
Sci.Int.(Lahore),27(4),3033-3040,2015 ISSN 1013-5316; CODEN: SINTE 8 3033 

July-August 

USE OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR FRACTIONAL 
ORDER NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS 

S. Iqbal
1
, F. Sarwar

2
, Muhammad Rafiq Mufti

3
 and  I. Siddique

4 

1 Department of Informatics and System, School of System and Technology, University of Management and Technology, Lahore, Pakistan 
2Department of Electrical Engineering, University of Management and Technology, C-II Johar Town Lahore, Pakistan. 

3Department of Computer Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan. 
4 Department of Mathematics, Schol of Sciences, University of Management and Technology, Sialkot Campus, Pakistan 

shaukat.iqbal.k@gmail.com, imransmsrazi@gmail.com  

ABSTRACT: In this study, optimal homotopy asymptotic method (OHAM), a semi-numerical technique is formulated for 

solving nonlinear Fredholm integro-differential equations of fractional order to check the effectiveness and performance of the 

method. It is observed that the formulation is easy to implement, quite valuable to handle fractional applications and yield 

tremendous results at minimum computational cost. The computational results of some of the test problems reveal that OHAM 

is well-organized, very effective, and simple and are in excellent agreement with exact solutions. 

 

1. INTRODUCTION 
The applications of fractional calculus have been revealed by 

various researchers. Pragmatic modeling of physical 

phenomenon and the previous history can be successfully 

achieved by using fractional calculus. Historically, it has 

achieved enormous attraction among mathematicians and 

physicists in formulating boundary value problems, integral 

equations and Fredholm integro-differential equations. 

Fredholm integro-differential equations (FDIEs) gain an 

elegant position in numerous fields such as economics, 

biomechanics, control, elasticity, fluid dynamics, heat and 

mass transfer, oscillation theory, and airfoil theory; see, for 

example, [1–2] and the references cited therein. The notion of 

FIDEs has provoked massive size of research in recent years. 

During the last decades, several numerical and analytical 

techniques have been utilized to approximate the solutions of 

FIDEs such as the neural networks [3], comparison of 

Adomian decomposition with wavelet Galerkin [4], 

Differential transform [5], finite differences [6-7], 

comparison of finite elements and finite difference [8], sinc 

method [9], Tau method [10-11] and Galerkin method with 

hybrid functions [12].  

In this paper, our study focuses the following class of 

nonlinear Fredholm fractional integro-differential equations 

[13]: 

   ( )  ∫  (   )[ ( )]     ( )     
 

 
 (1) 

Subject to the initial conditions 

 ( )                         
                      (2) 

where  ( )  is the known analytic function,  (   )  is the 

linear/nonlinear kernel of the integral,  ( ) is the solution of 

the FIDEs to be determined,    is the fractional derivative in 

the Caputo sense,   is constant and   is the positive integer. 

There are numerous definitions of fractional derivatives and 

integrations of order    . The two most frequently used 

definitions are the Riemann–Liouville and Caputo [13]. The 

Riemann–Liouville fractional integration of order   is 

defined as: 

   ( )  
 

 ( )
∫ (   )    ( )  

 

 
            (3) 

   denotes the fractional integral operator of order   in the 

sense of Riemann-Liouville. The Caputo definition of 

fractional differential operator of order   is defined as: 

   ( )  
 

 (   )
∫ (   )      ( )( )  

 

 

   

           (4) 

   denotes the fractional differential operator of order   in 

the sense of Caputo. The Caputo fractional derivative first 

computes an ordinary derivative followed by a fractional 

integral to achieve the desired order of fractional derivative.  

In the present study, OHAM, which is recently introduced by 

Marinca et al. [16], is formulated for the semi-numerical 

solutions of fractional order integro-differential equations. It 

is motivated by the aspiration to obtain exciting solutions of 

fractional order Fredholm integro-differential equations using 

newly formulated algorithm of OHAM. The advantage of 

OHAM is its convergence criteria which is more flexible. In 

series of papers, authors [17–22] have applied this method 

effectively to validate the solutions of currently important 

problems in science and also shown its usefulness, generality 

and consistency. The solutions of fractional order Fredholm 

integro-differential equations showed that OHAM is not only 

useful for differential equations but also for fractional order 

integro-differential equations, which shows its strength and 

potential in science and engineering.  

The article is organized as follows: we first formulated 

OHAM for factional order Fredholm Integro-differential 

equations in section 2. Section 3 exhibits some examples to 

experiment the proposed formulation. Also a conclusion is 

presented in last section. 

