
Sci.Int.(Lahore),28(1),211-216,2016 ISSN 1013-5316; CODEN: SINTE 8 211

Sept.-Oct.

AN EMPIRICAL INVESTIGATION ON TEST DATA GENERATION FOR
COUPLING BASED INTEGRATION TESTING

Shaukat Ali Khan
Center for Software Dependability, Mohammad Ali Jinnah University (MAJU),Islamabad, Pakistan

shaukatali74@gmail.com

Aamer Nadeem
Center for Software Dependability, Mohammad Ali Jinnah University (MAJU), Islamabad, Pakistan

anadeem@jinnah.edu.pk

ABSTRACT— Evolutionary approaches are well suited for automatic generation of good quality test data for software testing.

Software testing is not effective without good quality test data, so good quality software testing depends upon good quality

software test data. Automatic test data generation becomes very critical when we come to a higher level of testing including

integration testing and system testing. Unit testing can be managed with manual data to test single methods and classes. In

Integration testing and system testing, a large number of methods and classes are involved so there should be effective test

data generation strategy for the generation of automatic test data. In this paper, we have selected a case study from industry

for our empirical investigations on automatic test data generation for coupling based integration testing. We have identified

different coupling scenarios based on the selected application configurations and data. We have performed different

experiments using our already proposed approach described somewhere else [46]. Based on our experimental investigations,

we have concluded that our approach is very effective for test data generation for different coupling types involved in

integration of different components. Our experimental measurements indicate that our approach is very effective as compared

to random testing.

Keywords- Fitness Function; Integration Testing; Test Data ; Antecendent Method; Coupling Variable; Genetic Algorithm

I. INTRODUCTION
The execution of software with intends of finding error is

known as software testing [20]. Software testing is one of the

most important phases in the software development life

cycle. Software testing is an ongoing activity and can be

performed at each level starting from requirements to

acceptance testing. Different levels of testing are defined

starting from unit level to system level testing. Unit level

testing ensures the quality of single unit. Integration level

testing checks the quality of different interfaces defined for

communication of different components, ensures proper

message passing and behavior after integration are verified in

integration testing. System level testing maps the systems

with the requirements and functionalities what the system

intends for. In each level of testing, the important component

of software testing is test data, without adequate test data

execution of the software system is not possible. In other

words, we can say that software testing is not possible

without adequate test data. Different manual and automated

approaches have been proposed for the generation of test

data. Manual test data generation is a tedious process and

unable to handle the testing data requirements at a higher

level of testing. Most of the approaches used for automatic

test data generation use evolutionary approaches for test data

generation. The application of evolutionary approaches to

software testing is known as evolutionary testing [20, 21].

In this paper, we have applied our previous proposed

approach [45, 46] for automatic test data generation for

coupling based integration testing to a real time case study

from industry for coupling based integration testing.

Integration testing is concerned with the interactions among

components. Does a component call other components

correctly? Are the right parameters with right types and

ranges are passed? Does the called method return the proper

type and the value is in the correct range? These questions

are focus of the integration testing. Unfortunately, very little

research has been done in the area of integration testing.

Coupling based integration testing is based upon coupling

relationships that exist among variables across call sites in

procedures. In the same way as unit level testing is a base

for integration testing, integration test is a base for system

level testing. System level testing is difficult to achieve

before integration testing [20, 21]. The major contributions

of this research paper are:

 Application of the proposed approach for generation of

test data at the integration level as most of the work on test

data generation is at unit level

 Identification of coupling relations from the large

industrial application and based on those relationship

testing scenarios are defined.

 Generation of test data for identified coupling scenarios

 Comparison of experimental results with random testing,

in order to measure its effectiveness

 The rest of the paper is organized as follows: Section 2

elaborates the background knowledge coupling based

integration testing. Section 3 describes the chosen case study

and section 4 represents the experimental scenarios and

setup. Section 5 is related to empirical results and

experimental measurements. Section 6 represents the related

work. Section 7 concludes the paper and presents the future

work.

