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ABSTRACT. This paper deal with the labeling of type (1, 1, 1). If we assign labels from the set
{1,2,3,---,|V(G)|+|E@G)| +|F(@)[}0 the vertices, edges and faces of plane graph G in such a way that

each vertex, edge and face receives exactly one label and each number is used exactly once as a label such a
labeling is called magic labeling of type (1, 1, 1). In this paper super 1l-antimagic labeling of type (1, 1, 1)
ongc, snake graph and subdivision of k¢ snake graph for string (1, 1, ..., 1) and string (2, 2, ... ,2) are

discussed.
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1. INTRODUCTION
Throughout this paper finite, connected, simple and plane
graphs are considered. A graph G with vertex set v (G),

edge set E(c) and face set F(G) is said to have a

labeling of type («, B,,) (Where («, 3,,)<{0,13) if we
assign labels from the set
{1,2,3,---, V(@) + |E@G) |+ |F@©G)|} the set vertices,
edges and faces of plane graph G in such a way that each
vertex, edge and face receives exactly one label and each
number is used exactly once as a label. The weight of a face
under a labeling of type (1, 1, 1) is the sum of the labels
carried by that face and the edges and vertices surrounding it.
A labeling is called face-magic, if for every integer s>3, all

S -sided faces have the same weight. We allow different
weights for different S. The notion of face-magic labeling of
type (e, ,y) for plane graphs was defined by Lih [24],
where are given face-magic labelings of type (1, 1, 0) for
wheels, friendship graphs and prisms. The face-magic
labeling for grid graphs, honeycomb, Mo bious ladders, m-
prisms, m-antiprisms and for special classes of plane graphs
are given in [1-12]. Miller et al. [21] provided the face-magic
labeling of type (1, 1, 1) for wheels and subdivision of
wheels.

A labeling of type (1, 1, 1) of plane graph G is called d-
antimagic if for every positive integer S the set of weights of
all S -sided faces is

W, ={a,,a, +d,a, +2d,---,a, +(f, —1)d }for some
integer a;and d >0, where fS is number of S -sided faces.

We allow different sets W, for different S. For d =0, we

have face-magic labeling. A d-antimagic labeling is called
super if the smallest possible labels appear on the vertices.
The super d-antimagic labeling of type (1, 1, 1) for disjoint
union of prisms and for antiprisms are presented in [19] and
[14]. The existence of d-antimagic labeling of type (1, 1, 1)
for plane graphs containing a special Hamilton path for
disconnected plane graphs are examined in [15]. Super d-
antimagic labeling for Jahangir graph for certain differences d
are determined by Siddiqui in [23]. A general survey of graph
labeling is [20].

., 1) and string (2, 2,... , 2).

A KC, snake isa connected graph with k blocks, each
one isomorphic to cycle C, , such that the block-cutpoint
graph is a path. We call these graphs cyclic snakes. Let G be
a KC, snake  with K >2. Suppose that
V,,V,,V,, -V, _, are the consecutive cut-vertices of G . The
string (d,,d,,d;,---,d, ,) of integers d; is the distance in

G between v,andv,,,, 1<i<k —2, characterizes the graph

i+l
G in the class KC, of n cyclic snakes. The definition of
KC,, snake graphs introduced Barrientos in [18] as a natural

extension of triangular snake graphs defined by Rosa [22].
The order and size of KC_ snake graph is defined as

V={y,;;1<i<k,1< j<n-1}and
E={v,;Vi;1:1<i<k,1<j<n-1}
2. MAIN RESULTS 1

In this paper we investigate the existence of the super
d—antimagic labeling of type (1, 1, 1) for KC,, snake graphs
as well as subdivision of KC, snake graphs with string (1,
1, ...1) and string (2, 2, ..., 2).

Theorem 1 For all K >2 and N even, H= KC_ snake

graph of string (1, 1, ...1) and string (2, 2, ..., 2) admits
super 1-antimagic labeling of type (1, 1, 1).
Proof.

Let S=[\/(H)|,e:|E(H)| and f :|F(H)|. Then
s=(n-1)k+1 e=nkand f =K. Now, we define the

labeling

AN (H)UEH)|UF (H)|>{L 2,3,---,s+e+f}a

s follows
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A (v, ) =i, 1<i<k+1

A (v, ,)={2k+2~1i, 1<i <k}

A (V; ) ={dk +2-i, 1<i < k}

A )={(n-2)k+2-i, 1<i<k}
"2

AV .0 )={2k +1+i, 1<i <k}
"o

AV e )={4k+1+i, 1<i <k}
"

AV a)={(n-2)k+1+i, 1<i<k}

We label the edges of H as follows

A (Viq Vi)={s+i, 1<i <k}

A(V;,V5)={s+2Kk+i, 1<i <k}

AV, Vi )={s+(n-Dk+i, 1<i<k}
"2

AV pe)={s+2k+1-i, 1<i<k}

"o

AV oV e )={s+4k+1-i, 1<i<k}
I'T I'T

A (Vi nq Vi) ={s+nk+1-i, 1<i<Kk}

We label the faces of H as follows

A(f)={s+e+f+1-i, 1<i <k}

In this way the KC, snake graph of string (1, 1, ..., 1) and

string (2, 2, ..., 2) can be labeled to show super 1-antimagic
labeling of type (1, 1, 1).