2. OHAM Formulation for Fractional Order Integro-

Differential Equations 

According to the optimal homotopy asymptotic method [16-

22], following is the extended formulation for the solution of 

fractional order integro differential equations: 

a) Write the governing fractional order integro-

differential equation as: 

   ( )   ( )   ( )             

   (5) 

with given initial conditions.    ( )  
   ( )

    denotes the 

Caputo or Riemann-Liouville fraction derivative operator, 

 ( ) is an integral operator,  ( ) is unknown function to be 

determined and  ( ) is a known analytic function. 

b) Construct an optimal homotopy for fractional order 

Integro-differential equation,  (   )   [   ]   , which 

satisfies: 

(   ) (
   (   )

   
  ( )+   
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 ( ) {
   (   )

     ( )   ( )}      (6) 

where     and   [   ] is an embedding parameter,  ( )  
∑         is non zero auxiliary function for    ,      are 

auxiliary constants and  ( )   . The auxiliary function 

 ( ) provides with a simple way to adjust and control the 

convergence. It also increases the precision of the results and 

competence of the method.  

c) Expand  (   ) in Taylor’s series about  , one can 

get an approximate solution as: 

 (   )    ( )  ∑   ( )  
    7) 

The series is observed to be convergent at    , therefore, 

approximate solution having auxiliary constants is: 

 ̃( )    ( )  ∑   ( )     (8) 

d) Compare the coefficients of like powers of 

embedding parameter  , after substituting  (   )  into 

optimal homotopy equation to get zeroth-, first-, second- and 

   -order (if needed) deformed problems as under: 

  :      ( )      

  :      ( )     (  )  (    )  

 (    ) 
   ( )    

  :      ( )     (  )    (   (  )) 

    
   ( )  (    ) 

   ( )    (9) 

                    
  :      ( )     (  )     (    ) 

   (   (  ))     
     ( ) 

 (    ) 
   ( )   . 

e) Execute the fractional operator    to the series of 

deformed problems of different orders in step d) to obtain 

series of solutions. Using these solutions in Eq. (8) will 

produce the approximate solution  ̃(     ). 

f) Determine optimal values of auxiliary constants by 

using methods mentioned in different references therein [16-

22]. 

g) Put optimal values of auxiliary constants evaluated 

in previous step, in Eq. (8), one can get the approximate 

solution. 

 

3. ILLUSTRATIVE EXAMPLES 

To show the effectiveness and validity of the proposed 

extended OHAM algorithm for fractional order integro-

differential equations, we consider the following four 

examples chosen from the reference [13-15] and compare the 

solutions of this proposed algorithm with the exact solutions. 

We presented the absolute errors in different tables to reveal 

the accuracy of the extended method.  

 

Example 1 

Consider the following linear fractional order Fredholm 

integro-differential [14] equation with    : 

   ( )    
 

 
  

 ∫
   ( )         

     

 

 
   (10) 

subject to the initial conditions  ( )    and the exact 

solutions for     
 

 
 
 

 
  are respectively as:  ( )  

     
     ⁄

   (
 

 
)
 

      ⁄

    (
 

 
)
 

         ⁄

     (
 

 
)(         (

 

 
)*
    

 √ 

√ 
 

     ⁄

 √ 
 

       ⁄

  (     √ )√ 
. 

While executing OHAM formulation for the solution of 

fractional order FIDE, it generates a series of problems: the 

expressions for zeroth order, first order, second order and 

third order problems and their solutions are given below as: 

 Zeroth order problem and its solution: 

    ( )    
 

 
     (11) 

  ( )   
  (   (   ))

   (   )
              (12) 

 First order problem and its solution: 

    ( )    
 

 
    

   

 
 

   ∫     ( )   
 

 
 (    ) 

   ( )    (13) 

    ( )   
 (         )  

   (   )
  (14) 

  ( )   
    (   (     ))  

   (   )  (   )
  (15) 

 Second order problem and its solution: 

    ( )    ∫     ( )   
 

 

    
   

 
 

   ∫     ( )   
 

 
    

   ( )  (    ) 
   ( )   

 (16) 

    ( )  
 (   (     ))(  

  (   )  (   )(     
    ))

 (   )  (   )  (   )
 (17) 

  ( )  
    (   (     ))(  

  (   )  (   )(     
    ))

 (   )  (   )   (   )
 (18) 

 Third order problem and its solution: 

    ( )    ∫     ( )   
 

 

   ∫     ( )   
 

 

 

    
   

 
   ∫     ( )   

 

 

    
   ( )     

   ( ) 

 (    ) 
   ( )       (19) 

    ( )  
 

 
 (   (     )) 

(
 

  
 

(   )   (   )   (   )

