AN APPLICATION OF A HYPERGEOMETRIC DISTRIBUTION SERIES ON CERTAIN ANALYTIC FUNCTIONS

Muhmmad Saeed Ahmad ${ }^{1}$, Qaisar Mehmood ${ }^{2}$, Waqas Nazeer ${ }^{3}$, Absar Ul Haq ${ }^{4}$
${ }^{1}$ Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
${ }^{2}$ Department of Mathematics, Lahore Leeds University Lahore, Pakistan
${ }^{3}$ Division of Science and Technology, University of Education, Lahore, Pakistan
4 Abdus Salam School of Mathmatical Sciences GC University, Lahore 54000, Pakistan
E-mail: saeedkhan07@live.com,qaisar47@hotmail.com,waqas.nazeer@ue.edu.pk,absarulhaq@hotmail.com

ABSTRACT: The main purpose of this current note is to introduce a Hypergeometric distribution series and obtain necessary and sufficient conditions for this series belonging to the classes $T(\alpha, \lambda)$ and $C(\alpha, \lambda)$.

Keywords-: Analytic function, Univalent function, hyper geometric distribution.

1. INTRODUCTION

Let A represent the class of functions f of the form
$f(\mathrm{z})=\mathrm{z}+\sum_{n=2}^{\infty} a_{n} z_{n}$,
which are analytic in the unit dics $D=\{z: z \in \square$ and $|z| \leq 1\}$ and satisfy the normalization condition $f(0)=f^{\prime}(0)-1$. Further, we denote by S the subclass of A consisting of functions of the form (1.1) which are univelant in D and further let T be the class of S consisting of the functions of the form

$$
\begin{equation*}
f(\mathrm{z})=\mathrm{z}+\sum_{n=2}^{\infty}\left|a_{n}\right| z_{n} \tag{1.2}
\end{equation*}
$$

Consider $T(\alpha, \lambda)$ be the subclass of T consisting of the functions satisfying the following condition
$\operatorname{Re}\left\{\frac{z f(\mathrm{z})}{\lambda z f^{\prime}(\mathrm{z})+(1-\lambda) f(\mathrm{z})}\right\}>\alpha$,
for all $\alpha \quad(0 \leq \alpha<1), \lambda \quad(0 \leq \lambda<1)$ for all $z \in D$.
We also suppose that $\mathrm{C}(\alpha, \lambda)$ be the subclass of T consisting of the functions satisfying the following condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(\mathrm{z})+z f^{\prime \prime}(\mathrm{z})}{f^{\prime}(\mathrm{z})+\lambda f^{\prime \prime}(\mathrm{z})}\right\}>\alpha \tag{1.4}
\end{equation*}
$$

for all $\alpha \quad(0 \leq \alpha<1), \lambda \quad(0 \leq \lambda<1)$ for all $z \in D$. Form (1.3) and (1.4) we can easly conclude that

$$
\begin{equation*}
f(\mathrm{z}) \in C(\alpha, \lambda) \Leftrightarrow z f^{\prime}(\mathrm{z}) \in T(\alpha, \lambda) \tag{1.5}
\end{equation*}
$$

Both $T(\alpha, \lambda)$ and $\mathrm{C}(\alpha, \lambda)$ are extensively studied by Altinates and Owa[1] and certain conditions for hypergeometric function and generalized Bessel functionf for these classes were studied by Mostafa[2] and Porwal and Dixit[3].
It is virtuous to note that $T(0, \alpha) \equiv T^{*}(\alpha)$ be the class starlike functions of order $\alpha \quad(0 \leq \alpha<1)$, and
$\mathrm{C}(0, \alpha) \equiv \mathrm{C}(\alpha)$ be the class convex functions of order α.
The hypergeometric distribution $f(k, \mathrm{~N}, m)$ is defined
$f(k, \mathrm{~N}, m)=P(\mathrm{X}=n)=\frac{\binom{k}{n}\binom{N-k}{m-n}}{\binom{N}{m}}$
Note: Here $n=0,1,2, \ldots, \min (k, m), N-k<m-n$ and $f(k, \mathrm{~N}, m)=0$ if $n>\min (k, m)$ or $N-k<m-n$.
Now, we establish a power series whose coffecients are probabiliteis of hypergeometric distribution

$$
K(k, N, m, z)=z+\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}\binom{k}{n-1}\binom{N-k}{m-n+1} z^{n} .
$$

We note that, by ratio test, the radius of convergence of the above series is infinity. Now, we introduce the series

$$
K(k, N, m, z)=z-\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}\binom{k}{n-1}\binom{N-k}{m-n+1} z^{n}
$$