II. INTRODUCTION TO CASE-STUDY

To determine the potential effectiveness of our approach and

prototype tool, E-Coup Testing, over random test data

generation approach, a case study was performed in

telecommunication environment. We selected a large

application where integration of different components is very

frequent. We have also considered the requirement for

coupling based testing in our selection of case study. We

have analyzed the whole application before going into

experimentation for test data generation and focus more on

those components where coupling exists. We have identified

mailto:anadeem@jinnah.edu.pk

212 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),211-216,2016

Sept.-Oct.

all four coupling type relationships in our selected

application and then perform experimentation to generate test

data for all coupling types in order to test the complete

functionality of our proposed approach and tool. Before

going into the experimentation details, let’s first discuss our

selected application, important components of the

application, and data flow between different components,

different variable definition and use.

We have selected rating management application which is a

part of intelligent networks. Rating application is a very

important application as it manages the overall rating process

between and after call of any subscriber. Different offers and

promotions are launched using this application. There are

different components of this application each having specific

functionality. Test object and configurations described below

are used for our testing purposes.

.TEST OBJECTS AND CONFIGURATIONS

In order to achieve the testing of RMA application at

integration level, we have designed various promotions and

offers in the application where coupling is involved. We have

tested each promo using our proposed and generate test data

after analyzing the trace after every iteration. Our designed

offers and promotions contain different coupling types and

we have generated successfully data for designed promotion

and offer. We have designed following offers and configured

in RMA for testing. Table 1 shows the designed offer name,

their functionality, components used and coupling type used

in the flow.

Bonus on Usage (BoU) offers for minutes, SMS and data are

one of the complex offers in RMA as it involves interaction

of many components. BoU offers are selected for testing

because coupling Type 1 is involved in every BoU offer.

Accumulators are used in BoU offers to accumulate the

usage of the customer in terms of minutes, SMS, Data or

money. Accumulators instance is created in accumulator

component using current customer context object.

Accumulators are defined in the rating component with

initial and maximum values. Then accumulators are used and

evaluated in Bonus component to assign bonus to customers.

As three components are used in BoU offers; accumulator for

instance creation, rating for a definition and bonus for usage

of accumulators. So there is coupling type 1 exists in BoU

offers. We defined and configured three BoU Offers for

coupling type 1 testing.

Free minutes, SMS and Data bundles are used to give benefit

to user by using subscription services mostly through SMS

on some special number. These offers are testing because

coupling Type 2 is involved in bundles offers. Data bundles

are defined in dedicated accounts and used in rating

components so there is coupling type 2 exists in bundle

offers. Hybrid and BoR offers are used in rating component

and defined in bonus component again after giving bonus to

customer so there is coupling type 3 exists in these offers.

Timer based offers are used and defined rating components

so there is coupling type 4 for timer based offers.

Table 1. Scenarios Used for Testing

III. EXPERIMENTAL PROCEDURE

Testing flow of RMA application is shown in Figure 4. In the

first step, data configurations are done on RMA. Data

Configurations involve development of all offers to be tested

on RMA application and then all these testing scenarios are

stored in a database and will be loaded into memory at start

of RMA application. After data configurations, each scenario

is simulated using the simulator for execution of testing

cycles. Simulator executes each testing scenario using

configuration stored in RMA application.

After Execution of each cycle trace file is generated for each

scenario. This file is very important for our testing purposes.

This file contains the same information as one can get by

using instrumenting the code. By enabling trace on RMA

means that we are getting all information of every

component involved in execution and all variables along

with required and actual values for certain types of

conditions to be true. We can check the trace file for

execution of offers and simulation of various scenarios in

different offers. If all required scenarios are executed then we

stop the execution and test data used for execution is stored

in files.

Sci.Int.(Lahore),28(1),211-216,2016 ISSN 1013-5316; CODEN: SINTE 8 213

Sept.-Oct.

Figure 4. Testing Flow of Application using ECOUP

If all the required scenarios are not executed, then we pass

the trace file to ECOUP our proposed tool for test data

generation. Our proposed tool parsed the file; extract the

information for each accumulator, dedicated account,

accumulation counter and bonus calculator. Compare the

actual and required values, calculates the new values by

using cost function proposed by [6]. After processing of trace

files, each file is written in XML file in the required format

accepted by RMA. After loading of new values in RMA by

XML then execution is performed again and the same steps

are repeated until all scenarios are complete with required

test data.

