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ABSTRACT: In this paper, we establish some new forward and reverse Poincaré like and Dirichlet-Poincaré like inequalities 

for general kernels with related extreme cases as generalization of results given in [1] and [2]. We give applications of our 

main results for linear differential operators, Widder’s derivatives and other fractional derivatives. At the end, we provide the 

corresponding discrete analogue of our main results.  
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1.0    INTRODUCTION 

Given a bounded domain ,n R  the Poincaré inequality 

appear in [3] states that:  

( ) ( )L L
p p

u C u  P P P P  

for the function with vanishing mean value over   is a well-

known result which holds for 1 p   under very general 

assumptions on ,  where ( )L
p

u P P  is defined as the 
pL  

norm of Euclidean norm of .u  

This work is motivated by [1,2]. Anastassiou [1] proved some 

forward and reverse 
pL  form of Poincaré like inequalities for 

linear differential operators involving its initial value 

problem, Green’s function and initial condition. Later on 

Anastassiou [2] established Poincaré and Sobolev like 

inequalities for Widder derivatives. Our purpose is to give the 

Poincaré like and Dirichlet-Poincaré like inequalities for 

general kernels. As applications of our general results we 

extract the results of [1,2] by taking different kernels. We 

also provide new Poincaré like inequalities for Riemann-

Liouvill’s fractional integral, generalized Riemann-Liouvill’s 

fractional derivative, Caputo fractional derivative and 

Canavati fractional derivative. It is also observed that the 

Poincaré like inequalities can be obtained from the Hardy-

type inequalities given in [4] (see also [5]). 
Let 1 1 1( , , )   and 2 2 2( , , )   be measure spaces with 

 -finite measures and we say that a function 2:y  R  

belongs to the class ( , )U f k  if it admits the representation  

2

2

| ( ) | | ( , ) |  | ( ) | ( ),y x k x t f t d t


        (1) 

where f  is a continuous function on 2  and k  is an 

arbitrary continuous kernel defined on 1 2  . Inequality 

(1) can be written with equality as:  

2

2

( ) = ( , ) ( ) ( ).y x k x t f t d t


  

For this we have  

2

2

| ( ) |= ( , ) ( ) ( )y x k x t f t d t


  

2

2

| ( , ) |  | ( ) | ( ).k x t f t d t


   

Before talking about the Hardy-type inequalities, it is 

necessary to give the following details: 

Let 1 1 1( , , )   and 2 2 2( , , )   be measure spaces with 

  finite measures and kA  be an integral operator defined 

by  

2

2

1
( ) : ( , ) ( ) ( ),

( )
kA f x k x t f t d t

K x




                  (2) 

where 1 2:k   R  is measurable and non-negative 

kernel, f  is measurable function on 2 ,  and  

2 1

2

( ) : ( , ) ( ), .K x k x t d t x


                         (3) 

We consider that ( ) > 0K x  a.e. on 1.  

The following theorem is give in [4] (see also [5]).  

Theorem 1.1 Let 1 1 1( , , )   and 2 2 2( , , )   be 

measure spaces with  -finite measures, u  be a weight 

function on 1,  k  be a non-negative measurable function 

on 1 2 ,   and K  be defined on 2  by (3). Suppose that 

the function 
( , )

( )
( )

k x t
x u x

K x
 is integrable on 1  for 

each fixed 2 ,t  and that v  is defined on 1  by  

1

1

( ) ( , )
( ) : ( ) < .

( )

u x k x t
v t d x

K x




   

If   is convex on the interval ,I  R  then the inequality  
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1

1

2

2

( ) ( ) ( )

( ) ( ) ( ),

ku x A f x d x

v t f t d t











 




                                     (4) 

holds for all measurable functions 2: ,f  R  such that 

,Imf I  where kA  is defined by (2). First we survey 

some facts about fractional derivatives needed in this paper. 

Let [ , ]x a b , > 0 , = [ ] 1n    ([ ]  is the integer part) 

and   is the gamma function 
1

0

( ) = te t dt


   . For 

1[ , ]f L a b  the left sided and right sided Riemann-

Liouville fractional integral aI f


 and bI f


 of order   is 

defined by  

11
( ) = ( ) ( ) ,

( )

x

a

a

I f x x t f t dt 








   

 and  

11
( ) = ( ) ( ) .

( )

b

b

x

I f x t x f t dt 








   

We denote some properties of the operators aI f


 and bI f


 

of order > 0 , see also [6]. The first result yields that the 

fractional integral operators aI f


 and bI f


 are bounded in 

( , )pL a b , 1 p  , that is  

, ,a p p b p pI f K f I f K f 

 
 P P P P P P P P       (5) 

 where  

( )
= .

( 1)

b a
K







 
 

Inequality (5), that is the result involving the left-sided 

fractional integral, was proved by G. H. Hardy in one of his 

first papers, (see [7]). He did not write down the constant, but 

the calculation of the constant was hidden inside his proof. 

For more details we refer [8] and the references cited therein. 

It is interesting to note that Iqbal et.al. in their paper [8] 

proved some new inequalities of G. H. Hardy and here we get 

the similar results as applications of our results for fractional 

integral and fractional derivatives. 

The rest of the paper is organized in the following way: In 

Section 2, we prove the forward and reverse Poincaré like 

inequalities for general kernel with related extreme cases. 

Section 3 covers the applications of our main results for 

linear differential operators to produce the Poincaré like 

inequalities given in [1]. In Section 4, we give the results for 

Widder derivatives and prove some new Dirichlet-Poincaré 

like inequalities discussed in [2]. Section 5 is dedicated to the 

applications for generalized Riemann-Liouvlle’s fractional 

derivative, Caputo fractional derivative and Canavati 

fractional derivative. We conclude this paper by adding the 

discrete analogue of our main results given in Section 2. 

