UPPER BOUND OF THIRD HANKEL DETERMINANT FOR FUNCTIONS RELATED WITH SYMMETRICAL POINTS

Muhammad Arif ${ }^{1}$, Rafiullah, Sadaf Umar, Muhammad Ayaz
Department of Mathematics, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan marifmaths@hotmail.com (M. Arif), rafilec@gmail.com (Rafiullah)
sadafumar90@gmail.com (S. Umar), mayazmath@awkum.edu.pk (M. Ayaz)

Abstract

In the this paper, we consider a subclass $S L(s, t)$ of analytic functions related with symmetrical points as well as right half of the lemniscates of Bernoulli, $\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=0$. An upper bound of the Hankel determinant $H_{3}(1)$ is determinant for this class.

Keywords: Analytic functions, lemniscate of Bernoulli, Hankel determinants.
2010 Mathematics Subject Classification: 30C45, 30C10, 47B38.

1. INTRODUCTION

Let A denote the class of functions $f(z)$ which are analytic in the region $U=\{z \in \mathrm{C}:|z|<1\}$: and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)-1=0$. Therefore, for $f(z) \in A$, one has

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathrm{U} . \tag{1.1}
\end{equation*}
$$

Also let $S \subset A$ be a family of univalent functions and having the normalized form (1.1). For two functions $f(z)$ and $g(z)$ analytic in U, we say that $f(z)$ is subordinate to $g(z)$, denoted by $f(z) \mathrm{p} g(z)$, if there is an analytic function $w(z)$ with $|w(z)| \leq|z|$ such that $f(z)=g(w(z))$. If $g(z)$ is univalent, then $f(z) \mathrm{p} g(z)$, if and only if

$$
f(0)=g(0) \text { and } f(\mathrm{U}) \subseteq g(\mathrm{U}) .
$$

We now define a subclass $S L(s, t)$ of analytic functions as;

$$
S L(s, t)=\left\{f(z) \in A:\left|\left(\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}\right)^{2}-1\right|<1\right\} .
$$

The geometrical interpretation of a function $f(z) \in S L(s, t)$ is that $(s-t) z f^{\prime}(z) /(f(s z)-f(t z))$ lies in the region bounded by right half of the limniscate of Bernouli given by the relation $\left|w^{2}-1\right|<1$. It can easily be seen that $f(z) \in S L(s, t)$ if

$$
\begin{equation*}
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)} \mathrm{p} \sqrt{1+z}, z \in \mathrm{U} \tag{1.2}
\end{equation*}
$$

For $s=1$ and $t=0$, the class $S L(s, t)$ reduce to the class $S L$ introduced by Sokol and Stankiewicz [1] and further
studied by different authers in [2-6]. The qth Hankel determinant $H_{q}(n), q \geq 1, n \geq 1$, for a function $f(z) \in A$ is studied by Noor and Thomas [7] as:

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \mathrm{~L} & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \mathrm{~L} & a_{n+q} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} \\
a_{n+q-1} & a_{n+q} & \mathrm{~L} & a_{n+2 q-2}
\end{array}\right|
$$

In literature many authors have studied the determinants $H_{q}(n)$. For example, Arif et al. [8-11] studied the qth Hankel determinant for some subclasses of analytic functions. Hankel determinant of exponential polynomials is obtained Ehrenborg in [12]. The Hankel transform of an integer sequence and some of its properties were discussed by Layman [13]. It is well-known that the Fekete-Szego functional $\left|a_{3}-a_{2}^{2}\right|$ is $H_{2}(1)$. Fekete-Szego then further generalized the estimate $\left|a_{3}-\lambda a_{2}^{2}\right|$ with λ real and $f(z) \in S$. Moreover, we also know that the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is equivalent to $H_{2}(2)$. The sharp upper bound of the second Hankel determinant for the familiar classes of starlike and convex functions wre studied by Janteng, Halim and Darus [14], that is, for $f(z) \in S^{*}$ and $f(z) \in C$, they obtained $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ and $8\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ respectively. Babalola in [15] considered the third Hankel determinant $H_{3}(1)$ and obtained the upper bound of the well-known classes of bounded-turning, starlike and convex functions. Later in 2013, Raza and Malik [16] investigated the upper
bound of $H_{3}(1)$ for the class $S L$ and they obtained that $576\left|H_{3}(1)\right| \leq 43$. In the present investigation, we study the upper bound of $H_{3}(1)$ for a subclass $S L(s, t)$ of analytic functions by using Toeplitz determinants.
Let P denotes the class of analytic function $p(z)$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=2}^{\infty} p_{n} z^{n}, \quad z \in U \tag{1.3}
\end{equation*}
$$

