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ABSTRACT: The main purpose of this current note is to introduce a Hypergeometric distribution series and obtain 
necessary and sufficient conditions for this series belonging to the classes ( , )T    and ( , )C   .  
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1. INTRODUCTION 

Let A  represent the class of functions f  of the form 
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 which are analytic in the unit dics 

 :  and 1D z z z    and satisfy the normalization 

condition (0) (0) 1f f   . Further, we denote by S   the 

subclass of A   consisting of functions of the form (1.1) 

which are univelant in D  and further let T  be the class of 

S  consisting of the functions of the form 
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Consider ( , )T     be the subclass of T  consisting of the 

functions satisfying the following  condition  
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         (1.3) 

for all   (0 1)  ,   (0 1)    for all z D .  

We also suppose  that C( , )   be the subclass of T  

consisting of the functions satisfying the following 

condition   
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           (1.4) 

                                                 

for all   (0 1)  ,   (0 1)    for all z D . 

Form (1.3) and (1.4) we can easly conclude that  

    (z) ( , ) (z) ( , ).f C zf T           (1.5) 

Both ( , )T    and C( , )   are extensively studied by 

Altinates and Owa[1] and certain conditions for 

hypergeometric function and generalized Bessel functionf 

for these classes were studied by Mostafa[2] and Porwal and 

Dixit[3]. 

It is virtuous to note that (0, ) ( )T T   be the class  

starlike functions of order    (0 1)  , and  

C(0, ) C( )   be the class convex functions of order 

 .  

The hypergeometric distribution ( , N, )f k m   is defined 
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                   (1.6) 

Note: Here 0,1,2,...,min( , ),      n k m N k m n      

and ( , N, ) 0 if min( , ) or .f k m n k m N k m n    

 Now, we establish a power series whose coffecients are 

probabiliteis of hypergeometric distribution 
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We note that, by ratio test, the radius of convergence of the 

above series is infinity. Now, we introduce the series  
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Motivated by results on connection between various 

subclasses of analytic functions by using the hypergeometric 

function by many authors particularly the authors (see[5-

10]), S.Porrwal [4] obtained the necessary and sufficient 

conditions for a function ( , )F m z   defined by using the 

poisson distribution belong to the class ( , )T     and 

( , )C    . In this article, we give the analogous conditions  

for ( , , , )K k N m z defied by the hypergeometric 

distribution belong to the ( , )T     and ( , )C    . 

To charactiese our main results, we will require the 

following lemmas according to Altintas and Owa [1] 

Lemma 1.1. The function (z)f  definede by (1.2) in the 

class ( , )T    if and  only if  
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Lemma 1.2. The function (z)f  definede by (1.2) in the 

class ( , )C    if and  only if  
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2. MAIN RESUTS 

Theorem:  The  function ( , , , )K k N m z  is in the class 

( , )T    if and only if  
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Proof. Since we have defined   
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according to the lemma (1.1), it is enough to show that  
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Where  
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Theorem:  The  function ( , , , )K k N m z  is in the 

( , )C    if and only if  
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where      
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Proof.  We have defined   
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according to the lemma (1.2), we shall show that  
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