 

2.0  MAIN RESULTS 
First let us recall the well known Minkowski’s inequality. For 

details see [9].  

Let 1 1 1( , , )   and 2 2 2( , , )   be measure spaces and 

let k  be a non-negative function on 1 2   which is 

integrable with respect to measure 1 2( ).   If 1,   

then  
1

2 1

1 2

( , ) ( ) ( )k x t d t d x

 

 
 

  
  
  

   

   

1

1 2

2 1

( , ) ( ) ( ).k x t d x d t



  
 

 
 
 
 
    

If 0 < <1  and  

2 1

1 2

( ) ( , ) ( ) ( ),i k x t d t d x



 
 

 
 
 
 
   

2

2

( , ) ( ) > 0,k x t d t


   

then the reverse inequality holds. 

If < 0,  the above mentioned assumption (i) and the 

additional one  

1 2

1

( ) ( , ) ( ) > 0 . .,ii k x t d x a e  


   

then the reverse inequality holds.  

Our first main result is given in the following theorem.  

Theorem 2.1  Let ( , ),y U f k  
1 1

, >1: =1,p q
p q
  

and .p   Then 

1

1

1

1

2 1

1 2

( )
2

| ( ) | ( )

| ( , ) | ( ) ( )

p

p

L
q

y x d x

k x t d t d x

f





 



 



 



 
 
 
 

 
  
   
 

  
 



 

P P
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1

1 2

2 1

( )
2

| ( , ) | ( ) ( )

. (6)

p p

L
q

k x t d x d t

f



  
 



 
  
   
 

  
 

 

P P

 

When = ,q  we obtain  

1

1

1

1

2 1

1 2

( )
2

| ( ) | ( )

| ( , ) | ( ) ( )

q

q

q q
p

p

L
q

y x d x

k x t d t d x

f



 



 



 
 
 
 

 
  
   
 

  
 



 

P P

 

1

1 2

2 1

( )
2

| ( , ) | ( ) ( )

.

p p
q

q

L
q

k x t d x d t

f

 
 



 
  
   
 

  
 

 

P P

  

When = = = 2,p q  we obtain  

1

2

2

1

1

1

2

2

2 1

1 2

( )
2 2

1

2

2

1 2

2 1

( )
2 2

| ( ) | ( )

| ( , ) | ( ) ( )

| ( , ) | ( ) ( )

.

L

L

y x d x

k x t d t d x

f

k x t d x d t

f



 

 



 



 



 
 
 
 

  
  

  
  

  
  

  
  



 

 

P P

P P





 

Proof. Since ( , ),y U f k  and by using Hölder’s 

inequality, we have  
1

2

2

1

2

2

| ( ) | | ( , ) | ( )

| ( ) | ( )

p

p

q

q

y x k x t d t

f t d t









 
 
 
 

 
 
 
 





1

2 ( )
2

2

= | ( , ) | ( ) .

p

p

L
q

k x t d t f 



 
 
 
 
 P P                (7) 

Since ,p   therefore we can write  

1

1

1

| ( ) | ( )y x d x



 


 
 
 
 
                                                     

1

2 1

1 2

( )
2

| ( , ) | ( ) ( )

.                                  (8)

p

p

L
q

k x t d t d x

f

 

 
 



 
  
   
 

  
 

 

P P

  

Applying the integral Minkowski’s inequality on right hand 

side of inequality (8), we obtain (6).  

This proves the claim.  

Remark 2.2  If we replace y  by aI f


 and taking  

11
( ) , ;

( )( , ) =

0, < .

x t a t x
k x t

x t b






  


 

 

in first inequality given in (6)  we obtain Theorem 2.6 of [8] 

and use of Minkowski’s inequality give its generalization.  

In upcoming remark we obtain Poincaré-Like inequality from 

Hardy-type inequality given in (4).   

Remark 2.3  Take 1 2= = ( , ),a b   1( ) = ,d x dx  

2( ) =d t dt  and ( ) = ,x x  1   in inequality (4),  

we obtain  

1
( ) ( , ) ( )

( )

( ) ( ) .

b b

a a

b

a

u x k x t f t dt dx
K x

v t f t dt





 
 
 



 



 

Particularly choose the weight function ( ) = ( ),u x K x  we 

have  

1 ( ) ( , ) ( )

( ) ( ) .                  (9)

b b

a a

b

a

K x k x t f t dt dx

v t f t dt








 
 
 



 



 

 Inequality (9) gives  
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1( ( ) ( )) ( )

( ) ( ) ( ) .

b

a

b

a

K b K a y x dx

v a v b f t dt

 





 





 

This implies that  
1

1

( ) ( )
( , )

( ( ) ( ))

( , ),

v a v b
y a b

K b K a

f a b



 





 
  

 
P P

P P

 

 which is Poincaré-like inequality.  

Remark 2.4 By taking =1, =p q   in Theorem 2.1, we 

have  
1

1

1

1

2 1

1 2

( )
2

| ( ) | ( )

| ( , ) | ( ) ( )

L

y x d x

k x t d t d x

f





 



 



 




 
 
 
 

  
  
     



 

P P

 

1

1 2

2 1

( )
2

| ( , ) | ( ) ( )

.L

k x t d x d t

f



  
 




 
  
   
 

  
 

 

P P

 

 When =1,  we obtain  

1

1

2 1

1 2

( )
2

1 2

2 1

( )
2

| ( ) | ( )

| ( , ) | ( ) ( )

| ( , ) | ( ) ( )

.

L

L

y x d x

k x t d t d x

f

k x t d x d t

f



 

 



 




 




  
  

  
  

  
  

  
  



 

 

P P

P P





 

 

The upcoming theorem is direct application of Minkowski’s 

inequality.  