 
 (   )  (     

    )

 (   ) 
 

     ((    )     )   

 (   )

) (20) 

  ( )  
    (   (     ))

   (   )
 

(
 

  
 

(   )   (   )   (   )

 
 (   )  (     

    )

 (   ) 
 

     ((    )     )   

 (   )

) (21) 

Now, one can create  ( ) by adding zeroth-order, first-order, 

second-order and third-order solutions: 
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 ( )  
 

 
  

(

 
 
 
 

      

 (   )
 

 

 (   ) 
 (   )(   )(   (     ))

(

 
 

 (     (   ))  (   )  
  

(     (   ))
 
  

   (   )  (
    (   )

  (     (   ))  
)

  (   ) (      ) )

 
 

)

 
 
 
 

  (22) 

By using the procedure mentioned in [16-22], one can calculate the auxiliary constants   ,    and    presented in Table 1 

below: 

Table 1: Auxiliary constants for Example 1. 

           

1.0                                                          

0.75                                                           

0.5                                                             

 

Solutions for     
 

 
 and 

 

 
 can be calculated by using 

auxiliary constants given in Table 1 respectively: 

 ( )  
 

 
(   (      )       )        (23) 

 ( )  
 

 
(
                  (       )

                    
)  

 

    
 

 
   

(24) 

 ( )  
 

 
 

 

 (
                  (      )

                     
)    

 

 

     (25) 
Table 2: Absolute errors of Example 1 for different fractional 

orders. 
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Fig 1. Approximate solutions of Example 1 for 

different values of   . 

Example 2 

Consider the following nonlinear fractional order Fredholm 

integro-differential equation [13] with    : 

   ( )    
 

 
  ∫  ( ( ))

 
   

 

 

       

              (26) 

subject to the initial conditions  ( )    and the exact 

solutions for     
 

 
 
 

 
  are respectively as:  ( )    

     ⁄

   (
 

 
)
 

      ⁄

    (
 

 
)
 

   

  
   ⁄  (

 

 
) 

 

   ⁄ √           (             (
 
 
)
 

*

 

       (
 
 
)

    

 √ 

√ 
 

     ⁄

 √ 
 

 
  

 
√     ⁄  

 

 
√

 (              )

  
   ⁄ . OHAM 

formulation for fractional order FIDE is executed. A series of 

problems are generated. The expressions for zeroth order, 

first order, second order and third order problems and their 

solutions are given below: 
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 Zeroth order problem and its solution: 

    ( )  
   

 
    (27) 

  ( )   
  (   (   ))

   (   )
   (28) 

 First order problem and its solution: 

    ( )    
 

 
    

   

 
 

   ∫     ( )
   

 

 
 (    ) 

   ( )    (29) 

    ( )   
 (                  )  

  (   )(    )  (   ) 
      (30) 

  ( )   
    (     (      (   )))  

  (    )  (   )   (   )
      (31) 

 Second order problem and its solution: 

    ( )    ∫      ( )  ( )   
 

 

    

 
   

 
   ∫     ( )

   
 

 

    
   ( ) 

 (    ) 
   ( )      (32) 

    ( )  (

 
 

 (     (      (   )))

(
(          )  

 

 (   ) 
 

 (   )(    )(     
    )

 (   ) 
+

)

 
 

   (   ) (    ) 
  

      (33) 

 

  ( )  

    (     (      (   )))(
(          )  

 

  (   )(    )  (   ) (     
    )

)

   (   ) (    )   (   ) 

  

      (34) 

 Third order problem and its solution: 

    ( )    ∫   (  ( )
     ( )  ( ))   

 

 

 

   ∫      ( )  ( )   
 

 

    
   

 
 

   ∫     ( )
   

 

 

    
   ( )     

   ( ) 

 (    ) 
   ( )       (35) 

    ( )  

(

 
 
 
 

 (     (      (   )))

(

 
 

 (      (     (       (     )))*  
 

   (   )(    )(          )  (   )   (     
    )

   (   ) (    )   (   ) (     ((    )     )   )
)

 
 

)

 
 
 
 

(    (   ) (    )   (   ) )
  

      (36) 

 

  ( )  
(

 
 
 

    (     (      (   )))

(

(       (     (       (     )))*   
 

   (   )(    )(          )     [   ]   (     
    )

   (   ) (    )      [   ] (     ((    )
     )    )

,

)

 
 
 

(    (   ) (    )      [   ] )
 

                     (37) 

Now, one can construct  ( ) by adding zeroth-order, first-order, second-order and third-order solutions, and other higher order 

solutions if needed: 

 ( )  
 

      (   ) 
  

(

 
 
 
 
 

    (   (   ))  (   ) 

  (        ) ⁄  (     (      (   )))

(

 

      
         

          
          

 

        
    (   )(    )(          )

 
 (   )

 
  (

  (     )
    

*

   (   ) (    )   (   ) (      (    (    )     )    ) )

 

)

 
 
 
 
 

  

                      (38) 

By using the procedure mentioned in [16-22], one can calculate the auxiliary constants   ,    and    presented in Table 3 

below: 

Table 3: Auxiliary constants for Example 2. 