IV. EXPERIMENTAL MEASUREMENTS
In order to prove the effectiveness of our approach, we

defined various measurements for comparison of our

approach with random test data generation. We have

compared our approach with random test data generation

based upon the following information for each test object:

 Success Rate

 Average Coverage

 Failure Rate

Failure rate is defined as:

Failure Rate= (Unsuccess Searches/Total Searches) *100

Success rate is defined as:

Success Rate= (Successful Searches/Total Searches) *100

Average number of generations for a successful search of

data is the average number of generation came from different

experiments on different test object based on coupling type.

We have compared the average number of generations of our

approach with random test data generation. Our approach has

much better results as compared to random testing.

Maximum time for a successful search is the maximum time

required by any test object for the generation of test data. We

have compared our approach’s maximum time with random

test data generation. Our approach has much better results as

compared to random testing.

We identified ten test objects, but up till now we have

performed our experiments with only three BOU test objects

and our proposed approach has much better results as

compared to random testing. The detailed parameters used

during the testing are shown in table 2.
Table 2. Testing Parameters

Parameter Values

Population Size 80

Number of Generations 400-600

Mutation Rate 0.2

Crossover Rate 0.8

Termination Criteria Coverage>90% or

Generation=600

Table 3. Average Coverage of Proposed Approach

Number of
Generations

Coverage Average
Coverage BoU

Minutes
BoU
SMS

BoU
Data

450 77% 73% 78% 76%

475 82% 78% 82% 80%

500 85% 81% 83% 83%

550 87% 82% 83% 84%

600 88% 82% 84% 84%

Table 4. Average Success Rate and Failure of Proposed

Approach

Number of
Generations

Success Rate Avg.
Success

Rate

Avg.
Failure

Rate
BoU

Minutes
BoU
SMS

BoU
Data

100 34% 40% 35% 36% 64%

100 36% 41% 36% 37% 63%

100 38% 37% 32% 35% 65%

100 33% 35% 37% 36% 64%

100 36% 32% 41% 36% 64%

Table 5. Average Coverage of Random Testing

Number of
Generations

Coverage Average
Coverage BoU

Minutes
BoU
SMS

BoU
Data

450 25% 23% 21% 23%

475 28% 28% 24% 26%

500 36% 32% 26% 31%

550 41% 33% 32% 35%

600 44% 34% 31% 36%

Table 6 .Average Success and Failure of Random Testing

Number of
Generations

Success Rate Average
Success

Rate

Average
Failure

Rate
BoU

Minutes
BoU
SMS

BoU
Data

100 8% 11% 13% 10% 90%

100 10% 9% 10% 9% 91%

100 7% 8% 9% 8% 92%

100 9% 12% 9% 10% 90%

100 6% 13% 8% 9% 91%

214 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),211-216,2016

Sept.-Oct.

Figure 5. Comparison of Experimental Results

From our experimental results, it has been concluded that our

approach has much better results as compared to random

testing as shown in figure 5.

V. RELATED WORK

Tonella [16] used evolutionary algorithm for testing of object

oriented program at unit level. McMinn and Holcombe [9]

used ant colony optimization for the solution of state issues

in object oriented programs. McMinn and Holcombe [9] used

extended chain approach for the resolution of state problem

in object oriented program. Watkins [17] experiments

confirmed that branch predicate and inverse path probability

based fitness functions are more accurate and correct.

Wegener et al. [18] [19] developed an automated framework

for structural testing of software programs and their

approcahe generates auotamated test data for execution of

test cases. Baresel et al. [1] peforms several experiments for

improvement of fitness function inorder to minimize number

of iterations and time for generation of test data. McMinn

[10] peformed a comprehensive analysis of test data

generation techniques using evolutionary approaches and

suggests various directions for future work.