Theorem 2.5 Let ( , ),y U f k  and 1.v   Then the 

following inequality holds: 
1

1

1

| ( ) | ( )y x d x



 


 
 
 
 
  

1

1 2

2 1

| ( ) | | ( , ) | ( ) ( ).f t k x t d x d t



  
 

 
 
 
 

    

Proof. Since ( , )y U f k  and applying the general 

Minkownski’s integral inequality for 1,v   we can have  

1

1

1

1

2 1

1 2

| ( ) | ( )

| ( , ) || ( ) | ( ) ( )

y x d x

k x t f t d t d x





 



 



 

 
 
 
 

  
  
     



 

 

1

1 2

2 1

| ( , ) | | ( ) | ( ) ( )k x t f t d x d t



   
 

 
 
 
 
   

1

1 2

2 1

= | ( , ) | ( ) | ( ) | ( ).k x t d x f t d t



  
 

 
 
 
 
   

 This complete the proof.  

We continue by defining  Hadamard type fractional integrals. 

For details see [10, page 114] and [6, page 330]. 

Let ( , ),0 <a b a b   be a finite or infinite interval of 

the half-axis R  and > 0 . The left- and right-sided 

Hadamard fractional integrals of order   are given by 
1

1 ( )
( )( ) = log ,  >

( )

x

a

a

x f y dy
J f x x a

y y











 
 

  
  and  

1
1 ( )

( )( ) = log ,  < ,
( )

b

b

x

y f y dy
J f x x b

x y











 
 

  


respectively. 

Let > 0,1 p    and 0 <a b  . Then the 

operators 
aJ f


 and 

bJ f


 are bounded in ( , )pL a b  as 

follows:  

1 2,and ,a p p b p pJ f K f J f K f 

  P P P P P P P P          

(10) where

log( / )

1

1

0

1

( )

tb a

pK t e dt




   

and 

log( / )

1

2

0

1
= .

( )

tb a

pK t e dt






     

Love proved the following theorem in [11] by using 

Minkowski’s and Hölder’s inequality.  

Theorem 2.6  If 1,s r   0 < ,a b   are real, 

( )w x  is decreasing and positive in ( , ),a b  ( )f x  and 

( , )k x y  are measurable and non-negative on ( , )a b , 
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( , )k x y  is homogenous of degree 1 , 

( ) = ( , ) ( )

x

a

Af x k x y f y dy , 

and  
1

1= ( ) ( ) ,

b r
r

r

a

f f x x w x dx 
 
 
 
P P                          (11) 

then  

,r sAf C fP P P P  

where  
1 1

1

1= (1, ) ( ) .

bt r s

r

a a

b

C k t t x w x dx dt









 
 
 

   

Here 
a

b
 is to mean 0  if = 0a  or =b   or both; and bt  is 

to mean   if = .b    

The upcoming theorem is the application of Love’s result for 

Hadamard-type fractional integral.  

Theorem 2.7 If 1,s r   0 < ,a b   are real, ( )w x  

is decreasing and positive in ( , ),a b  
aJ f


 denotes the left-

sided Hadamard type fractional integral and rfP P  is defined 

by  (11) then  

1 ,a r sJ f C f

 P P P P                                (12) 

 where  
1 1

1
1

1 1

1

1
= log ( ) .

bt r s

r

a a

b

C t x w x dx dt
t


 



 
 

  
  

   
   

Proof. Applying Theorem 2.6 and replace general kernel 

( , )k x t  by particular kernel defined by  

1(log log )
, ;

( , ) = ( )

0, < .

x t
a t x

k x t t

x t b





 
 


 

        (13) 

 and Af  by ,aJ f


 we get the inequality (12).   

Next we give the generalization of Love’s result for general 

kernel. 

Theorem 2.8 Let 1,r   0 < ,a b   are real, ( )w x  is 

decreasing and positive in ( , ),a b  ( )f x  and ( , )k x y  are 

measurable and non-negative on ( , )a b  

( ) = ( , ) ( )

x

a

y x k x y f y dy , 

then

1

1

1( , ) ( )( ) ( ) .

r

r
b

r r rr

a a

b t

y

t x k x xt f xt xt w xt tdx dt









 
 
 
 
 

 

P P

 

Proof. Since we have  

( ) = ( , ) ( ) ,

x

a

y x k x y f y dy  

Taking = ,y tx  as ,a y x   then 1.
a

t
x
   Using 

Minkowski’s inequality and decreasing property of ( )w x  we 

have  
1

1

1= ( , ) ( ) ( )

r r

b

r

aa

x

y xk x xt f xt dt x w x dx 

  
  
  
     

 P P  

1
1

1[ ( , )] ( ) ( )

b r
r r

a a

x

xk x xt f xt x w x dx dt 
 

  
 
 

1

1

1= [ ( , )] ( )( ) ( ) .

r
b

r rr

a a

b t

t xk x xt f xt xt w x tdx dt







 
 
 
 
 

   This 

complete the proof.  

Corollary 2.9 If we replace xt  by y  and general kernel 

( , )k x t  by particular homogenous kernel ( , )H x t  of degree 

1 , we get the inequality (7) of [11].  

In upcoming remark we give application of our general result 

for Hadamard fractional integral.  

Remark 2.10  If we take 

1 2 1 2( , ), ( ) , ( ) ,a b d x dx d t dt        

and particular kernel ( , )k x y  defined by (13) in  

 

Theorem 2.5, we have  

( , )

1

log( )
1

( 1)

0

| ( ) | ,
( )

a L a b

b

b a
z

a

J f

a
f t z e dz dt








 








 
 

    
 

 

P P

 

 or  



3010 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),3005-3018,2015 

July-August 

1

log( )
1

( 1)

1
0

( , )

( , ).
( )

a L

b

a
z

L

J f a b

a
z e dz f a b








 








 
 

    
 



P P

P P

 

 Particularly for =1,  we get  

log( )

1

1
0

1

1
( , )

( )

( , ).                              (14)

b

a
z

a L

L

J f a b z e dz

f a b

 







 
 

   
 





P P

P P

It 

is interesting to note that if we take =1p  in (10) we get 

(14). 