           

1.0                                                             

0.75                                                            

0.5                                                             

 

Solutions for     
 

 
 and 

 

 
 can be calculated by using 

auxiliary constants given in Table 3 respectively: 

 ( )                          
(       (      )           )         (39) 

 ( )                           
 
  

(                  (      )
                     )                  

                                                    

              
 

 
 (40) 

 ( )                              
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(                   (      )  
                   )                                                                                        
 

 
 (41) 

 

 
Fig 2. Approximate solutions of Example 2 for 

different values of   . 

Example 3 

Consider the following nonlinear fractional order Fredholm 

integro-differential equation [13] with    : 

 
 
  ( )  

 

 (
 
 
)
(
 

 
  

 
     

 
 *  

 

    
  

 ∫   ( ( ))
 
   

 

 
              (42) 

subject to the initial conditions  ( )    and the exact 

solution of the above fractional order Fredholm integro-

differential equation is:  ( )      . 

While executing OHAM formulation for the solution of 

fractional order FIDE, it generates a series of problems: the 

expressions for zeroth order, first order and second order 

problems and their solutions are given below as: 

 Zeroth order problem and its solution: 

    ( )  
 

    
     (43) 

  ( )   
    

      (   )
   (44) 

 First order problem and its solution: 

    ( )  
 

    
 

 √   

√ 
 

   

    
 

    ⁄   

 √ 
 

   ∫     ( )
   

 

 
 (    ) 

   ( )    (45) 

    ( )   

 
√ (√ √               (     )(    )  (   ) )  

             √ (    )  (   ) 
 (46) 

  ( )   
 

 
 
  (        )  

   (
 
 

  )
 

 
            (

 

 
  )  

          √   (   )   (    )
   (47) 

 Second order problem and its solution: 

    ( )    ∫      ( )
   ( )   

 

 

 
 √   

√ 
 

 
   

    
 

    ⁄   

 √ 
   ∫     ( )

   
 

 

    
   ( ) 

 (    ) 
   ( )     (48) 

 

     

    ( )  
 (    )√   

 √ 
 

 (    )√   
 

 √ 
 

 √   

√ 
 

    ⁄   

 √ 
 

 
   

 

                      (    )   (   ) 
 

 
       (     (    ))  

 

        √  (     )(     )  (   )  (    )
 

 (     
    )

             (    )  (   ) 
    (49) 

  ( )   
      

 

                      (    )   (   ) 
 

 
 

 
 
  (        )(     

    )

   (
 
 

  )
 

 
          (     (    ))  

 

        √  (     )(     ) (   )   (    )
 

 
    (     

    )

             (    )  (   ) 
         (50) 

Now, one can construct  ( ) by adding zeroth-order, first-order and second-order solutions, and other higher order solutions if 

needed: 

 ( )  

 
    

      (   )
 

 

                      
  

(

 
 
 

 
                 (

 

 
  )  

√    (   )   (    )]

 
   

 

(    )   (   ) 
 

                 (     (    ))  
 

√  (     )(     )  (   )   (    )
 

           (     
    )

(    )  (   ) 

 
                      √ (        )(  (    )   )

 (
 

 
  ) )

 
 
 

 

                     (51) 
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By using the procedure mentioned in [16-22], one can calculate the auxiliary constants                          and 

                      . 

 ( )                       
 
  

 
 

 
 (

                       

                      √ (       )
*

                      
  (52) 

 

Table 4: Absolute errors of Examples 2 & 3. 

 

  

|            | (Example 2) |            | 
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Example 4 

Consider the following nonlinear fractional order FIDE [15] 

with    : 

   ( )    
 

 
  ∫  ( ( ))

 
              

 

 

   (53) 

subject to the initial conditions  ( )    and the exact 

solutions for     
 

 
 
 

 
  are respectively as:  ( )  

     
     ⁄

   (
 

 
)
 

      ⁄

   (
 

 
)

 
   

  
   ⁄  (

 

 
) 

 

   ⁄ √ 
 
 
 (                   ( (

 
 
))

 

          ( (
 
 
))

 

+

     (
 
 
)

    

 √ 

√ 
 

     ⁄

 √ 
 

 

 
√     ⁄  

 

 
√

               

 
   ⁄ .  

