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1. INTRODUCTION  
Controllability is a mathematical problem, which consists in 

determining the targets to which one can drive the state of 

some dynamical system, by means of a control parameter 

present in the equation. Many physical systems such as 

quantum systems, fluid mechanical systems, wave 

propagation, diffusion phenomena, etc. are represented by an 

infinite number of degrees of freedom, and their evolution 

follows some partial differential equation. Finding active 

controls in order to properly influence the dynamics of these 

systems generate highly involved problems. The control 

theory for PDEs, and among this theory, controllability 

problems, is a mathematical description of such situations. 

Any dynamical system represented by a PDE, and on which 

an external influence can be described, can be the object of a 

study from this point of view. In 1978, D.L. Russell [1] 

made a rather complete survey of the most relevant results 

that were available in the literature at that time. In that paper, 

the author described a number of different tools that were 

developed to address controllability problems, often inspired 

and related to other subjects concerning partial differential 

equations: multipliers, moment problems, nonharmonic 

Fourier series, etc. 

Various types of controllability of linear abstract dynamical 

systems defined in a Banach or Hilbert spaces have been 

recently extensively explored by several authors (see e.g.[2]-

[18]). More recently, J.-L. Lions introduced the so called 

Hilbert Uniqueness Method (H.U.M.; see [19]). 

In this work, we will focus our attention on some special 

aspects of controllability problems for parabolic system 

involving Laplace operator with differend type of  

observation. In order to explain the results we have in mind, 

it is convenient to consider the abstract form: 

Let V  and H  be two real Hilbert spaces such that V  is a 

dense subspace of .H  Identifying the dual of H  with ,H  

we may consider ,VHV   where the embedding is 

dense in the following space. Let )(tA ( []0,Tt ) be a 

family of continuous operators associated with a bilinear 

forms ;.,.)(t  defined on VV   which are satisfied 

Gårding’s inequality  
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Then, from [20] and [21], for given 0,yf  and B  be a 

bounded linear operator the following abstract systems:  
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 have a unique solution, we denote it by .);( Yuty   

We also given an observation equation  

HH),:(),(=)( YLCuCyuz   being a Hilbert 

space 

Definition 1 The system whose state is defined by (2)is said 

to be controllable if the observation )(uz  generates a 

dense (affine) subspace of the space of observations .H   

In the above setting, the equation (2) is typically a partial 

differential equation, where the influence of u  can take 

multiple different forms: typically, u  can be an additional 

(force) term in the right-hand side of the equation, localized 

in a part of the domain; it can also appear in the boundary 

conditions; but other situations can clearly be envisaged (we 

will describe some of them). 

A typical application of a parabolic equation is the heat; 






















[,,0]on),,(=),(

,in)(=,0)(

,[,0]in=

0

Ttxutxy

xyxy

TQuy
t

y

            

(3) 

 where 
NR  is a bounded open domain with smooth 

boundary    and )(0 xy  is a given function in 

).(2 L The results in [20] partly overlap with results in 

[22] and they were shown that the system (3) (with 

)(2 QLu  ) is controllable. 

In our papers [23]-[29], the above results are extended, the 

controllability questions related to the time optimal control 

problem of nn  co-operative parabolic or hyperbolic 

systems with distributed or boundary controls was 

considered. 

In this paper, we will consider a boundary controllability 

problem for the following nn  Dirichlet  co-operative 

linear parabolic system with different cases of  observations 

(here and everywhere below the vectors are denoted by bold 

letters and the index ni 1,2,...,= ):  

mailto:mashehata_math@yahoo.com


 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(4),2981-2985,2015 

July-August 

2982 




















on),,(=),(

,in)(=,0)(

,in))((=

,0

txutxy

xyxy

QtA
t

y

ii

ii

i
i y

 (4) 

 where ,,0iy  is a given functions , iu  represents a 

Dirichlet boundary control function defined in   and 

)(tA  ( []0,Tt ) are a family of nn  continuous 

matrix operators,  
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with co-operative coefficient functions iji aa ,  satisfying the 

following conditions:  
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2. Solutions of co-operative Dirichlet parabolic systems 

This section is devoted to the analysis of the existence and 

uniqueness of solutions of system (4). Let )(1

0 H  be the 

usual Sobolev space( see [30]) of order  one which consists 

of all )(2 L  whose distributional derivatives  
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form ( see [30]) :       
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Lemma 1 If   is a regular bounded domain in ,NR  with 

boundary ,  and if m  is positive on   and smooth 

enough ( in particular )( Lm ) then the eigenvalue 

problem:  
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 possesses an infinite sequence of positive eigenvalues:  

 

.as,)(;)()(<)(<0 21  kmmmm kk  

Moreover )(1 m is simple, its associate eigenfunction me  

is positive, and )(1 m is characterized by:  
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Proof. See[31].  

