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ABSTRACT: Multi-arm cooperative robotic systems are prominently utilized to manipulate heavy and fragile objects. In this 

case, controlling the induced forces between the end-effectors and the object and also the object’s position are important. As 

the object may be fragile, ineffective control of the forces can lead to some damage. The present work studies the displacement 

of the rigid bodies by a 3-DOF(degree of freedom)  dual arm in a predefined path and under predetermined forces. For this 

reason, the inverse kinematic problem is firstly solved. Then, considering the robot arms’ features and the desired goal, the 

sliding mode control is proposed  to perform the simultaneous position-force control. The simulation results of a 3-DOF 

spatial robot prove the success of this approach comparing to conventionalPD controller. Also, the performance of the 

proposed approach is investigated under parametric uncertainties, external disturbances, sudden variations of the payload, 

and the measurement noises. 
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1. INTRODUCTION 
Like the humans, robots can cooperate to manipulate heavy 

objects. This cooperation may also occur between a human 

and a robot[1]. Human-robot cooperation at home or at work 

seems useful for the tasks that require high accuracy (figure 

1)[2]. Due to widespread application of the cooperative 

robots, modeling and designing these robots have received 

much attention. 

Indeed, the purpose of implementing a control scheme is to 

provide a way so that a desired predetermined path could be 

travelled by a robot. This is called position control. In the 

position control, the center of mass travels on a pre-specified 

trajectory. Force control is also vital since its inefficiency can 

cause large contact forces which are troublesome in the case 

of fragile payloads[3]. 

Various force-position control schemes of the cooperative 

arms and the corresponding literature are reviewed in this 

section.  

 

Figure 1: human-robot cooperation. 

 Classical control schemes are often designed and 

implemented in the time-domain. As an example, in [4] 

employed a PID position controller in a dual cooperative arm 

consisting of two arms which move an object on a specified 

path without considering the internal forces and the arms’ 

interactions. They assigned a spiral model to the object and 

adopted the PID scheme to diminish the position errors and to 

face the object’s oscillations. Despite the simplicity of this 

approach, some drawbacks like the system’s tardiness and 

instability are encountered under specific conditions. Other 

physical-based schemes have also been tried. In [5] studied 

the simultaneous position-force control of a dual cooperative 

arm. They controlled the cooperative robots by P and PI 

controllers using force sensors in the feedback. 

Robust control has received special attention in this field. 

Using the robust scheme in the processes with either 

modeling or environmental uncertainty/indeterminacy, a 

reliable control method has been resulted. For example, in [6] 

proposed a robust position-force control scheme for the 

planar cooperative arms so that the consumed energy is 

minimized and the control target is also achieved. 

Sliding Mode Control (SMC) is one of the most useful 

schemes in the robust control theory. SMC is nonlinear and 

robust. It is simple to design and facilitates the error 

reduction. As a result, it has been used to make the robot 

arms accurately track a predefined trajectory [7]. Another 

example is the simultaneous position-force control of a dual 

cooperative arm proposed by Yagiz, Hacioglu and Arsalan 

[8]. They adopted a smooth (non-chattering) sliding mode 

approach which was robust and accurate. Comparisons 

between their approach and the available PID controllers lead 

to acceptable results. Each arm, in their work, had 2 degrees 

of freedom and moved an object on a flat surface. 

When the parametric or modeling variations occur, robust 

controllers are a proper choice. The major difference of the 

adaptive controllers and the robust ones is their independency 

to the prior knowledge of the uncertainties. The robust 

scheme guarantees to control the system in spite of the 

limited variations and uncertainties without any need to 

change the control law, while in the adaptive scheme, the 

control law changes with respect to the conditions. 

The researchers have also focused on the adaptive schemes. 

Chen and Guo have also suggested the adaptive controllers 

for the cooperative robots[9]. They considered a planar dual 

robot arm and applied embedding the control problem to the 

joint space (i.e. the inverse kinematics) and employed an 

adaptive controller in this space. The advantages of their 

approach are its capability in the presence of uncertainties, 

the Liapanouv stability proof, and its applicability to a more 

number of arms.in [10] and [11],offering a fault tolerance 

framework for cooperative robotic manipulators. 