Test data generation for unit testing of software system are

discussed in the following approches [8, 11, 13, 14, 15, 17]

using genetic algorithms. Cheon et al. [3, 4] suggested a

fitness function and applied the fitness function on unit

testing of Java program. Dharsana et al. [5] used genetic

algorithm for the optimization of test cases for java

programs. Jones et al. [6]apllied genetic algorithm for white

box testing of software testing. Bilal and Nadeem [2] used

genetic algorithm to cater state problem in object oriented

program and proposed fitness function for the solution of

state probelm.

Smith and Robson used classes instances in their testing

approach [23]. Fiedler apllied both structural and

specification based techniques in his tesing approcah[22].

Edwards used specification for the generation of test

cases[28]. Perry and Kaiser [29] suggested that integration

testing is more challenging in object oriented programs.

Jorgensen and Erickson describe an approach to integration

testing that is similar to many black box testing techniques

[14]. Object oriented testing at intra calss level is described

by the work of Hong et al. [30], Parrish et al. [31], Turner

and Robson [32], Doong and Franklin [33], and Chen et al.

[34]. Chen and Kao [26] prosed a technique call object flow

graph in their work for testing of object oriented program.

Alexander and Offutt [42, 38] proposed techniques for

coupling based integration tesing of object oriented

programs. S.A khan and Nadeem [45, 46,47] apply genetic

algorithm and particle swarm optimization to data flow

testing at unit and integration level for test data generation.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have carried out a case study on real time

industry application. We have identified various test objects,

their coupling types and based on our experimental

measurements, we have performed experiments. On the basis

of empirical results, we claim that our approach is more

efficient than random testing. In future more experimentation

will be performed on remaining test objects before any

conclusive statements can be made.

REFERENCES

[1] Baresel, A., Sthamer, H., Schmidt, M., (2002 July)

"Fitness Function Design to improve Evolutionary

Structural Testing", Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 02),

New York (NY), USA.

[2] Bilal, M., Nadeem, A., (2009 April) ―A State based

Fitness Function for Evolutionary Testing of Object-

Oriented Programs‖. Studies in Computational

Intelligence, 2009, Volume 253/2009, 83-94, DOI:

10.1007/978-3-642-05441-9. Software Engineering

Research, Management and Applications 2009

[3] Cheon, Y., Kim, M. Y., Perumandla, A., (2005 June) "A

Complete Automation of Unit Testing for Java

Programs", The 2005 International Conference on

Software Engineering Research and Practice (SERP),

Las Vegas, Nevada, USA.

[4] Cheon, Y., Kim, M., (2006 July) "A specification-based

fitness function for evolutionary testing of object-

oriented programs", Proceedings of the 8th annual

conference on Genetic and evolutionary computation,

Washington, USA.

[5] Dharsana, C.S.S., Askarunisha, A., (2007 December)

"Java based Test case Generation and Optimization

Using Evolutionary Testing". International Conference

on Computational Intelligence and Multimedia

Applications,Sivakasi, India.

[6] Jones, B., Sthamer, H., Eyres, D., (1996) "Automatic

structural testing using genetic algorithms", Software

Engineering Journal, vol. 11, no. 5, pp. 299 – 306.

[7] Liaskos, K., Roper, M., Wood, M., (2007 July)

"Investigating data-flow coverage of classes using

evolutionary algorithms", Proceedings of the 9th annual

conference on Genetic and evolutionary computation,

London, England.

[8] McGraw, G., Michael, C., Schatz, M., (2001)

"Generating software test data by evolution." IEEE

Transactions on Software Engineering, 27(12):1085—

1110.

Sci.Int.(Lahore),28(1),211-216,2016 ISSN 1013-5316; CODEN: SINTE 8 215

Sept.-Oct.

[9] McMinn, P., Holcombe, M., (2003 July) ―The state

problem for evolutionary testing.‖ In Proceedings of the

Genetic and Evolutionary Computation Conference

(GECCO), Lecture Notes in Computer Science vol.

2724, pages 2488-2497, Chicago, USA. Springer-

Verlag.

