FACE ANTIMAGIC LABELING OF GENERALIZED $K C_{n}$ SNAKE GRAPH

M. Hussain ${ }^{1}$, A. Tabraiz ${ }^{1}$
${ }^{1}$ COMSATS Institute of Information Technology, Lahore campus, Lahore, Pakistan
mhmaths@gmail.com, alitabraizpmath@gmaill.com
ABSTRACT. This paper deal with the labeling of type (1, 1, 1). If we assign labels from the set $\{1,2,3, \cdots,|V(G)|+|E(G)|+|F(G)|\}$ to the vertices, edges and faces of plane graph G in such a way that each vertex, edge and face receives exactly one label and each number is used exactly once as a label such a labeling is called magic labeling of type (1, 1, 1). In this paper super 1-antimagic labeling of type (1, 1, 1) on $_{K C_{n}}$ snake graph and subdivision of ${ }_{K C_{n}}$ snake graph for string (1, 1, .., , 1) and string (2, 2, ... ,2) are discussed.

Key Words: Super face antimagic labeling of type (1, 1, 1), snake graph for string ($1,1, \ldots, 1$) and string (2, 2, .., 2).

1. INTRODUCTION

Throughout this paper finite, connected, simple and plane graphs are considered. A graph G with vertex set $V(G)$, edge set $\boldsymbol{E}(\boldsymbol{G})$ and face set $\boldsymbol{F}(\boldsymbol{G})$ is said to have a labeling of type (α, β, γ) (where $(\alpha, \beta, \gamma) \in\{0,1\})$ if we assign labels from the set $\{1,2,3, \cdots,|V(G)|+|E(G)|+|F(G)|\}$ to the set vertices, edges and faces of plane graph \boldsymbol{G} in such a way that each vertex, edge and face receives exactly one label and each number is used exactly once as a label. The weight of a face under a labeling of type $(1,1,1)$ is the sum of the labels carried by that face and the edges and vertices surrounding it. A labeling is called face-magic, if for every integer $s \geq 3$, all S-sided faces have the same weight. We allow different weights for different S. The notion of face-magic labeling of type (α, β, γ) for plane graphs was defined by Lih [24], where are given face-magic labelings of type $(1,1,0)$ for wheels, friendship graphs and prisms. The face-magic labeling for grid graphs, honeycomb, Mo"bious ladders, mprisms, m-antiprisms and for special classes of plane graphs are given in [1-12]. Miller et al. [21] provided the face-magic labeling of type $(1,1,1)$ for wheels and subdivision of wheels.
A labeling of type $(1,1,1)$ of plane graph G is called dantimagic if for every positive integer S the set of weights of all S-sided faces is $W_{s}=\left\{a_{s}, a_{s}+d, a_{s}+2 d, \cdots, a_{s}+\left(f_{s}-1\right) d\right\}$ for some integer a_{s} and $d \geq 0$, where f_{s} is number of S-sided faces. We allow different sets W_{s} for different s. For $d=0$, we have face-magic labeling. A d-antimagic labeling is called super if the smallest possible labels appear on the vertices. The super d-antimagic labeling of type $(1,1,1)$ for disjoint union of prisms and for antiprisms are presented in [19] and [14]. The existence of d-antimagic labeling of type $(1,1,1)$ for plane graphs containing a special Hamilton path for disconnected plane graphs are examined in [15]. Super d antimagic labeling for Jahangir graph for certain differences d are determined by Siddiqui in [23]. A general survey of graph labeling is [20].

A $K C_{n}$ snake is a connected graph with k blocks, each one isomorphic to cycle C_{h}, such that the block-cutpoint graph is a path. We call these graphs cyclic snakes. Let G be a $K C_{n}$ snake with $K \geq 2$. Suppose that $v_{1}, v_{2}, v_{3}, \cdots, v_{k-1}$ are the consecutive cut-vertices of G. The string ($d_{1}, d_{2}, d_{3}, \cdots, d_{k-2}$) of integers d_{i} is the distance in G between v_{i} and $v_{i+1}, 1 \leq i \leq k-2$, characterizes the graph G in the class $K C_{n}$ of n cyclic snakes. The definition of $K C_{n}$ snake graphs introduced Barrientos in [18] as a natural extension of triangular snake graphs defined by Rosa [22]. The order and size of $K C_{n}$ snake graph is defined as $V=\left\{v_{i, j} ; 1 \leq i \leq k, 1 \leq j \leq n-1\right\}$ and
$E=\left\{v_{i, j} v_{i, j+1} ; 1 \leq i \leq k, 1 \leq j \leq n-1\right\}$