In Section 2, the mathematical equation the kinematics and 

dynamics of robots cooperating with three degrees of 

freedom, is provided. In Section 3, SMC for simultaneous 

control of force and position the system is designed. Also in 

this section, the issue of stability of the controller is 

investigated. Simulation results of the proposed method, is 

presented in Section 4. 
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2.ROBOT’S EQUATION 
The adopted cooperative robot models are as in the figure 2. 

They have 3 degrees of freedom and manipulate a rigid body 

in the 3-dimensional space. Since the user’s coordinate is 

Cartesian and the control scheme works in the joint space, 

atransformation is required to embed the joint space  

 
Figure2: adopted cooperative robot model parameters whit 3 

DOF 

coordinates onto the Cartesianspace. This transformation is 

called the forward kinematics. In general, the forward 

kinematics of the robot arms is as follows: 
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The mid-point of the robot arm basis is assumed to be the 

common reference frame. The trajectory that each arm has to 

travel is slightly different on the x-axis due to the object’s 

length. Considering this length, the kinematic equations of 

each arm will be: 
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Given the positions in the joint space and using the above 

equations, the corresponding Cartesian coordinates can be 

obtained. The inverse of this transformation (Cartesian space 

to the joint space) is called the inverse kinematics which is: 
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Another transformation, called the Jacobian matrix, converts 

the joint space velocities into their corresponding Cartesian 

coordinates. The Jacobian matrix has a size of 3x3. 

The dynamic equation of the robot arms will be: 

    TM θ θ+C(θ,θ)+G θ =τ+J F
 

(11) 

where 
3×3M(θ) R

is the mass matrix, 
1 3×

C(θ,θ) R
 

denotes the Coriolis and centrifugal vectors, 
1 3×

G(θ) R
is 

the gravitational vector, 
1 3×

τ R  is the torque exerted to the 

robot joints, 
3 3×

J R  designates the Jacobian matrix, and 
1 3×

F R  represents the contact force between the end-

effectors and the environment. The values used for the 

simulation of the robot arm,as shown in table 1.In this 

table,m,L represents mass and length robot arm, and Ke is 

object stiffness factor. 
Table1:The parameters used for the simulation of the robot 

                              m         

0.2
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0.5
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0.2k
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0.5k
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0.5k
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1k
g 

0.1
m 

50
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3. SLIDINGMODE CONTROL 
From all approaches mentioned in section 1to control the 

robotic systems, an approach should be adopted that is 

appropriate to handle the special features of the cooperative 

arms model. Cooperative robotic systems have a dynamic and 

nonlinear behavior. They need a simultaneous and fast 

control to correctly manipulate the payload. As a result, the 

SMC seems an appropriate choice since it is fast, robust and 

provides an acceptable performance in the presence of 

uncertainties. If the control problem is defined as a tracking 

problem, the SMC with guaranteed stability and fast 

convergence in annihilating the tracking error could be the 

first choice.  

Assuming the joint angles as the state variables, the tracking 

error is defined as: 

de=θ -θ
 (13) 

where d  is the desired angle derived  from the inverse 

kinematics and   is the robot’s current angle. Once the error 

is defined, the sliding surface will be: 

S ke e   (14) 
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where e  is the error’s derivative with respect to time and k is 

a positive coefficient. The canonical form of the robot’s 

equation is: 

θ=f(θ)+gu
 (15) 

where
 f 

 and g are nonlinear functions and u represents 

the torque input. Hence using the SMC theory, the control 

signal to put the system’s states on the sliding surface in the 

steady state will be: 

( )d
eq

d
u f g

dt




 
  
   

(16) 

Another component is added to the ueq so that the state 

variables reach the sliding surface in the transient state. The 

final relation for the control signal is as follows: 

(S)
eq

sign
u u

kg


 
 

(17) 

 

where  is a positive number. As the control signals are 

applied, the system’s states are expected to move towards the 

sliding surface and remain there. So, the error is reduced to 

zero or is confined in an acceptable range. 

The proposed method is stable and this can be shown using 

the Liapanouv control theory. In order to do so, a positive 

definite function is presented as the Liapanouv function: 

1

2

TV SS
 

(18) 

Using the previous relations and differentiation with respect 

to time yields: 

0
dV

S
dt

  
 

(19) 

Therefore, according to the Liapanouv theorem, the system is 

asymptotically stable because the variations of the positive 

function V are descending. 