[10] McMinn, P., (2004) "Search-based Software Test Data

Generation: a Survey", Journal of Software Testing,

Verifications, and Reliability, vol. 14, no. 2, pp. 105-

156, June.

[11] Pargas, R., Harrold, M., Peck, R., (1999) ―Test-data

generation using genetic algorithms. Software Testing‖,

Verification and Reliability, 9(4):263-282.

[12] Roper, M., (1997 May) "Computer aided software

testing using genetic algorithms." In 10th International

Software Quality Week, San Francisco, USA.

[13] Sthamer, H., (1996) "The automatic generation of

software test data using genetic algorithms", PhD

Thesis, University of Ghamorgan, Pontyprid, Wales,

Great Britain.

[14] Seesing, A., Gross, H., (2006) "A Genetic Programming

Approach to Automated Test Generation for Object-

Oriented Software", International Transactions on

Systems Science and Applications, vol. 1, no. 2, pp. 127-

134.

[15] Tracey, N., Clark, J., Mander, K., McDermid, J., (2000)

"Automated test-data generation for exception

conditions", SOFTWARE—PRACTICE AND

EXPERIENCE, vol., Pages 61-79, January.

[16] Tonella, P., (2004 July) "Evolutionary Testing of

Classes", In Proceedings of the ACM SIGSOFT

International Symposium of Software Testing and

Analysis, Boston, MA, pp. 119-128.

[17] Watkins, A., (1995 July) "The automatic generation of

test data using genetic algorithms." In Proceedings of the

Fourth Software Quality Conference, pages 300--309.

ACM, 1995.

[18] Wegener, J., Baresel, A., Sthamer, H., (2001)

―Evolutionary test environment for automatic structural

testing.‖ Information and Software Technology Special

Issue on Software Engineering using Metaheuristic

Innovative Algorithms, 43 pp.841–854.

[19] Wegener, J., Buhr, K., Pohlheim, H., (2002 July)

―Automatic test data generation for structural testing of

embedded software systems by evolutionary testing‖, In

Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2002), pages 1233-

1240, New York, USA. Morgan Kaufmann.

[20] Lee Copeland, ―A Practitioner’s Guide to Software Test

Design‖, STQE Publishing, 2004.

[21] Boris Beizer, ―Software Testing Techniques‖,

International Thomson Computer Press, 1990.

[22] Fiedler SP. Object-oriented unit testing. Hewlett-

Packard Journal 1989; 40(2):69–75.

[23] Smith MD, Robson DJ. Object-oriented programming:

The problems of validation. Sixth International

Conference onSoftware Maintenance. IEEE Computer

Society Press: Los Alamitos, CA, 1990; 272–282.

Overbeck J. Integration testing for object-oriented

software. PhD Dissertation, Vienna University of

Technology, 1994.

[24] Pande HD, Landi WA, Ryder BG. Interprocedural def–

use associations for C systems with single level pointers.

IEEE Transactions on Software Engineering 1994;

20(5):385–403.

[25] Chen M-H, Kao M-H. Testing object-oriented

programs—An integrated approach. Proceedings of the

10th International Symposium on Software Reliability

Engineering. IEEE Computer Society Press: Boca

Raton, FL, 1999; 73–83.

[26] Kung D, Gao J, Hsia P, Toyoshima Y, Chen C. A test

strategy for object-oriented systems. Nineteenth Annual

International Computer Software and Applications

Conference. IEEE Computer Society Press: Los

Alamitos, CA, 1995; 239–244.

[27] Edwards SH. Black-box testing using flowgraphs: An

experimental assessment of effectiveness and

automation potential. Software Testing, Verification and

Reliability 2000; 10(4):249–262.

[28] Perry DE, Kaiser GE. Adequate testing and object-

oriented programming. Journal of Object-oriented

Programming 1990; 2(5):13–19.

[29] Hong HS, Kwon YR, Cha SD. Testing of object-oriented

programs based on finite state machines. The 1995 Asia

Pacific Software Engineering Conference. IEEE

Computer Society Press: Los Alamitos, CA, 1995; 234–

241.