2. MAIN RESULTS 1

In this paper we investigate the existence of the super d-antimagic labeling of type $(1,1,1)$ for $K C_{n}$ snake graphs as well as subdivision of $K C_{n}$ snake graphs with string (1, $1, \ldots 1)$ and string $(2,2, \ldots, 2)$.

Theorem 1 For all $k \geq 2$ and n even, $H \cong K C_{n}$ snake graph of string $(1,1, \ldots 1)$ and string $(2,2, \ldots, 2)$ admits super 1 -antimagic labeling of type $(1,1,1)$.
Proof.
Let $s=|V(H)|, e=|E(H)|$ and $f=|F(H)|$. Then

$$
s=(n-1) k+1, e=n k \text { and } f=k . \text { Now, we define the }
$$ labeling

$\lambda:|V(H)| \cup|E(H)| \cup|F(H)| \rightarrow\{1,2,3, \cdots, s+e+f\} \mathrm{a}$ s follows

$\lambda\left(v_{i, 1}\right)=\{i$,	$1 \leq i \leq k+1\}$
$\lambda\left(v_{i, 2}\right)=\{2 k+2-i$,	$1 \leq i \leq k\}$
$\lambda\left(v_{i, 3}\right)=\{4 k+2-i$,	$1 \leq i \leq k\}$
$\vdots \quad \vdots$	
$\lambda\left(v_{i, \frac{n}{2}}\right)=\{(n-2) k+2-i$,	$1 \leq i \leq k\}$
$\lambda\left(v_{i, \frac{n+4}{2}}\right)=\{2 k+1+i$,	$1 \leq i \leq k\}$
$\lambda\left(v_{i, \frac{n+6}{2}}\right)=\{4 k+1+i$,	$1 \leq i \leq k\}$
\vdots	
$\lambda\left(v_{i, n-1}\right)=\{(n-2) k+1+i$,	$1 \leq i \leq k\}$

We label the edges of H as follows

$$
\begin{array}{cc}
\lambda\left(v_{i, 1} v_{i, 2}\right)=\{s+i, & 1 \leq i \leq k\} \\
\lambda\left(v_{i, 2} v_{i, 3}\right)=\{s+2 k+i, & 1 \leq i \leq k\} \\
\vdots & \\
\lambda\left(v_{i, \frac{n}{2}} v_{i+1,1}\right)=\{s+(n-1) k+i, & 1 \leq i \leq k\} \\
\lambda\left(v_{i, 1} v_{i, \frac{n+4}{2}}\right)=\{s+2 k+1-i, & 1 \leq i \leq k\} \\
\lambda\left(v_{i, \frac{n+4}{2}} v_{i, \frac{n+6}{2}}\right)=\{s+4 k+1-i, & 1 \leq i \leq k\} \\
\vdots \\
\vdots\left(v_{i, n-1} v_{i+1,2}\right)=\{s+n k+1-i, & 1 \leq i \leq k\}
\end{array}
$$