 

4. SIMULATION RESULTS 
In this section, the proposed method is applied to a 3-DOF 

dual cooperative arm to manipulate an object on a circular 

and/or square path and the simulation results are presented. 

Then, comparisons were made between this method and a PD 

controller. The circular paths are as in the following figure. 

The paths are one object’s length far from each other. 

 

Figure 3: the desired circular paths for the robot arms. 

After the SMC implementation, the path tracking is evaluated 

the tracking error as follows: 

 
Figure 4: the tracking error of the first robot arm for the 

circular path. 

 
Figure 5: the tracking error of the second robot arm for 

the circular path. 

As shown in the figure 3 and 4, the tracking error is smaller 

than 1mm which is quite acceptable. The proposed method is 

evaluated by the square paths with curved corners. These 

paths are shown in the figure 6. 

 
Figure 6: the desired square paths for the robot arms. 

As the square paths are intrinsically different form their 

circular counterparts, the tracking errors will also differ. This 

is shown in the following figure. 

 

Figure 7: the tracking error of the first robot arm  

for the square path. 
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Figure 

8: the tracking error of the second robot arm for the 

square path. 
As it is seen, the tracking procedure faces some deviations. 

At deviation points, the arms’ configuration changes and the 

error is resulted. The following figure depicts this error. 

 
Figure 9: Tracking of the square path for the first robot 

arm. 

As mentioned earlier, in addition to the position control, the 

force control is also vital in cooperative arms. Figure 9, the 

controlling force in moving the object weight of 0.5 kg, 

shows the circular path. In this figure, F1 force applied to the 

object by the first robot arm, and F 2 force applied to the 

object by the second robot arm. As you can see the outcome 

of the force applied by the robot arm is always constant  

(5 N). 

 
Figure 10: force control on the circular paths for the 

robot arms. 

 

Figure 11, the force to control the movement of the object, 

when the object is added to the mass disturbance, is 

shown.This disturbance of mass 1 N, around the time of 2.3 

seconds is applied to the object.As you can see, the controller 

controls the force applied to ease disturbance and exchange a 

small error in the desired directioncontinues. 

 
 

Figure 11.force control on circular path in the presence of 

disturbance 

 

 
 

 

 

Figure 12. Control the position of the first robot arm, in the 

presence of noise 

Figure 12 and 13, performance of the SMC, in the presence 

of noise is exhibited. In these figures, the Gaussian noise 

with        , is applied to the robot arm angles.Clearly, in 

conditions of noise, SMC could well follow the desired path. 
In Table 2, the position error controller PD and SMC, in the 

presence and absence of disturbance and noise are compared. 

As can be seen, in all conditions of the above, SMC, better 

performance than PD controller is. 
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Table2: compare performance SMC and PD in ISE 

ISE    
     

ISE    
     

ISE    
     

ISE    
     

ISE    
     

ISE    
     

1.1 1.2 0.012 0.782 0.053 1.6 SMC Circular  

motion 8.8 10.3 0.1884 0.001 0.0005 21.18 PD 

8.9 2 785.5 1 3.2 850.4 SMC Square 

 motion 1641.1  1766.9 7366.5 3152.2 2280 PD 

1.2 0.0797 1.1 0.86 0.0656 1.7 SMC Mass 

Disturbance 

1N increasy 112 114 32 32 88 322.3 PD 

1.1 1.2 0.079 1.1 0.8622 0.0656 SMC Noisi 

Sigma=0.1 212 111.3 114 211 32 88 PD 

  

 
 

Figure 13.Control the position of the second robot arm, in the 

presence of noise. 

 
5. CONCLUSION 
In the present work, a sliding mode controller is modeled and 

designed to simultaneously control the position-force of 3-

DOF dual cooperative arm that manipulates a rigid object. 

Simplicity of the design, robustness against the uncertainties 

and indeterminacy, and fast convergence of the tracking error 

to zero are some benefits of this approach. 

In order to compare the outputs of the proposed method with 

a conventional controller, a PD controller was applied to the 

robotic system and the results proved the effectiveness of the 

proposed method comparing to the PD controller. 

To evaluate the SMC, the model’s equations were derived 

firstly. Then, the inverse kinematics was applied to the 

circular and square paths. As last, the position-force sliding 

mode controller could result the minimum errors, but some 

errors were accompanied by the square path. These errors are 

shown in the position and force control curves. 
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