Huang [22], Kim and Warde [23], Chang et al. [24] and many 

others. For a comprehensive note on the randomized response 

models one may refer to Chaudhuri and Mukerjee [25], Tracy 

and Mangat [26] and Chaudhuri [27]. In RRT, a respondent is 

willing to answer and tell the truth to sensitive questions 

through some random devices (for instance, dice, playing 

cards, or coins). Thus, estimation of proportion of sensitive 

attribute is an important issue. 

An interesting method of estimating the proportion has been 

suggested by Sukhjinder et al. [1] where they made use of 

moment generating function (mgf) of Binomial random 

variable. They also indicated possibility of using this 

technique in Warner [2] RRT.  

Motivated by Sukhjinder et al. [1], we intend to apply mgf 

technique to estimate the proportion of a sensitive attribute. 

Specifically, the our objective in this paper is to propose an 

estimator of population proportion, , of a sensitive attribute 

when the data are obtained through a generic class of the 

randomized response model with probability of a yes 

response of the form 

 P yes c d    ,                            (1.1) 

where c  and d  are the constants.  These constants for the 

different models (discussed in this paper) are given in the 

Table 1 below. The moment (or maximum likelihood)  

estimator of   for this class of models is of the form 

ˆ
ˆ

ML

d

c





 ,                                    (1.2)  

where ˆ n

n



  ( is the moment estimator or maximum 

likelihood estimator of  ) and n is the number of yes 

responses in a sample of size n .  

The variance of the moment estimator in (1.2) is given by  

 
       

2

2 2 2

21 1 1
ˆ

ML

c c cd d d
Var

nc n nc nc

   


   
    . (1.3) 

Table 1: The values of c and d for different randomized 

response models 

Model d  c  

Warner (1965)  1 p   2 1p   

Greenberg et al. 

(1969) 
 1 yp   p  

Mangat and 

Singh (1990) 
  1 1T p     1 2 1T T p    

Mangat et al. 

(1995) 2p  1 2p p  

Bhargava and 

Singh (2000) 2 3p p  1 2p p  

Singh et al. 

(2003) 2 yp   
1p  

Zaizai (2006)  2 1p    1 p  

Perri (2008) 

Tech. I 2 3yp p   
1p  

Perri(2008) 

Tech. II 
 1 31y p p  

 
1 3p p  
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In the next section, we intend to find another estimator of  , 

say  , which can replace ̂  in (1.2) and gives an estimator 

of  , say  , as an efficient estimator relative to ˆ
ML .   

2. PROPOSED ESTIMATOR  

Consider a randomization device with probability of a yes 

answer given in (1.1). The randomization device may be one 

of those given in the Table 1 (or it may be even different one. 

Assuming a simple random sampling with replacement, let a 

sample of size n is drawn from the population and each 

sample respondent is asked to report a yes or no according to 

outcome of the randomization device. Again, let iZ  be the 

binary variable taking value 1 if the response from the 
thi  

respondent is yes and 0 otherwise,  

then  ~iZ Bernoulli  . Suppose

1

n

i

i

X Z


 , 

then  ~ ,X Binomial n  . The moment generating 

function of X is given by 

     1
n

tx t

XM t E e e     ,           (2.1) 

where e is the exponential.  

By the method of moments, an estimator of   is given by 

1
,      0

1

tx

n

t

e
t

e



 


.                           (2.2)  

Using (1.1), we define a new estimator of  as 

d

c





 .                         (2.3) 

Applying the L-Hospital rule after taking the limit 0t  , it 

can be shown that the estimator  is an unbiased estimator of 

  otherwise it is a biased estimator with bias given by 

   
 

 

1 1 1
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e e
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c e
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

.  

                                                                                           (2.4) 

Now as  0t  , by L-Hospital rule, we get 

   0Bias   . 

The variance of   is given by  
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                                                                          .          

Using (2.4) and (2.5) in the expression 

     
2
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            (2.6) 

Application of L-Hospital rule on (2.6) gives 

 
       

2

2 2 20

21 1 1
lim
t

c c cd d d
MSE
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   



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   

,                       (2.7) 

which is exactly the variance of the maximum likelihood 

estimator ˆ
ML . From (1.3) and (2.7), it is obvious that when  

0t  , ˆ
ML and  are same with equal mean squared 

errors. The two estimators will have different mean squared 

errors when 0t  . So, it may be expected to have a value of  

t  such that  

   ˆ
MLMSE Var  .                                   (2.8) 

To find values (or range of values) of t , we used R language 

to write a code which produces range of values of t for which 

condition (2.8) is satisfied and we also have computed the 

Percent Relative Efficiency (PRE) of the estimator relative 

to  ˆ
ML with minimum and maximum PRE. To compute 

these results we have chosen the constants c  and d  

according to Warner [2] model, that is, we take 

 2 1c p  and  1d p   .  