We label the faces of H as follows
$\lambda\left(f_{i}\right)=\{s+e+f+1-i, \quad 1 \leq i \leq k\}$
In this way the $K C_{n}$ snake graph of string $(1,1, \ldots, 1)$ and string $(2,2, \ldots, 2)$ can be labeled to show super 1 -antimagic labeling of type $(1,1,1)$.
Theorem 2 For all $k \geq 2$ and n odd, $H \cong K C_{n}$ snake graph of string $(1,1, \ldots 1)$ and string $(2,2, \ldots, 2)$ admits super $\quad 1$-antimagic labeling of type $(1,1,1)$.
Proof.
Let $s=|V(H)|, e=|E(H)|$ and $f=|F(H)|$. Then
$s=(n-1) k+1, e=n k$ and $f=k$. Now, we define the labeling
$\lambda:|V(H)| \cup|E(H)| \cup|F(H)| \rightarrow\{1,2,3, \cdots, s+e+f\} \mathrm{a}$ s follows
$\begin{array}{ll}\lambda\left(v_{i, 1}\right)=\{i, & 1 \leq i \leq k+1\} \\ \lambda\left(v_{i, 2}\right)=\{2 k+1+i, & 1 \leq i \leq k\} \\ \lambda\left(v_{i, 3}\right)=\{4 k+1+i, & 1 \leq i \leq k\}\end{array}$ $\vdots \quad \vdots$
$\lambda\left(v_{i, \frac{n-1}{2}}\right)=\{(n-2) k+1+i, \quad 1 \leq i \leq k\}$
$\lambda\left(v_{i, \frac{n+3}{2}}\right)=\{2 k+2-i, \quad 1 \leq i \leq k\}$
$\lambda\left(v_{i, \frac{n+5}{2}}\right)=\{4 k+2-i, \quad 1 \leq i \leq k\}$
$\lambda\left(v_{i, n}\right)=\{(n-2) k+2-i, \quad 1 \leq i \leq k\}$
We label the edges of H as follows

$$
\begin{array}{ccc}
\lambda\left(v_{i, 1} v_{i, 2}\right)=\{s+i, & & 1 \leq i \leq k\} \\
\lambda\left(v_{i, 2} v_{i, 3}\right) & =\{s+2 k+1-i, & 1 \leq i \leq k\} \\
\lambda\left(v_{i, 3} v_{i, 4}\right) & =\{s+2 k+i, & 1 \leq i \leq k\} \\
\vdots & \vdots & \\
\lambda\left(v_{i, n} v_{i, 1}\right)=\{s+(n-1) k+i, & & 1 \leq i \leq k\}
\end{array}
$$

We label the faces of H as follows
$\lambda\left(f_{i}\right)=\{s+e+f+1-i, \quad 1 \leq i \leq k\}$
In this way the $K C_{n}$ snake graph of string $(1,1, \ldots, 1)$ and string ($2,2, \ldots, 2$) can be labeled to show super 1-antimagic labeling of type $(1,1,1)$.

3. MAIN RESULTS 2

In this section we formulate super antimagic labeling of $K C_{n}$ snake graph of string of string $(1,1, \ldots, 1)$ and string $(2,2, \ldots, 2)$ with 1 subdivision.

Theorem 3 For all $k \geq 2$ and n even, $H \cong K C_{n}$ snake graph of string $(1,1, \ldots 1)$ and string $(2,2, \ldots, 2)$ with 1 subdivision, admits super 1 -antimagic labeling of type (1,1 , $1)$.

Proof.

Let $s=|V(H)|, e=|E(H)|$ and $f=|F(H)|$. Then

$$
s=2 n k-k+1, e=2 n k \text { and } f=k .
$$

Now, we define the labeling $\lambda:|V(H)| \cup|E(H)| \cup|F(H)| \rightarrow\{1,2,3, \cdots, s+e+f\}$ as follows

$$
\begin{array}{ll}
\lambda\left(v_{i, 1}\right)=\{i, & 1 \leq i \leq k+1\} \\
\lambda\left(v_{i, 2}\right)=\{4 k+2-i, & 1 \leq i \leq k\} \\
\lambda\left(v_{i, 3}\right)=\{6 k+2-i, & 1 \leq i \leq k\}
\end{array}
$$

We label the partitions of H as follows

$$
\begin{array}{cc}
\lambda\left(a_{i, 1}\right)=\{2 k+2-i, & 1 \leq i \leq k+1\} \\
\lambda\left(a_{i, 2}\right)=\{2 k+1+i, & 1 \leq i \leq k\} \\
\lambda\left(a_{i, 3}\right)=\{4 k+1+i, & 1 \leq i \leq k\} \\
\vdots & \\
\text { We label the edges as follows } & \\
\lambda\left(v_{i, 1} a_{i, 1}\right)=\{s+i, & 1 \leq i \leq k\} \\
\lambda\left(a_{i, 1} v_{i, 2}\right)=\{s+2 k+1-i, & 1 \leq i \leq k\} \\
\lambda\left(v_{i, 21} a_{i, 2}\right)=\{s+2 k+i, & 1 \leq i \leq k\} \\
\lambda\left(a_{i, 2} v_{i, 3}\right)=\{s+4 k+1-i, & 1 \leq i \leq k\}
\end{array}
$$