Theorem 2.11 Let > 0s r  and ( , )k x y  be defined by 

(13). Then the following inequality holds:  
1

0 0

1 1

0 0

( , ) ( )

(1, ) ( ) .

s s
r

r

r r s
ss

k x y f y dy dx

k t t dt f u du

 

 


 
  
  
   

   
    
   

 

 

                     (15) 

Proof. Since ( , )k x y  is defined by (13) and substitute 

=y tx  we have 
1( , ) = (1, ).k x y x k t

 Consider the left 

side of the inequality (15) with above substitution and 

applying Minkowski’s inequality we obtained  
1

0 0

1

0 0

( , ) ( )

= (1, ) ( )

s s
r

r

s s
r

r

k x y f y dy dx

k t f tx dt dx

 

 

 
  
  
   

 
  
  
  

 

 

 

 

1

0 0

(1, ) ( )

r r
s s

srk t f tx dx dt

  
  

   
  

 

   

1

0 0

= (1, ) ( )

r r
s

sk t f tx dx dt

  
  
  
  

 

  .                         (16) 

Now replace =u tx  and 
1=dx t du

 in right hand side of 

the inequality (16) we obtain inequality (15). 

Now we continue with reverse Poincaré like inequalities.  

Theorem 2.12  Let ( , ),y U f k  and let 

1 1
0 < <1, < 0 : =1,p q

p q
  0 < < .p  Suppose that 

( , ) 0k x t   for a t b   and f  is of fixed sign and 

nowhere zero. Then 
1

1

1

1

2 1

1 2

( )
2

| ( ) | ( )

( , ) ( ) ( )

p

p

L
q

y x d x

k x t d t d x

f





 



 



 



 
 
 
 

 
  
   
 

  
 



 

P P

1

1 2

2 1

( )
2

( , ) ( ) ( )

.                              (17)

p p

L
q

k x t d x d t

f



  
 



 
  
   
 

  
 

 

P P

   

When = ,q  we obtain  

1

1

1

1

2 1

1 2

( )
2

| ( ) | ( )

( , ) ( ) ( )

q

q

q q
p

p

L
q

y x d x

k x t d t d x

f



 



 



 
 
 
 

 
  
   
 

  
 



 

P P

1

1 2

2 1

( )
2

( , ) ( ) ( )

.

p p
q

q

L
q

k x t d x d t

f

 
 



 
  
   
 

  
 

 

P P

  

When = = = 2,p q  we obtain  

1

2

2

1

1

| ( ) | ( )y x d x
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1

2

2

2 1

1 2

( )
2 2

1

2

2

1 2

2 1

( )
2 2

( , ) ( ) ( )

( , ) ( ) ( )

.

L

L

k x t d t d x

f

k x t d x d t

f

 

 

 



 



  
  

  
  

  
  

  
  

 

 





P P

P P

  

Proof. Since ( , ),y U f k  f  is of fixed sign and using 

reverse Hölder’s inequality, we get  

2

1 1

2 2

1

( , )

2

| ( ) |= ( , )| ( ) |

( , ) | ( ) |

= ( , ) .

p q

p q

p

p

L a b
q

y x k x t f t dt

k x t dt f t dt

k x t dt f



 



   
   
   
   

 
 
 
 



 

 P P

 

                                                       (18) 

Since < ,p  we have  

1

1

1

1

2 1

1 2

( )
2

| ( ) | ( )

( , ) ( ) ( )

.

p

p

L
q

y x d x

k x t d t d x

f





 



 



 



 
 
 
 

 
  
   
 

  
 



 

P P

 

Applying reverse Minkowski’s inequality we obtain 

inequality (17).  

3.0  POINCARÉ LIKE INEQUALITIES FOR LINEAR 
DIFFERENTIAL OPERATOR 

Let [ , ] ,a b  R  ( ), =1,..., 1( ),ia x i n n N  and ( )h x  

be continuous functions on [ , ],a b  and let  

1

1 0= ( ) ... ( ),n n

nL D a x D a x

    

be a fixed linear differential operator on [ , ].nC a b  Let 

1( ),y x ... , ( )ny x  be a set of linearly independent solution to 

= 0Ly  and the associated Green’s function for L  is  

1

1

( 2) ( 2)

1

1

1

1

( 2) ( 2)

1

1

( ) ( )

'( ) '( )

( ) ( )

( ) ( )
( , ) :

( ) ( )

'( ) '( )

( ) ( )

( ) ( )

n

n

n n

n

n

n

n

n n

n

n

y t y t

y t y t

y t y t

y x y x
H x t

y t y t

y t y t

y t y t

y t y t

 

 

  

  

  

  

  



  


  

  

  

  

  



  

 

which is continuous function on 
2[ , ] .a b  Consider fixed ,a  

then  

( ) = ( , ) ( ) ,

b

a

y x H x t h t dt  

is the unique solution to the initial value problem  
( )= , ( ) = 0, = 0,1,..., 1.iLy h y a i n Now we 

present the Poincaré like inequality for linear differential 

operators and we will show that the results in this section 

generalizes the results of [1].  