Motivated by results on connection between various subclasses of analytic functions by using the hypergeometric function by many authors particularly the authors (see[510]), S.Porrwal [4] obtained the necessary and sufficient conditions for a function $F(m, z)$ defined by using the poisson distribution belong to the class $T(\alpha, \lambda)$ and $C(\alpha, \lambda)$. In this article, we give the analogous conditions for $K(k, N, m, z)$ defied by the hypergeometric distribution belong to the $T(\alpha, \lambda)$ and $C(\alpha, \lambda)$.
To charactiese our main results, we will require the following lemmas according to Altintas and Owa [1]
Lemma 1.1. The function $f(\mathrm{z})$ definede by (1.2) in the class $T(\alpha, \lambda)$ if and only if
$\sum_{n=2}^{\infty}[n-\lambda \alpha n-\alpha+\lambda \alpha]\left|a_{n}\right| \leq 1-\alpha$
Lemma 1.2. The function $f(\mathrm{z})$ definede by (1.2) in the class $C(\alpha, \lambda)$ if and only if

$$
\sum_{n=2}^{\infty} n[n-\lambda \alpha n-\alpha+\lambda \alpha]\left|a_{n}\right| \leq 1-\alpha
$$

2. MAIN RESUTS

Theorem: The function $K(k, N, m, z)$ is in the class $T(\alpha, \lambda)$ if and only if

$$
\frac{1}{\binom{N}{m}}[k(1-\alpha \lambda) A+(1-\alpha) B] \leq 1-\alpha
$$

Where

$$
A=\sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1}
$$

and

$$
B=\sum_{n=1}^{\infty}\binom{k}{n}\binom{N-k}{m-n} .
$$

Proof. Since we have defined
$K(k, N, m, z)=z-\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}\binom{k}{n-1}\binom{N-k}{m-n+1} z_{n}$,
according to the lemma (1.1), it is enough to show that
$\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}[n-\lambda \alpha n-\alpha+\lambda \alpha]\binom{k}{n-1}\binom{N-k}{m-n+1} \leq 1-\alpha$.

Now
$\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}[n-\lambda \alpha n-\alpha+\lambda \alpha]\binom{k}{n-1}\binom{N-k}{m-n+1}=$

$$
\begin{aligned}
& =\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}[(n-1)(1-\lambda \alpha)+(1-\alpha)]\binom{k}{n-1}\binom{N-k}{m-n+1} \\
& =\frac{1}{\binom{N}{m}}\left[\sum_{n=2}^{\infty}(1-\lambda \alpha) \frac{k!}{(k-n+1)!(n-2)!}\binom{N-k}{m-n+1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=2}^{\infty}(1-\alpha)\binom{k}{n-1}\binom{N-k}{m-n+1}\right] \\
& =\frac{1}{\binom{N}{m}}\left[\sum_{n=0}^{\infty}(1-\lambda \alpha) \frac{k!}{(k-n-1) n!}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=2}^{\infty}(1-\alpha)\binom{k}{n-1}\binom{N-k}{m-n+1}\right] \\
& =\frac{1}{\binom{N}{m}}\left[k \sum_{n=0}^{\infty}(1-\lambda \alpha) \frac{(k-1)!}{(k-n-1) n!}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=2}^{\infty}(1-\alpha)\binom{k}{n-1}\binom{N-k}{m-n+1}\right] \\
& =\frac{1}{\binom{N}{m}}\left[k(1-\lambda \alpha) \sum_{n=0}^{\infty} \frac{(k-1)!}{(k-n-1) n!}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[(1-\alpha) \sum_{n=1}^{\infty}\binom{k}{n}\binom{N-k}{m-n}\right] \\
& =\frac{1}{\binom{N}{m}}\left[k(1-\lambda \alpha) \sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[(1-\alpha) \sum_{n=2}^{\infty}\binom{k}{n}\binom{N-k}{m-n}\right] \\
& =\frac{1}{\binom{N}{m}}[k(1-\alpha \lambda) A+(1-\alpha) B] \leq 1-\alpha \text {. }
\end{aligned}
$$

Where

$$
A=\sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1}
$$

and

$$
B=\sum_{n=1}^{\infty}\binom{k}{n}\binom{N-k}{m-n}
$$

Theorem: The function $K(k, N, m, z)$ is in the $C(\alpha, \lambda)$ if and only if

$$
\begin{aligned}
& \frac{1}{\binom{N}{m}}[k(k-1)(1-\alpha \lambda) A+k(3-2 \alpha \lambda-\alpha) B+(1-\alpha) C] \\
& \leq 1-\alpha
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\sum_{n=0}^{\infty}\binom{k-2}{n}\binom{N-k}{m-n-2}, B=\sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1} \text { and } \\
& \qquad C=\sum_{n=1}^{\infty}\binom{k}{n}\binom{N-k}{m-n}
\end{aligned}
$$