For our main result we need the following lemmas.
Lemma 1.1 [17]. If $p(z) \in P$ and of the form (1.3), then

$$
\left|p_{2}-v p_{1}^{2}\right| \leq\left\{\begin{array}{cc}
-4 v+2 & (v \leq 0) \\
2 & (0 \leq v \leq 1) \\
4 v-2 & (v \geq 1)
\end{array}\right.
$$

When $v<1$ or $v>0$, equality holds if and only if $p(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, equality holds if and only if for $0 \leq \xi \leq 1, z \in U$,

$$
p(z)=\left(\frac{1+\xi}{2}\right)\left(\frac{1+z}{1-z}\right)+\left(\frac{1-\xi}{2}\right)\left(\frac{1-z}{1+z}\right)
$$

or one of its rotaions. While for $v=1$, equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that equality holds in the case of $v=0$. Although the above upper bound is sharpe, it can be improved as follows when $0<v<1$;

$$
\left|p_{2}-v p_{1}^{2}\right|+v\left|p_{1}\right|^{2} \leq 2, \quad 0<v \leq \frac{1}{2}
$$

and

$$
\left|p_{2}-v p_{1}^{2}\right|+(1-v)\left|p_{1}\right|^{2} \leq 2, \quad \frac{1}{2}<v<1 .
$$

Lemma 1.2 [18]. If $p(z) \in P$ and of the form (1.3), then

$$
\left|p_{n}\right| \leq 2, \text { for } n \geq 1
$$

Lemma 1.3 [17]. If $p(z) \in P$ and of the form (1.3), then

$$
\left|p_{2}-v p_{1}^{2}\right| \leq 2 \max \{1 ;|2 v-1|\}, \text { for } v \in £,
$$

nd this result is sharp for the functions given by

$$
p(z)=\left(1+z^{2}\right) /\left(1-z^{2}\right) \quad \& \quad p(z)=(1+z) /(1-z)
$$

Lemma 1.4 [19]. If $p(z) \in P$ and of the form (1.3), then

$$
\begin{aligned}
& 2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \\
& 4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2} \\
& \\
& +2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{aligned}
$$

for some $x, \quad z$ such that $|x| \leq 1,|z| \leq 1$.

2. MAIN RESULTS

Theorem 2.1. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq\left\{\begin{array}{l}
-\frac{2 \lambda\left(3-A_{3}\right)-3 A_{2}^{2}+8 A_{2}-4}{8\left(2-A_{2}\right)^{2}\left(3-A_{3}\right)}, \text { if } \lambda<\frac{\left(7 A_{2}-10\right)\left(2-A_{2}\right)}{2\left(3-A_{3}\right)}, \\
\frac{1}{2\left(3-A_{3}\right), \text { if } \frac{\left(7 A_{2}-10\right)\left(2-A_{2}\right)}{2\left(3-A_{3}\right)} \leq \lambda \leq \frac{\left(6-A_{2}\right)\left(2-A_{2}\right)}{2\left(3-A_{3}\right)},} \\
\frac{2 \lambda\left(3-A_{3}\right)+3 A_{2}^{2}-8 A_{2}+4}{8\left(2-A_{2}\right)^{2}\left(3-A_{3}\right)}, \text { if } \lambda \geq \frac{\left(6-A_{2}\right)\left(2-A_{2}\right)}{2\left(3-A_{3}\right)} .
\end{array}\right.
$$