Theorem 3.1 Let ( , ),y U h H  
1 1

, >1: =1;p q
p q
  

.p   Then 

1

1

( , )

| ( ) |

| ( , ) |

b

a

b b p
p

L a b
q

a a

y x dx

H x t dt dx h




 

 
 
 

 
  

   
  

 



  P P

 

1

( , )| ( , ) | .

p p
b b

L a b
q

a a

H x t dx dt h




 
  

   
  

 

  P P        (19) (19) 

 When = ,q  we obtain  
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1

1

( , )

1

( , )

| ( ) |

| ( , ) |

| ( , ) | .

b q
q

a

q q
b b p

p

L a b
q

a a

p p
b b q

q

L a b
q

a a

y x dx

H x t dt dx h

H x t dx dt h

 
 
 

 
  

   
  

 

 
  

   
  

 



 

 

P P

P P

 

 When = = = 2,p q  we obtain  

1

2
2

1

2
2

( , )
2

1

2
2

( , )
2

| ( ) |

| ( , ) |

| ( , ) | .

b

a

b b

L a b

a a

b b

L a b

a a

y x dx

H x t dt dx h

H x t dx dt h

 
 
 

  
    

  

  
    

  



 

 

P P

P P

 

Proof. Applying Theorem 2.1 with 1 2= = ( , ),a b   

1 2( ) = , ( ) =d x dx d t dt   and replace general kernel 

( , )k x t  with particular the Green’s function ( , ),H x t  and 

f  by h  we get the inequality (19). In the upcoming remark 

we give the related extreme cases of Theorem 3.1.  

Remark 3.2   In Remark 2.4 if we replace 

1 2= = ( , ),a b   1( ) = ,d x dx  2( ) = ,d t dt  general 

kernel ( , ) = ( , )k x t H x t  and =f h  we get the following 

inequalities: 
1

1

( , )

| ( ) |

| ( , ) |

b

a

b b

L a b

a a

y x dx

H x t dt dx h




 



 
 
 

  
   
   



  P P

 

 
1

( , )| ( , ) | .

b b

L a b

a a

H x t dx dt h






 
  

   
  

 

  P P  

 When =1,  we obtain  

( , )

| ( ) |

| ( , ) |

b

a

b b

L a b

a a

y x dx

H x t dt dx h


  
    

  



  P P

 

( , )| ( , ) | .

b b

L a b

a a

H x t dx dt h


  
    

  
  P P  

The upcoming theorem is direct application of Minkowski’s 

inequality for linear differential operator.  

Theorem 3.3  Let ( , ),y U h H  and >1.v  Then the 

following inequality holds:  
1

| ( ) |

b

a

y x dx



 
 
 
  

1

| ( , ) | | ( ) | .

b b

a a

H x t dx h t dt



 

  
 
                         (20) 

 Proof. Applying Theorem 2.5 with 1 2= = ( , ),a b   

1 2( ) = , ( ) =d x dx d y dy   and replace general kernel 

( , )k x t  with particular Green’s function ( , ),H x t  and f  by 

h  we get the inequality (20). Now we continue with reverse 

Poincaré like inequalities. 

Theorem 3.4  Let 
1 1

0 < <1, < 0 : =1;p q
p q
  

0 < < .p  Suppose that ( , ) 0H x t   for a t b   and 

h  is of fixed sign and nowhere zero. 

Then

1

1

( , )

| ( ) |

( , )

b

a

b b p
p

L a b
q

a a

y x dx

H x t dx dt h




 

 
 
 

 
  

   
  

 



  P P

1

( , )( , ) .

p p
b b

L a b
q

a a

H x t dt dx h




 
  

   
  

 

  P P              (21) 

 When = ,q  we obtain  
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1

1

( , )

1

( , )

| ( ) |

( , )

( , ) .

b q
q

a

q q
b b p

p

L a b
q

a a

p p
b b q

q

L a b
q

a a

y x dx

H x t dx dt h

H x t dx dt h

 
 
 

 
  

   
  

 

 
  

   
  

 



 

 

P P

P P

 

 When = = = 2,p q  we obtain  

1

2
2

1

2
2

( , )
2

| ( ) |

( , )

b

a

b b

L a b

a a

y x dx

H x t dx dt h

 
 
 

  
    

  



  P P

 

1

2
2

( , )
2

( , ) .

b b

L a b

a a

H x t dx dt h
  

    
  
  P P  

Proof. By applying Theorem 2.12 and replace 

1 2 1 2= = ( , ), ( ) = , ( ) = ,a b d x dx d t dt    general 

kernel ( , ) = ( , )k x t H x t  and =f h  we get the inequality 

(21).  

Remark 3.5 If we replace ( , )k x t  by ( , )H x t  in inequality 

(7) and (18), we get Theorem [12, Theorem 17.1] and [12, 

Theorem 17.5] respectively. Moreover use  of Minkowski’s 

inequality give us the generalizations of the results given in 

[12, Chapter 17].  

4.0  WEIGHTED DIRICHLET-POINCARÉ LIKE 
INEQUALITIES 
Now we give the application for Widder derivatives to 

produce forward and reverse Dirichlet-Poincaré like 

inequalities. First it is necessary to give some important 

details about Widder derivatives (see[13]). Let 
1

0 1, , , , [ , ], 0,n

nf u u u C a b n   and the Wronskians 

0 1

0

0

( ) ( )

0

( ) := [ ( ), ( ), , ( )]

( ) ( )

'( ) '( )

= ,

( ) ( )

i i

i

i

i i

i

W x W u x u x u x

u x u x

u x u x

u x u x

  

  

  

  

  

  

 

= 0,1, , .i n  Here 0 0( ) = ( ).W x u x  Assume ( ) > 0iW x  

over [ , ], = 0,1, , .a b i n  For 0,i   the differential 

operator of order i  (Widder derivative):  

0 1 1

1

[ ( ), ( ), , ( ), ( )]
( ) : ,

( )

i
i

i

W u x u x u x f x
L f x

W x





  

0=1, , 1; ( ) = ( )i n L f x f x   

for all [ , ].x a b  Consider also  

0

' '

0

0

( ) ( )

( ) ( )

1
( , ) : ,

( )

( ) ( )

i

i

i

i

i

u t u t

u t u t

g x t
W t

u x u x

  

  

  


  

  

  

 

=1,2,..., ;i n  0
0

0

( )
( , ) :=

( )

u x
g x t

u t
  

for all , [ , ].x t a b  

Example 4.1 [13].  Sets of the form 0 1 2{ , , , , }nu u u u  are 

2{1, , , , },nx x x   

1 1

{1,sin ,cos , sin 2 ,cos 2 , ,

( 1) sin , ( 1) cos },n n

x x x x

nx nx 



 
 

 etc.  