Theorem2 For all K 22 and N odd, H=KC, snake

graph of string (1, 1, ...1) and string (2, 2, ..., 2) admits
super  l-antimagic labeling of type (1, 1, 1).
Proof.

Let S:[\/(H)|,e=|E(H)|and f =|F(H)|. Then
s=(n—-1)k+1, e=nkand f =K. Now, we define the
labeling

AN (H)UEH)|UF (H)|>{L 2,3,---,s+e+f}a
s follows
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A (v,,)={i, 1<i <k +1}
A (v, ,)={2k+1+i, 1<i <k}
1<i <k}

A (Vi 5)={4k +1+1,

AV H):.{(n—Z)k+.1+i, 1<i <k}

Ih—
2

AV ,.5)={2k+2-i, 1<i <k}
"

AV .6 )={8k+2—i, 1<i <k}
"

A )={(n-2k+2-i, 1<i<k}

We label the edges of H as follows

A (Vi Vv ,)={s+i, 1<i <k}

AV ,Vig)={s+ 2k +1-i, 1<i <k}

AV 3V, )={s+2k+i, 1<i <k}

AV, V) ={s+(n=-Dk+i, 1<i <k}

We label the faces of H as follows

A(f)={s+e+f+1-i, 1<i <k}

In this way the KC, snake graph of string (1, 1, ..., 1) and

string (2, 2, ..., 2) can be labeled to show super 1-antimagic
labeling of type (1, 1, 1).

3. MAIN RESULTS 2
In this section we formulate super antimagic labeling of
KC

" snake graph of string of string (1, 1, ..., 1) and string
(2, 2, ..., 2) with 1 subdivision.

Theorem 3 For all K >2 and N even, H=KC, snake

graph of string (1, 1, ...1) and string (2, 2, ..., 2) with 1
subdivision, admits super 1l-antimagic labeling of type (1, 1,
1).

Proof.

Let S =[\/(H)|,e=|E(H)| and f =|F(H)|. Then
s=2nk-k+1, e=2nkand f =k.

Now, we define the labeling
ANV (H)|UE(H)|U|F (H) {1 2,3,---,s+e+f}

as follows

A (v, )={i, 1<i <k +1}
A (v, ,)={8k +2-i, 1<i <k}
1<i <k}

A (v, ;) ={6k +21i,
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We label the partitions of H as follows

A(a;)={2k+2-1i, 1<i<k+1}
A(a,)={2k +1+i, 1<i <k}

A (3 5)={4k +1+1i, 1<i <k}
We label the.edges as follt;ws

AV, a,)={s+I, 1<i <k}
A(a,V,,)={s+2k+1-i, 1<i <k}
A (V51 8,)={s+2k+i, 1<i <k}
A(a;,V;3)={s+4k+1-1i, 1<i <k}
We label the.faces of H as.follows
A(f)={s+e+f+1-1i, 1<i <k}

In this way the KC, snake graph of string (1, 1, ..., 1) and

string (2, 2, ..., 2) with 1 subdivision can be labeled in the
best way to show super 1-antimagic labeling of type (1, 1, 1).

Theorem 4 For all K >2 and N odd, H= KC, snake

graph of string (1, 1, ...1) and string (2, 2, ..., 2) with 1
subdivision, admits super 1-antimagic labeling of type (1, 1,

1).

Proof.

Let S=[\/(H)|,e:|E(H)|and f =|F(H)|. Then
s=2nk—-k+1,e=2nkand f =k.

Now, we define the labeling

AN (H)VEMH)VF(H)—>{1 23, ---,s+e+f}a

s follows

A (v )={i, 1<i <k+1}
A (v, ,)={2k+2-i, 1<i <k}
A (v, 5)={2k +1+i, 1<i <k}
A (v, ,)={ak +2-i, 1<i <k}
A (v, 5 )={4K +1+i, 1<i <k}

We label the
g=(n-D)k+1

partitions of H as follows, here
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A (& )={q+k+1-i, 1<i <k}
A (a,)={q+k+i, 1<i <k}
A (3 3)={q+3k+1-i, 1<i <k}
We label the edges as follows
A (v, a,)={s+k+1-i, 1<i <k}
A (8 ,V;,)={s+k+i, 1<i <k}
A (V51 8,)={s+3k+1-i, 1<i <k}
A(a,V;,)={s+3k+i, 1<i <k}
We label the'faces of H as.follows
A(f)={s+e+f+1-i, 1<i <k}

In this way the generalized KC , snake graph of string (1, 1,

..., 1) and string (2, 2, ..., 2) with 1 subdivision can be labeled
in the best way to show super 1-antimagic labeling of type (1,
1, 1).

4. OPEN PROBLEMS
Open Problem 1 For all k >2, H=mKC, snake graph

of string (2, 2, ..., 2) admits super l-antimagic labeling of
type (1,1, 1).

Open Problem 2 Forall k>2, H=mKC, snake graph

of string (1, 1, ...1) admits super 1-antimagic labeling of type
1,1, 1).

Open Problem 3 For all k 22, H= KC, snake graph of

string (2, 2, ..., 2) with partition admits super 1l-antimagic
labeling of type (1, 1, 1).

Open Problem 4 For all k >2, H=mKC, snake graph

of string (1, 1, ...1) admits super 1-antimagic labeling of type
1,1,1).
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