OHAM formulation for fractional order FIDE is executed. A 

series of problems are generated. The expressions for zeroth 

order, first order, second order and third order problems and 

their solutions are given below: 

 Zeroth order problem and its solution: 

    ( )    
 

 
     (54) 

  ( )   
  (   (   ))

   (   )
   (55) 

 First order problem and its solution: 

    ( )    
 

 
    

   

 
   ∫    ( )

   
 

 
 

(    ) 
   ( )    (56) 

    ( )   
 (                )  

 (        )  (   ) 
 (57) 

  ( )   
    (    (     (     )))  

 (    (   ))  (   ) 
 (58) 

 Second order problem and its solution: 

    ( )    ∫     ( )  ( )   
 

 

    

 
   

 
   ∫    ( )

   
 

 

    
   ( ) 

 (    ) 
   ( )      (59) 

    ( )  

(
 (    (     (     )))

(   
      

   (    )  (   ) (     
    ))

+

  (    )(    )   (   ) 
 (60) 

  ( )  

(
    (    (     (     )))

((    )  
   (    )  (   ) (     

    ))
)

  (    )(    )   (   ) 
 (61) 

 Third order problem and its solution: 

    ( )    ∫  (  ( )
     ( )  ( ))   

 

 

 

   ∫     ( )  ( )   
 

 

    
   

 

   ∫    ( )
   

 

 

 

    
   ( )     

   ( )  (    ) 
   ( )    

 (62) 

    ( )  

(

  
 

 (    (     (     )))

(

 (    )(    )(    )  (   )   (     
    )

     
        

         
        

 

  (    )(    )   (   ) (     ((    )     )   )

,

)

  
 

(  (    ) (    )  (   ) )
 (63) 

  ( )  
(

  
 

    (    (     (     )))

(

 (    )(    )(    )  (   )   (     
    )

     
        

         
        

 

  (    )(    )   (   ) (     ((    )     )   )

,

)

  
 

(  (    ) (    )   (   ) )

      (64) 

Now, one can build  ( ) by adding zeroth-order, first-order, 

second-order and third-order solutions, and other higher order 

solutions if needed: 
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 ( )  
 

    (   ) 
  

(

 
 
 
 

   (   (   )) (   ) 

  ((    ) (    ) )⁄  (    (     (     )))

(

     
        

         
        

 

  (    )(    )(    )  (   )   (  (     )     )

  (    )(    )   (   ) (      (    (    )     )    )

)

)

 
 
 
 

  (65) 

By using the procedure mentioned in [16-22], one can calculate the auxiliary constants   ,    and    presented in Table 5 

below: 
Table 5: Auxiliary constants for Example 2. 

           

1.0                                                            

0.75                                                          

0.5                                                              

Solutions for     
 

 
 and 

 

 
 can be calculated by using auxiliary constants given in Table 5 respectively: 

 ( )                           
(      (     )         )           (66) 

 ( )                         

 
 

 (                  (       )                     )                                                       
 

 
  (67) 

 ( )                         

 
 

 (                 (      )                     )                                                       
 

 
  (68) 

 

Table 6: Absolute errors of Example 4 for different fractional 

orders. 
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Fig 3. Approximate solutions of Example 4 for different 

values of   . 

Tables 1, 3 and 5 show the values of auxiliary constants of 

examples 1, 2, & 4 for different values of  . Tables 2, 4 and 6 

show the absolute errors of all examples, reflecting that the 

solutions of all the examples are in excellent agreement with 

the exact solutions and method is very trustworthy. 

Numerical solutions of examples 1, 2 and 4 for different 

values of   are presented in Figures 1, 2 and 3.  

 

CONCLUSION 
The objective of this work is to show the utility and 

usefulness of OHAM, formulated for the solutions of 

nonlinear Fredholm integro-differential equations of 

fractional order semi-numerically. It is suitable for solving 

the linear and nonlinear fractional order problems.  
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The illustrative examples demonstrate the powerfulness of 

the presented method. This method is simple in applicability, 

as it does not require discretization like numerical methods. 

Furthermore, this method provides a convenient way to 

control the convergence by optimally determining the 

auxiliary constants. Moreover, this method converges rapidly 

at lower order of approximations. Therefore, OHAM for 

fractional order Fredholm integro-differential equations 

shows its concealed strength and potential for the solution of 

nonlinear problems in real life applications. It is worth 

mentioning that the obtained results are in excellent 

agreement with exact solutions. 
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