We also mention the generalized Widder-Talylor’s formula, 

see [13] (see also [12]).  

Theorem4.2 Let the functions 
1

0 1, , , , [ , ],n

nf u u u C a b  and the Wronkians 

0 1( ), ( ), , ( ) > 0nW x W x W x on [ , ], [ , ].a b x a b  Then 

for [ , ]t a b  we have  

0
1 1

0

( )
( ) = ( ) ( ) ( , ) ...

( )

( ) ( , ) ( ),n n n

u x
f x f t L f t g x t

u t

L f t g x t R x

 

 

 

where 1( ) : ( , ) ( ) .

x

n n n

t

R x g x s L f s ds   

For example (see [13]) one could take 0( ) = > 0.u x c  If 

( ) = , = 0,1, , ,i

iu x x i n  defined  on [a,b], then 

( ) ( )
( ) = ( ) ( , ) = , [ , ].

!

i
i

i i

x t
L f t f t and g x t t a b

i




We need the following corollary.  

Corollary 4.3 By additionally assuming for fixed [ , ]a a b  

that ( ) = 0, = 0,1,..., ,iL f a i n  we get that

1( ) : ( , ) ( ) [ , ].

x

n n

a

f x g x t L f t dt for all x a b  Now  

we prove some Dirichlet-Poincaré like inequalities as 

consequence of our main results for the Widder derivative in 
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upcoming theorem and we extract the results of [2].  

Theorem 4.4  Let 
1

0 1, , ,..., [ , ],n

nf u u u C a b  ,n Z  

0 1, ,..., > 0nW W W  on [ , ].a b  Let 
1 1

, > 1: =1,p q
p q
  

and .p   Then 

1

1

1 ( , )

| ( ) |

| ( , ) |

b

a

b b p
p

n n L a b
q

a a

f x dx

g x t dt dx L f




 



 
 
 

 
  

   
  

 



  P P

 

 

1

1 ( , )| ( , ) | . (22)

p p
b b

n n L a b
q

a a

g x t dx dt L f






 
  

   
  

 

  P P

When = ,q  we obtain  

1

| ( ) |

b q
q

a

f x dx
 
 
 
  

1

1 ( , )| ( , ) |

q q
b b p

p

n n L a b
q

a a

g x t dt dx L f

 
  

   
  

 

  P P   

1

( , )| ( , ) | .

p p
b b q

q

L a b
q

a a

k x t dx dt f

 
  

   
  

 

  P P  

When = = = 2,p q  we obtain  

1

2
2

1

2

1 ( , )
2

| ( ) |

| ( , ) |

b

a

b b

p

n n L a b

a a

f x dx

g x t dt dx L f

 
 
 

  
    

  



  P P

 

1

2
2

1 ( , )
2

| ( , ) | .

b b

n n L a b

a a

g x t dx dt L f

  
    

  
  P P  

Proof.  By applying Theorem 2.1 with 1 2= = ( , ),a b   

1( ) = ,d x dx  2( ) =d t dt  and replacing general kernel 

( , )k x t  with particular kernel ( , ),ng x t  =y f  and 

1= ,nf L f  we get the inequality (22). In the upcoming 

remark we give the related extreme cases.  

Remark 4.5   By taking =1p  and =q   in inequality (22) 

we get  
1

1

1 ( , )

| ( ) |

| ( , ) |

b

a

b b

n n L a b

a a

f x dx

g x t dt dx L f




 




 
 
 

  
   
   



  P P

 

 
1

1 ( , )| ( , ) | .

b b

n n L a b

a a

g x t dx dt L f







 
  

   
  

 

  P P  

 When =1,  we obtain  

1 ( , )

| ( ) |

| ( , ) |

b

a

b b

n n L a b

a a

f x dx

g x t dt dx L f


  
    

  



  P P

 

 

1 ( , )| ( , ) | .

b b

n n L a b

a a

g x t dx dt L f


  
    

  
  P P  

The upcoming theorem is direct application of Minkowski’s 

inequality for Widder derivatives.  

Theorem 4.6  Let 
1

0 1, , ,..., [ , ],n

nf u u u C a b  ,n Z  

0 1, ,..., > 0nW W W  on [ , ]a b  and >1.v  Then the 

following inequality holds:  
1

1

1

| ( ) |

| ( , ) | | ( ) | .

b

a

b b

n n

a a

f x dx

g x t dx L f t dt









 
 
 

 
  

 



 

              (23) 

Proof. By applying Theorem 2.5 with 1 2= = ( , ),a b   

1 2( ) = , ( ) =d x dx d t dt   and replacing general kernel 

( , )k x t  with particular kernel ( , ),ng x t  =y f  and 

1= ,nf L f  we get the inequality  (23). Now we continue 

with reverse Dirichlet-Poincaré like inequalities.  

Theorem 4.7  Let 
1

0 1, , ,..., [ , ],n

nf u u u C a b  

0 1, ,..., > 0nW W W  on [ , ].a b  Let  

1 1
0 < <1, < 0 : =1,p q

p q
  and 0 < < .p  Further 

suppose 1nL f  is of fixed sign and nowhere zero on [ , ]a b . 