$$
\vdots \quad \vdots
$$

We label the faces of H as follows

$$
\lambda\left(f_{i}\right)=\{s+e+f+1-i, \quad 1 \leq i \leq k\}
$$

In this way the $K C_{n}$ snake graph of string $(1,1, \ldots, 1)$ and string ($2,2, \ldots, 2$) with 1 subdivision can be labeled in the best way to show super 1 -antimagic labeling of type ($1,1,1$).

Theorem 4 For all $k \geq 2$ and n odd, $H \cong K C_{n}$ snake graph of string $(1,1, \ldots 1)$ and string $(2,2, \ldots, 2)$ with 1 subdivision, admits super 1 -antimagic labeling of type (1, 1 , $1)$.

Proof.

Let $\quad s=|V(H)|, e=|E(H)|$ and $\quad f=|F(H)|$. Then $s=2 n k-k+1, e=2 n k$ and $f=k$.
Now, we define the labeling
$\lambda:|V(H)| \cup|E(H)| \cup|F(H)| \rightarrow\{1,2,3, \cdots, s+e+f\}$ a s follows

$\lambda\left(v_{i, 1}\right)=\{i$,	$1 \leq i \leq k+1\}$
$\lambda\left(v_{i, 2}\right)=\{2 k+2-i$,	$1 \leq i \leq k\}$
$\lambda\left(v_{i, 3}\right)=\{2 k+1+i$,	$1 \leq i \leq k\}$
$\lambda\left(v_{i, 4}\right)=\{4 k+2-i$,	$1 \leq i \leq k\}$
$\lambda\left(v_{i, 5}\right)=\{4 k+1+i$,	$1 \leq i \leq k\}$

$\lambda\left(v_{i, 5}\right)=\{4 k+1+i, \quad 1 \leq i \leq k\}$ $q=(n-1) k+1$

$$
\begin{array}{ll}
\lambda\left(a_{i, 1}\right)=\{q+k+1-i, & 1 \leq i \leq k\} \\
\lambda\left(a_{i, 2}\right)=\{q+k+i, & 1 \leq i \leq k\} \\
\lambda\left(a_{i, 3}\right)=\{q+3 k+1-i, & 1 \leq i \leq k\}
\end{array}
$$

We label the edges as follows

$$
\lambda\left(v_{i, 1} a_{i, 1}\right)=\{s+k+1-i, \quad 1 \leq i \leq k\}
$$

$$
\lambda\left(a_{i, 1} v_{i, 2}\right)=\{s+k+i, \quad 1 \leq i \leq k\}
$$

$$
\lambda\left(v_{i, 21} a_{i, 2}\right)=\{s+3 k+1-i, \quad 1 \leq i \leq k\}
$$

$$
\lambda\left(a_{i, 2} v_{i, 3}\right)=\{s+3 k+i, \quad 1 \leq i \leq k\}
$$

$$
\vdots \quad \vdots
$$

We label the faces of H as follows

$$
\lambda\left(f_{i}\right)=\{s+e+f+1-i, \quad 1 \leq i \leq k\}
$$

In this way the generalized $K C_{n}$ snake graph of string $(1,1$, $\ldots, 1)$ and string $(2,2, \ldots, 2)$ with 1 subdivision can be labeled in the best way to show super 1-antimagic labeling of type (1, $1,1)$.

4. OPEN PROBLEMS

Open Problem 1 For all $k \geq 2, H \cong m K C_{n}$ snake graph of string $(2,2, \ldots, 2)$ admits super 1-antimagic labeling of type (1, 1, 1).

Open Problem 2 For all $k \geq 2, \quad H \cong m K C_{n}$ snake graph of string $(1,1, \ldots 1)$ admits super 1 -antimagic labeling of type $(1,1,1)$.