 R language was used to write the codes and results are given 

in Tables 2-5. From the Tables 2-5, following observations 

were made. 

(i) When 0.5  , the range of t remains negative for 

0.5p  and positive for 0.5p  , but it is symmetric 

around 0.5p  . When 0.5  the range of t remains 

positive for 0.5p  and positive for 0.5p  , but again it 

symmetric around 0.5p  . In case 0.5  , the proposed 

estimator works efficiently for t very close to 0 and the range 

of the values of t as well as the PRE do not depend upon on 

c and d  but do depend upon  the sample size. In this case, as 

the sample size increases, the PRE increases and range of 

t expands away from zero on both sides. 

 (ii) For a given value of  the range of t squeezes to 0 and 

PRE squeezes to 100, if 0.5p   decreases. 

(iii) If 0.5   decreases, range of t  and PRE squeeze to 0 

and 100 respectively. 

(iv) For a given p , range of t  is symmetric around   but 

with algebraic signs changed. 

(v) When 0.5   and  0.5p   are smaller (tend to 

zero), the two estimators become almost equally efficient  

when n  is small. 
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(vi) When n is small, then to have better performance for 

proposed estimator both 0.5   and  0.5p   should be 

larger. 

(vii) For large  n  the usual likelihood estimator become 

more efficient than the proposed estimator if t is not close to 

zero. How large should n  be in order to have better 

performance of maximum likelihood estimator depends on 

the parameters p and  e.g. if 0.2p   and  0.1  , then  

lower bound for n  is greater than 25000, but if 

0.1p   , then n should be much larger to have better 

performance of maximum likelihood estimator provided t is 

large in absolute value. 

(viii) For any p and  the maximum efficiency was 

observed at t very close to 0. 

 

 

Table 2: Range of  t and range of  PRE of  relative  ˆ
ML . 

5n   

   2, ,p d c  Range of t  Range of PRE 

0.1 0.2, 0.8, 0.36  1.50→ 0.01 100.38→126.28 

 0.4, 0.6, 0.04  0.72→ 0.01 100.08→102.33 

 0.6, 0.4, 0.04 0.01→0.72 100.08→102.33 

 0.8, 0.2, 0.36 0.01→1.50 100.38→126.28 

0.3 0.2, 0.8, 0.36  1.12→ 0.01 100.02→105.41 

 0.4, 0.6, 0.04  0.35→ 0.01 100.04→100.57 

 0.6, 0.4, 0.04 0.01→0.35 100.04→100.57 

 0.8, 0.2, 0.36 0.01→1.12 100.02→105.41 

0.5 0.2, 0.8, 0.36  0.00048→0.00062 100.00→100.0054 

 0.4, 0.6, 0.04  0.00048→0.00062 100.00→100.0054 

 0.6, 0.4, 0.04  0.00048→0.00062 100.00→100.0054 

 0.8, 0.2, 0.36  0.00048→0.00062 100.00→100.0054 

0.7 0.2, 0.8, 0.36 0.01→1.12 100.02→105.41 

 0.4, 0.6, 0.04 0.01→0.35 100.04→100.57 

 0.6, 0.4, 0.04  0.35→ 0.01 100.04→100.57 

 0.8, 0.2, 0.36  1.12→ 0.01 100.02→105.41 

0.9 0.2, 0.8, 0.36 0.01→1.50 100.38→126.28 

 0.4, 0.6, 0.04 0.01→0.72 100.08→102.33 

 0.6, 0.4, 0.04  0.72→ 0.01 100.08→102.33 

 0.8, 0.2, 0.36  1.50→ 0.01 100.38→126.28 

Table 3: Range of  t and range of  PRE of  relative  ˆ
ML . 

15n   

   2, ,p d c  Range of t  Range of RE 

0.1 0.2, 0.8, 0.36  0.74 → 0.01 100.25→108.57 

 0.4, 0.6, 0.04  0.20→ 0.01 100.27→100.75 

 0.6, 0.4, 0.04 0.01→0.20 100.27→100.75 

 0.8, 0.2, 0.36 0.01→0.74 100.25→108.57 

0.3 0.2, 0.8, 0.36  0.31→ 0.01 100.04→101.75 

 0.4, 0.6, 0.04  0.09→ 0.01 100.06→100.18 

 0.6, 0.4, 0.04 0.01→0.09 100.06→100.18 

 0.8, 0.2, 0.36 0.01→0.31 100.04→101.75 

0.5 0.2, 0.8, 0.36  0.00059→0.00073 100.00→100.0098 

 0.4, 0.6, 0.04  0.00059→0.00073 100.00→100.0098 

 0.6, 0.4, 0.04  0.00059→0.00073 100.00→100.0098 

 0.8, 0.2, 0.36  0.00059→0.00073 100.00→100.0098 

0.7 0.2, 0.8, 0.36 0.01→0.31 100.04→101.75 

 0.4, 0.6, 0.04 0.01→0.09 100.06→100.18 

 0.6, 0.4, 0.04  0.09→ 0.01 100.06→100.18 

 0.8, 0.2, 0.36  0.31→ 0.01 100.04→101.75 

0.9 0.2, 0.8, 0.36 0.01→0.74 100.25→108.57 

 0.4, 0.6, 0.04 0.01→0.20 100.27→100.75 

 0.6, 0.4, 0.04  0.20→ 0.01 100.27→100.75 

 0.8, 0.2, 0.36  0.74→ 0.01 100.25→108.57 
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Table 4: Range of  t and range of  PRE of  relative  ˆ
ML . 