Then 
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1

1

1 ( , )

| ( ) |

| ( , ) |

b

a

b b p
p

n n L a b
q

a a

f x dx

g x t dx dt L f




 



 
 
 

 
  

   
  

 



  P P

 

1

1 ( , )| ( , ) | . (24)

p p
b b

n n L a b
q

a a

g x t dt dx L f






 
  

   
  

 

  P P     

 When = ,q  we obtain  

1

1

1 ( , )

| ( ) |

| ( , ) |

b q
q

a

q q
b b p

p

n n L a b
q

a a

f x dx

g x t dx dt L f

 
 
 

 
  

   
  

 



  P P

 

1

1 ( , )| ( , ) | .

p p
b b q

q

n n L a b
q

a a

g x t dt dx L f

 
  

   
  

 

  P P  

When = = = 2,p q  we obtain  

1

2
2

1

2
2

1 ( , )
2

| ( ) |

| ( , ) |

b

a

b b

n n L a b

a a

f x dx

g x t dx dt L f

 
 
 

  
    

  



  P P

1

2
2

1 ( , )
2

| ( , ) | .

b b

n n L a b

a a

g x t dt dx L f

  
    

  
  P P  

  

Proof. Applying Theorem 2.12 with 1 2= = ( , ),a b   

1 2( ) = , ( ) =d x dx d t dt   and replace general kernel 

( , ) = ( , ),nk x t g x t  =y f  and 1= nf L f  we get the 

inequality (24).  

Here we provide the example by taking particular kernel in 

Theorem 4.4.  

Example 4.8 If we take 0( ) = > 0u x c  and 

( ) = , = 0,1,2,...,n

nu x x n n  defined on [ , ],a b  then 

( )( ) = ( )n

nL f x f x  and 
( )

( , ) = , [ , ],
!

n

n

x t
g x t t a b

n


  

and the inequality (22)  becomes  

1

1 1

( 1)

( , )1 1

| ( ) |

( )

!( 1) (( 1) 1)

b

a

n
p

n

L a b
q

p

f x dx

b a
f

n np np
p









 



 
 
 




  



P P

  

1 1

( 1)

( , )11

( )
.

!( 1) (( 1) 1)

n
p

n

L a b
q

p

b a
f

p
n n n



 


 




  

P P  

 Remark 4.9  Similar examples can be given for all other 

results given in Section 4 by taking 

( )
( , ) = , [ , ],

!

n

n

x t
g x t t a b

n


  but due to lack of space we 

omit the details.  

Remark 4.10  If we replace ( , )k x t  by ( , )ng x t  in 

inequality (7) and (18), we get [12, Theorem 18.8] and [12, 

Theorem 18.10] respectively. Moreover use of Minkowski’s 

inequality gives us the generalizations of the Dirichlet-Poinca

r e like inequalities given in [12, Chapter 18].  

5.0 APPLICATIONS FOR FRACTIONAL 
DERIVATIVES 
In upcoming applications of general results for fractional 

derivatives we construct inequalities of G. H. Hardy. Such 

type inequalities are widely discussed in [8] 

Theorem 5.1  Let 
1 1

, >1: =1,p q
p q
  and .p   Let 

a
I f

  denotes the left sided Riemann-Liouvill’s fractional 

integral. Then  

( , )

1 1
1

1 1

( , )

( )

( )[ ( 1) 1] [ ( 1) 1]

.

L a ba

p

p

L a b
q

I f

b a

p
p

f











   



  




     

P P

P P

     (25) 

When = ,q  we can have  

( , )

( , )1 1

( )
.

( )[ ( 1) 1] ( )

L a ba q

L a b
q

p q

I f

b a
f

p q





  






  

P P

P P
 

Proof. Applying Theorem 2.1 with 1 2= = ( , ),a b   

1 2( ) = , ( ) =d x dx d t dt   and the kernel  
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11
( ) , ;

( )( , ) =

0, < .

x t a t x
k x t

x t b






  


 

 

and replace y  by ,
a

I f

  we get the inequality 

(25). 

For  :[ , ]f a b R  the Riemann-Liouville fractional 

derivative D f
 of order   is defined by  

1

( ) =

1
( ) ( )

( )

= ( ).

xn
n

n

a

n
n

n

D f x

d
x t f t dt

n dx

d
J f x

dx









 




    

 In addition, we stipulate 
0 0: :J f f D f   and 

:J f D f    if > 0 . 

Next, define n  as  

0

0

[ ] 1, ,

, .

n for

n for

 

 

  

 

N

N
                                       (26) 

 For n  given by (26) and [ , ]nf AC a b  the Caputo 

fractional derivative 
C D f

 of order   is defined by  

1 ( ) ( )

( ) =

1
( ) ( ) = ( ).

( )

C

x

n n n n

a

D f x

x t f t dt J f x
n



 



  
  

 

 A third fractional derivative, the Canavati fractional 

derivative 
C D f

 of order  , is defined for 

 1 ( 1) 1

[ , ]

= [ , ] : [ , ]n n n

f C a b

f C a b J f C a b



  



 
 

by  

1 ( 1)

( 1)

( )

1
( ) ( )

( )

( ).

C

x

n n

a

n n

D f x

d
x t f t dt

n dx

d
J f x

dx









  

 




 



   

If N  then 
( )= = =C CD f D f D f f   

, the 

ordinary  -order derivatives. The next theorem is 

composition identity for the Riemann-Liouville fractional 

derivatives. For details see [14, Theorem 4].  

Theorem 5.2  Let > 0   , = [ ] 1n   , = [ ] 1m    

and let [ , ]nf AC a b  be such that  

1, [ , ]D f D f L a b   .   

i.  If    N  and f  is such that ( ) = 0kD f a
 for 

=1, ,k n  and ( ) = 0kD f a
 for =1, ,k m , then  

11
( ) = ( ) ( ) ,

( )

[ , ]. (27)

x

a

D f x x t D f t dt

x a b

   

 

 
 



  

ii.  If = l  N  and f  is such that ( ) = 0kD f a
 

for =1, ,k l , then (27)  holds.  