[30] Parrish AS, Borie RB, Cordes DW. Automated flow

graph-based testing of object-oriented software modules.

Journal of Systems and Software 1993; 23(2):95–109.

[31] Turner CD, Robson DJ. The state-based testing of

object-oriented programs. Conference on Software

Maintenance. IEEE Computer Society Press: Los

Alamitos, CA, 1993; 302–310.

[32] Doong R-K, Frankl P. Case studies on testing object-

oriented programs. Fourth Symposium on Software

Testing, Analysis and Verification. ACM Press: New

York, 1991; 165–177.

[33] Chen HY, Tse TH, Chan FT, Chen TY. In black and

white: An integrated approach to class-level testing of

object-oriented programs. ACM Transactions on

Software Engineering and Methodology 1998; 7(3):250–

295.

[34] Meyer B. Object-Oriented Software Construction (2nd

edn). Prentice-Hall: Englewood Cliffs, NJ, 1997.

[35] Harrold MJ, Rothermel G. Performing data flow testing

on classes. Second ACM SIGSOFT Symposium on

Foundations of Software Engineering. ACM Press: New

York, 1994; 154–163.

[36] Alexander RT. Testing the polymorphic relationships of

object-oriented components. Technical Report ISE-TR-

99-02, Department of Information and Software

Engineering, George Mason University, February 1999.

[37] Alexander RT, Offutt J. Analysis techniques for testing

polymorphic relationships. Thirtieth International

Conference on Technology of Object-oriented

Languages and Systems (TOOLS30), Santa Barbara,

CA, 1999; 104–114.

216 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),211-216,2016

Sept.-Oct.

[38] Frankl PG, Weyuker EJ. An applicable family of data

flow testing criteria. IEEE Transactions on Software

Engineering 1988; 14(10):1483–1498.

[39] Rapps S, Weyuker WJ. Selecting software test data

using data flow information. IEEE Transactions on

Software Engineering 1985; 11(4):367–375.

[40] Alexander RT. Testing the polymorphic relationships of

object-oriented programs. Dissertation, George Mason

University, 2001.

[41] Alexander RT, Offutt J. Criteria for testing polymorphic

relationships. Proceedings of the International

Symposium on Software Reliability and Engineering

(ISSRE00). IEEE Computer Society:SanJose,CA,2000.

[42] Zhenyi Jin and A. Jefferson Offutt, Coupling-based

Crite-ria for Integration Testing. The Journal of

Software Test-ing, Verification, an d Reliability,

1998.8(3): p. 133-154.

[43] Xiyang Liu., Miao Zhang, Zhiwen Bai, Lei Wang, Wen

Du, Yan Wang.Function Call Flow based Fitness

Function Design in Evolutionary Testing.APSEC '07

Proceedings of the 14th Asia-Pacific Software

Engineering Conference, Pages 57-64, Nagoya

Japan,Dec5-7,2007.

 [44] A. Baresel, H. Sthamer, and M. Schmidt. Fitness func-

tion design to improve evolutionary structural test-ing.

In Proceedings of the Genetic and Evolution-ary

Computation Conference (GECCO'02), pp.1329-1336.

New York, USA, July 2002.

[45] S.A Khan, A. Nadeem, "Automated Test Data

Generation for Coupling Based Integration Testing of

Object Oriented Programs Using Particle Swarm

Optimization (PSO)", Proceedings of the Seventh

International Conference on Genetic and Evolutionary

Computing, ICGEC 2013, August 25 - 27, 2013 -

Prague, Czech Republic.

[46] SA Khan, A Nadeem, "Automated Test Data Generation

for Coupling Based Integration Testing of Object

Oriented Programs Using Evolutionary

Approaches",Proceedings of the 2013 10th International

Conference on Information Technology: New

Generations (ITNG 2013), Pages 369-374, LAS Vegas,

Nevada, USA.

[47] SA Khan, A Nadeem, "Applying Evolutionary

Approaches to Data Flow Testing at Unit Level",

Proceedings of the International Conference on

advanced software engineering and its application,

2011,(ASEA, 2011) Jeju Island, Korea, December 8-10,

2011.