Proof. We have defined
$K(k, N, m, z)=z-\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}\binom{k}{n-1}\binom{N-k}{m-n+1} z_{n}$
according to the lemma (1.2), we shall show that
$\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty} n[n-\lambda \alpha n-\alpha+\lambda \alpha]\binom{k}{n-1}\binom{N-k}{m-n+1} \leq 1-\alpha$.
Now

$$
\begin{aligned}
& \frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty} n[n-\lambda \alpha n-\alpha+\lambda \alpha]\binom{k}{n-1}\binom{N-k}{m-n+1}= \\
& =\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}[(n-1)(n-2)(1-\lambda \alpha)]\binom{k}{n-1}\binom{N-k}{m-n+1} \\
& \left.+\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}(n-1)(3-2 \lambda \alpha-\alpha)\right]\binom{k}{n-1}\binom{N-k}{m-n+1} \\
& +\frac{1}{\binom{N}{m}} \sum_{n=2}^{\infty}(1-\alpha)\binom{k}{n-1}\binom{N-k}{m-n+1} \\
& =\frac{1}{\binom{N}{m}}\left[\sum_{n=3}^{\infty} \frac{(1-\lambda \alpha) k!}{(k-n+1)!(n-3)!}\binom{N-k}{m-n+1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=3}^{\infty} \frac{(3-2 \lambda \alpha-\alpha) k!}{(k-n+1)!(n-2)!}\binom{N-k}{m-n+1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=2}^{\infty}(1-\alpha)\binom{k}{n-1}\binom{N-k}{m-n+1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\binom{N}{m}}\left[\sum_{n=0}^{\infty}(1-\lambda \alpha) \frac{k!}{(k-n-2)!n!}\binom{N-k}{m-n-2}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=0}^{\infty}(3-2 \lambda \alpha-\alpha) \frac{k!}{(k-n-1)!n!}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=1}^{\infty}(1-\alpha)\binom{k}{n}\binom{N-k}{m-n}\right] \\
& =\frac{1}{\binom{N}{m}}\left[\sum_{n=0}^{\infty} k(k-1)(1-\lambda \alpha) \frac{(k-2)!}{(k-n-2) n!}\binom{N-k}{m-n-2}\right] \\
& +\frac{1}{\binom{N}{m}}\left[k(3-2 \lambda \alpha-\alpha) \sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[\sum_{n=1}^{\infty}(1-\alpha)\binom{k}{n}\binom{N-k}{m-n}\right] \\
& =\frac{1}{\binom{N}{m}}\left[k(k-1)(1-\lambda \alpha) \sum_{n=0}^{\infty}\binom{k-2}{n}\binom{N-k}{m-n-2}\right] \\
& +\frac{1}{\binom{N}{m}}\left[(k-1)(3-2 \lambda \alpha-\alpha) \sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1}\right] \\
& +\frac{1}{\binom{N}{m}}\left[(1-\alpha) \sum_{n=1}^{\infty}\binom{k}{n}\binom{N-k}{m-n}\right] \\
& =\frac{1}{\binom{N}{m}}[k(k-1)(1-\alpha \lambda) A+k(3-2 \alpha \lambda-\alpha) B+(1-\alpha) C] \\
& \leq 1-\alpha
\end{aligned}
$$

where

$$
\begin{gathered}
A=\sum_{n=0}^{\infty}\binom{k-2}{n}\binom{N-k}{m-n-2}, B=\sum_{n=0}^{\infty}\binom{k-1}{n}\binom{N-k}{m-n-1} \text { and } \\
C=\sum_{n=1}^{\infty}\binom{k}{n}\binom{N-k}{m-n}
\end{gathered}
$$

REFERENCES

[1] O. Altintas and S. Owa, "On subclasses of univalent functions with negative coefficients", Pusan Kyongnam Mathematical Journal, vol. 4, pp. 41-56, 1988.
[2] A. O. Mostafa, "A study on starlike and convex properties for hypergeometric functions", Journal of Inequalities in Pure and Applied Mathematics, vol. 10,no. 3, article 87, pp. 1-16, 2009.
[3] S. Porwal and K. K. Dixit, "An application of generalized Bessel functions on certain analytic functions", Acta Universitatis Matthiae Belii. Series Mathematics, pp. 51-57, 2013.
[4] S. Porwal, "An application of a Poisson distribution Series on certain analyticFunctions" Journal of Complex Analysis, Volume 2014, Article ID 984135.
[5] H. Silverman, "Univalent functions with negative coefficients", Proceedings of the American Mathematical Society, vol. 51, pp. 109-116, 1975.
[6] B. C. Carlson and D. B. Shaffer, "Starlike and prestarlike hypergeometric func-tions",SIAM Journal
on Mathematical Analysis, vol. 15, no. 4, pp. 737-745, 1984.
[7] N. E. Cho, S. Y.Woo, andS.Owa, "Uniform convexity properties for hypergeometric functions", Fractional Calculus and Applied Analysis for Theory and Applications, vol. 5, no. 3, pp. 303-313, 2002.
[8] E. P. Merkes and W. T. Scott, "Starlike hypergeometric functions", Proceedings of the American Mathematical Society, vol. 12, pp. 885-888, 1961.
[9] A. K. Sharma, S. Porwal, and K. K. Dixit, "Classmappings properties of convolutions involving certain univalent functions associated with hypergeometric functions", Electronic Journal of Mathematical Analysis and Applications, vol. 1, no. 2, pp. 326-333, 2013.
[10] A. Gangadharan, T. N. Shanmugam, and H. M. Srivastava, "Generalized hyper-geometric functions associated with uniformly convex function"s, Computers and Mathematics with Applications, vol. 44, no. 12, pp. 1515-1526, 2002.