Corollary 5.3 [14, Corollary 1] Let > 0   , 

= [ ] 1n   ,  = [ ] 1m   . Composition identity (27)  is 

valid if one of the following conditions holds:   

i.  1 [ , ]f J L a b   

  1: , [ , ] .f f J L a b      

ii.  [ , ]n nJ f AC a b   and ( ) = 0kD f a
 for 

=1,k n .  

iii. 
1 [ , ]D f AC a b  , [ , ]kD f C a b   and 

( ) = 0kD f a
 for =1,k n .  

 iv.  [ , ]nf AC a b , 
1, [ , ]D f D f L a b   , 

  N , ( ) = 0kD f a
 for =1, ,k n  and 

( ) = 0kD f a
 for =1, ,k m .  

v.  [ , ]nf AC a b , 
1, [ , ]D f D f L a b   , 

= l  N , ( ) = 0kD f a
 for =1, ,k l .  

 vi.  [ , ]nf AC a b , 
1, [ , ]D f D f L a b    and  

( ) ( ) = 0kf a  for = 0, , 2k n .  

vii. [ , ]nf AC a b , 
1, [ , ]D f D f L a b   , N  and 

1D f
 is bounded in a neighborhood of =t a .  

Our first application is for Generalized Riemann-Liouville 

fractional derivative is given in upcoming theorem.  

Theorem 5.4  Let 
1 1

, >1: =1,p q
p q
  and .p   Let 

the assumptions in the Corollary 5.3 be satisfied. Then  

( , )

1 1
1

1 1

( , )

( )

( )[ ( 1) 1] [ ( 1) 1]

.

L a b

p

p

L a b
q

D f

b a

p
p

D f





 







      

   




        

P P

P P

 When = ,q  we can have  
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( , )

1 1

( , )

( )

( )[ ( 1) 1] ( ( ))

.

L a b
q

p q

L a b
q

D f

b a

p q

D f



 



     




     

P P

P P

 

Proof. Similar to proof of Theorem 5.1.  The upcoming 

theorem is composition identity for the Caputo fractional 

derivatives. For details see [15, Theorem 2.1].  

Theorem 5.5  Let > 0    with n  and m  are defined 

by (26) . Let [ , ]nf AC a b  be such that 
( ) ( ) = 0if a  

for = , 1, , 1i m m n  . Let 
1, [ , ]C CD f D f L a b   . 

Then  

1

( )

1
( ) ( ) , [ , ].

( )

C

x

C

a

D f x

x t D f t dt x a b



  

 

   
  

Here 

we give the applications of general result for Caputo 

fractional derivatives.  

Theorem 5.6 Let 
1 1

, > 1: =1,p q
p q
  and .p   Let 

the assumptions in the Theorem 5.5 be  

satisfied. Then 

( , )

C

L a bD f


P P

1 1
1

1 1

( , )

( )

( )[ ( 1) 1] [ ( 1) 1]

.                                             (28)

p

p

C

L a b
q

b a

p
p

D f

 







      

   




        

P P

When 

= ,q  we can have  

( , )

1 1

( )

( )[ ( 1) 1] ( ( ))

C

L a b
q

p q

D f

b a

p q



 

     




     

P P

 

( , ) .C

L a b
q

D fP P   

Proof. Similar to proof of Theorem 5.1.  

The following theorem gives the conditions in the 

composition rule for Canavati fractional derivatives. For 

details see [16, Theorem 2.1].  

Theorem 5.7  Let > > 0  , = [ ] 1n   , = [ ] 1m   . 

Let [ , ]f C a b  be such that 
( ) ( ) = 0if a  for 

= 1, , , 2i m m n  . Then [ , ]f C a b  and

11
( ) ( ) ( ) ,
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[ , ].
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Now 

we give the corresponding connection of our results for 

Canavati fractional derivatives.  

Theorem 5.8  Let 
1 1

, >1: =1,p q
p q
  and .p   Let 

the assumptions in the Theorem 5.7 be satisfied. Then  
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When 

= ,q  we can have  
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Proof. Similar to proof of Theorem 5.1.  

6.0  DISCRETE ANALOGUES TO MAIN RESULTS 
This section deals with discrete analogues as a consequence 

of our general results given in Section 2.  

Theorem 6.1  For any real numbers mnk  and nb , we can 

write  

1
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| | | || | .
m

m mn n

n

a k b


  Then for any constants 

, >1p q , such that 
1 1

= 1,
p q
  ,p   and integers 

, = 0,1,2 , 1m n   , then following inequality holds: 
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Proof.  For = 0,1,2, , 1,n m  applying Hölder’s 

inequality for { , },p q  we get 
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This can also be written as:  
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This implies that  
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Applying Minkowski’s inequality, we get inequality (29).  

The extreme case of Theorem 6.1 is given in the following 

remark.  

Remark 6.2  For any real numbers mnk  and nb , then for any 

constants =1, =p q  , we have  

1
1

1 1 1

=0 =0 =0

| | | |
n n m

m mn n

m m n

a k b

 


  



    
          

   P P  

1
1 1

=0 =0

| | .
m n

mn n

n m

k b



 



 
       

 

  P P  

Theorem 6.3 For any > 0,mnk  nb  be real number and is of 

fixed sign, such that  
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  Then  for any  constants 

1 1
0 < <1, < 0 : =1,0 < < ,p q p
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  we have 
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Proof. For any > 0mnk , we have 

1

=0
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Applying reverse Hölder’s inequality for { , },p q  we get  
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Since > 0,  we can write  
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Applying Minkowski’s inequality, we get inequality (30).  
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