25n   

   2, ,p d c  Range of t  Range of RE 

0.1 0.2, 0.8, 0.36  0.42→ 0.01 100.37→105.02 

 0.4, 0.6, 0.04  0.11→ 0.01 100.06→100.44 

 0.6, 0.4, 0.04 0.01→0.11 100.06→100.44 

 0.8, 0.2, 0.36 0.01→0.42 100.37→105.02 

0.3 0.2, 0.8, 0.36  0.17→ 0.01 100.16→101.02 

 0.4, 0.6, 0.04  0.05→ 0.01 100.04→100.10 

 0.6, 0.4, 0.04 0.01→0.05 100.04→100.10 

 0.8, 0.2, 0.36 0.01→0.17 100.16→101.02 

0.5 0.2, 0.8, 0.36  0.00060→0.00074 100.00→100.16 

 0.4, 0.6, 0.04  0.00060→0.00074 100.00→100.16 

 0.6, 0.4, 0.04  0.00060→0.00074 100.00→100.16 

 0.8, 0.2, 0.36  0.00060→0.00074 100.00→100.16 

0.7 0.2, 0.8, 0.36 0.01→0.17 100.16→101.02 

 0.4, 0.6, 0.04 0.01→0.05 100.04→100.10 

 0.6, 0.4, 0.04  0.05→ 0.01 100.04→100.10 

 0.8, 0.2, 0.36  0.17→ 0.01 100.16→101.02 

0.9 0.2, 0.8, 0.36 0.01→0.42 100.37→105.02 

 0.4, 0.6, 0.04 0.01→0.11 100.06→100.44 

 0.6, 0.4, 0.04  0.11→ 0.01 100.06→100.44 

 0.8, 0.2, 0.36  0.42→ 0.01 100.37→105.02 

 

Table 5: Range of  t and range of  PRE of  relative  ˆ
ML . 

100n   

   2, ,p d c  Range of t  Range of RE 

0.1 0.2, 0.8, 0.36  0.10→ 0.01 100.07→101.21 

 0.4, 0.6, 0.04  0.02→ 0.01 100.08→100.10 

 0.6, 0.4, 0.04 0.01→0.02 100.08→100.10 

 0.8, 0.2, 0.36 0.01→0.10 100.07→101.21 

0.3 0.2, 0.8, 0.36  0.04→ 0.01 100.03→100.24 

 0.4, 0.6, 0.04  0.01→ 0.01 100.02→100.02 

 0.6, 0.4, 0.04 0.01→0.01 100.04→100.10 

 0.8, 0.2, 0.36 0.01→0.04 100.03→100.24 

0.5 0.2, 0.8, 0.36  0.00102→0.00102 100.00→104.83 

 0.4, 0.6, 0.04  0.00102→0.00102 100.00→104.83 

 0.6, 0.4, 0.04  0.00102→0.00102 100.00→104.83 

 0.8, 0.2, 0.36  0.00102→0.00102 100.00→104.83 

0.7 0.2, 0.8, 0.36 0.01→0.04 100.03→100.24 

 0.4, 0.6, 0.04 0.01→0.01 100.04→100.10 

 0.6, 0.4, 0.04  0.01→ 0.01 100.02→100.02 

 0.8, 0.2, 0.36  0.04→ 0.01 100.03→100.24 

0.9 0.2, 0.8, 0.36 0.01→0.10 100.07→101.21 

 0.4, 0.6, 0.04 0.01→0.02 100.08→100.10 

 0.6, 0.4, 0.04  0.02→ 0.01 100.08→100.10 

 0.8, 0.2, 0.36  0.10→ 0.01 100.07→101.21 
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CONCLUSIONS 
Using moment generating function, a new estimator of 

population proportion of the characteristic of interest has 

been studied. On the basis of above observations, it could be 

recommended to use proposed estimator for estimation of the 

population proportion through a RRM with probability of yes 

given in (1.1) when it is difficult/impossible to have a large 

sample and the parameter p should be set such that 

0.5p   is large. Both estimators ˆ
ML  and   are almost 

equally efficient if sample is large enough. It may be 

recommended that for large samples t should be fixed closer 

to zero. Moreover, the range of values of t does not depend 

on the constants c and d , so any randomized response 

model with probability of yes defined in (1.1) may be used in 

proposed estimation technique. 
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