Open Problem 3 For all $k \geq 2, H \cong K C_{n}$ snake graph of string ($2,2, \ldots, 2$) with partition admits super 1 -antimagic labeling of type $(1,1,1)$.

Open Problem 4 For all $k \geq 2, H \cong m K C_{n}$ snake graph of string $(1,1, \ldots 1)$ admits super 1 -antimagic labeling of type $(1,1,1)$.

REFERENCES

1. M. Bača, On magic and consecutive labelings, for the special classes of plane graphs, Utilitas Math, 32(1987), $59-65$.
2. M. Bac \mathfrak{a}, On magic labelings of grid graphs, Ars Combin., 33 (1992), 295-299.
3. M. Bača, On magic labelings of honeycomb Discrete Math., 105(1992), 305-311.
4. M. Bac^a, On magic labelings of Mo"bius ladders, J. Franklin Inst, 326(1989), 885-888.
5. M. Bac \mathfrak{a}, On magic labelings of type $(1,1,1)$ for three classes of plane graphs, Math. Slovaca, 39 (1989), 233-239.
6. M. Bača, Labelings of m-antiprisms, Ars Combin., 28, (1989), 242-245.
7. M. Bača, Labelings of two classes of Convex polytopes, Utilitas Math., 34(1988) 24-31.
8. M. Bača, On magic labelings of m-prisms, Math. Slovaca. 40 (1990), 11-14.
9. M. Bac \mathfrak{a}, Labelings of two classes of plane graphs, Acta. Math. Appl. Sinica, 9 (1993), $82-87$.
10. M. Bača, On magic labeling of type $(1,1,1)$ for the special class of plane graphs, J. Franklin Inst., 329 (1992), 549 - 553.
11. M. Bac^a, On magic labelings of convex polytopes, Ann. Disc. Math., 51(1992), 13-16.
12. M. Bac ${ }^{\text {ª }}$ and I. Holl'ander, Labelings of a certain class of convex polytopes, J. Franklin Inst, 329 (1992), $539-547$.
13. M. Bača and M. Miller, On d-antimagic labeling of type (1, 1, 1) for prisms, J. Combin. Math. Combin. Comput. 44 (2003), 199-207.
14. M. Bača, M Numan and M.K.Siddiqui, Super face antimagic labelings of union of antiprism, Mathematics in Computer Science., 7, No 2 (2013), 245-253.
15. M. Bača, L. Brankovic and A.Semaničova'Fen ovc"'ikova', Labelings of plane graphs containing Hamilton path, Acta Math. Sin. (Engl. Ser.), 26 (12) (2010), 2283-2294.
16. M. Bača, F. Bashir and A.Semaničova'Fen ${ }^{\prime}$ ovc"'ikova', On face antimagic la- belings of disjoint union of prisms, Utilitas Math., 85 (2011), 97-112.
17. M. Bača, M. Miller, O. Phanalasy and A.Semanic ${ }^{\prime}$ ova'-Fen ${ }^{\prime}$ ovc`'ikova', Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sin. (Engl. Ser.) 26 (12) (2010), 2283-2294.
18. Barientos, Difference vertex labelings, Ph.D. Thesis, Universitat Po- litec- nica De Catalunya, Spain, 2004.
19. G. Ali, M. Bača, F. Bashir andA.Semaničova'Fen ovc"'ikova', On face antimagic labelings of disjoint union of prisms, Utilitas Math, 85 (2011) 97-112.
20. J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics (2012).
21. M. Hussain, K. Ali, A. Ahmed, M. Miller, Magic labelings of type ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) of families of wheels, Math.Comput.Sci. (2013), 7:315-319.
22. A. Rosa, Cyclic steiner triple systems and labelings of triangular cacti, Sci. Ser. A Math Sci. (N. S.), 1 (1998), 87-95.
23. M.K. Siddiqui, M. Numan, M.A. Umar. Face Antimagic Labeling of Jahangir Graph. Mathematics in Computer Science. .2013:1-7.
24. Ko-Wei Lih, On magic and consecutive labelings of plane graphs, Utilitas Math, 24 (1983), 165 197.
25. W.D. Wallis, Magic Graphs, Birkh"auser, Boston Basel - Berlin, 2001.