Now, let 
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Lemma 2  If (5) and (8) hold then, the bilinear form (6) 

satisfy the Gårding inequality  
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 By Cauchy Schwarz inequality and (7),we obtain  
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 Finally, from (8) we have (9).  

Under the above lemma ( Lemma 2) and using the results of 

Lions [20] and Lions and Magenes [21] we can prove the 

following theorems: 

 Now the solution of (4) is defined by transposition ( see 

[20-21]): Theorem 1  There exists a uniqe solution  
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for system (4) such that 
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for all 0=0,=),(,)(1,2

  TxQH ii  

where )(* tA  is the adjoint of )(tA  and  the sobolev 

space 0,),(, srQH sr
 (see [21]) is defined by  

 

  ))(;(0,)(;0,=)( 00,  HTHHTHQH srsr
 

);(0, XTH s
 denotes the sobolev space of order s  of 

functions defined on ][0,T  and taking values in .X  

3  Controllability problems  

In this section, let )(uy  denote to the unique solution of (4) 

.  we take the  three cases of observations: 

 

3.1  Distributed  observation  

 

Let the observations be given by  

)()( 2 QLyi u  (11) 

Theorem 2  Assume that (5) and (8) hold, then the system 

(4) with control 
nL ))(( 2 u   and observation (11) is 

controllable.  

 

Proof. let us first remark that by translation we may always 

reduce the problem of controllability to the case were the 

system (4) with 0.=,0iy  We can show quit easily that (4) 

is controllable in 
nQL ))(( 2

 if and only if the observation 

generates a dense  subspace of the space  .))(( 2 nQL  By 

the Hahn-Banach theorem, this will be the case if  
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The existence of a unique solution for system (13) can be 

proved using Theorem1, with an obvious change of 

variables. 

Multiply the first equation in (13) by )(uiy  and using 

Green formula, we obtain the following identity:  
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 and so, if (12) holds, then  
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being zero, we conclude (see [32]) 0.=i  and hence 

0.=i
 

3.2  Final state observation  

Let the observation be given by  
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Since )()( 2 QLyi u  (and is defined by (10)) and 

)),(;,0()( 22  HTLyi u  we deduce from (4) that 
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dt

d
i u  from which we may 

deduce (cf. [21] Chapter 1) that );( utyt i  is continuous 

function from )(],0[ 1

0  HT . Hence (14) has meaning 

and the observation is in  )(1

0 H  

Theorem 3  Assume that (5) and (8) hold, then the system 

(4) with control 
nL ))(( 2 u  and observation (14) is 

controllable.  

 

Proof. We can reduce the problem of controllability to the 

case were the system (4) with 0.=,0iy  To show the 

system is controllable let )(1 Hi  such that  

n

ii Ly ))((,0=,)( 2 uu                  (15) Where 

the bracket denotes duality between  )(1 H  and 
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)(1 H . We introduce 
T
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solution of the following system  
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The existence of a unique solution for system (16) can be 

proved using Theorem1, with an obvious change of 

variables. 

Multiply the first equation in (16) by )(uiy  and using 

Green formula, we obtain the following identity:  
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 and so, if (15) holds, then  
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. 3.3  Boundary observation  

In this section, let )(uy  denote to the unique solution of 

(4), corresponding to a given control 
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Let the observation be given by  
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Theorem 4  Assume that (5) and (8) hold, then the system 

(4) with control 
nL ))(( 2 u  and observation (17) is 

controllable.  

 

Proof. We can reduce the problem of controllability to the 

case were the system (4) with 0.=,0iy  To show the 
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Multiply the first equation in (18) by )(uiy  and using 

Green formula, we obtain the following identity:  
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4  CONCLUSION 
In this study, we have proved the controllability to a special 

co-operative parabolic systems with Neumann conditions, 

with different cases of observation. Most of the results we 

described in this paper apply, without any change on the 

results, to more general parabolic systems involving the 

following second order operator :  
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with sufficiently smooth coefficients (in particular, 
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  ) and under the Legendre-

Hadamard ellipticity condition  
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for all i  and some constant 0.>  

In this case, we replace the first eigenvalue of the Laplace 

operator by the first eigenvalue of the operator L  (see 

[31]). 
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