Furthermore

$$
\left|a_{3}-\lambda a_{2}^{2}\right|+\left(\lambda-\frac{\left(7 A_{2}-10\right)\left(2-A_{2}\right)}{2\left(3-A_{3}\right)}\right)\left|a_{2}\right|^{2} \leq \frac{1}{2\left(3-A_{3}\right)}
$$

for

$$
\frac{7 A_{2}^{2}-24 A_{2}+20}{2\left(A_{3}-3\right)}<\lambda \leq \frac{3 A_{2}^{2}-8 A_{2}+4}{2\left(A_{3}-3\right)}
$$

and

$$
\left|a_{3}-\lambda a_{2}^{2}\right|+\left(\frac{\left(6-A_{2}\right)\left(2-A_{2}\right)}{2\left(3-A_{3}\right)}-\lambda\right)\left|a_{2}\right|^{2} \leq \frac{1}{2\left(3-A_{3}\right)}
$$

for

$$
\frac{3 A_{2}^{2}-8 A_{2}+4}{2\left(A_{3}-3\right)}<\lambda \leq \frac{A_{2}^{2}-8 A_{2}+12}{2\left(3-A_{3}\right)}
$$

where

$$
A_{n}=t^{n-1}+t^{n-2} s^{1}+t^{n-3} s^{2}+\mathrm{L}+s^{n-1}
$$

These results are sharp.
Proof. If $f(z) \in S L(s, t)$, then by using (1.2), it follows that

$$
\begin{equation*}
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)} \mathrm{p} \Phi(z), \quad z \in U \tag{2.1}
\end{equation*}
$$

where $\Phi(z)=\sqrt{1+z}$. Let us define a function

$$
p(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+p_{1} z+p_{2} z^{2}+\mathrm{L}
$$

It is clear that $p(z) \in P$. This implies that

$$
\omega(z)=\frac{p(z)-1}{p(z)+1}
$$

From (2.1), we have

$$
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)} \mathrm{p} \Phi(w(z))
$$

with

$$
\Phi(w(z))=\sqrt{\frac{2 p(z)}{p(z)+1}} .
$$

Now

$$
\sqrt{\frac{2 p(z)}{p(z)+1}}=1+\frac{1}{4} p_{1} z+\left(\frac{1}{4} p_{2}-\frac{5}{32} p_{1}^{2}\right) z^{2}+\mathrm{L} .
$$

Similarly

$$
\begin{aligned}
& \frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}=1+\left(2-A_{2}\right) a_{2} z+ \\
& \quad\left(\left(3-A_{3}\right) a_{3}-\left(2-A_{2}\right) a_{2}^{2} A_{2}\right) z^{2}+\mathrm{L}
\end{aligned}
$$

Equating the coefficients of z, z^{2}, z^{3} and z^{4}, we obtain

$$
\begin{gather*}
a_{2}=\frac{1}{4\left(2-A_{2}\right)} p_{1} \tag{2.2}\\
a_{3}=\frac{1}{4\left(3-A_{3}\right)}\left\{p_{2}+\frac{7 A_{2}-10}{8\left(2-A_{2}\right)} p_{1}^{2}\right\} \tag{2.3}\\
a_{4}=\frac{1}{4\left(4-A_{2}\right)}\left[p_{3}+\left\{\frac{3 A_{2}+2 A_{3}-2 A_{2} A_{3}}{\left(2-A_{2}\right)\left(3-A_{3}\right)}\right\} \frac{p_{1} p_{2}}{4}+\right. \\
\left.\left\{\frac{-2 A_{2}^{2}}{\left(2-A_{2}\right)^{2}}+\frac{\left(7 A_{2}-10\right)\left(3 A_{2}+2 A_{3}-2 A_{2} A_{3}\right)}{\left(2-A_{2}\right)^{2}\left(3-A_{3}\right)}+13\right\} \frac{p_{1}^{3}}{32}\right] \tag{2.4}
\end{gather*}
$$

Using (2.2) and (2.3), we have

$$
\left|a_{3}-\lambda a_{2}^{2}\right|=\frac{1}{4\left(3-A_{3}\right)}\left|p_{2}-\left\{\lambda \frac{\left(3-A_{3}\right)}{4\left(2-A_{2}\right)^{2}}-\frac{7 A_{2}-10}{8\left(2-A_{2}\right)}\right\} p_{1}^{2}\right|
$$

Hence, using Lemma 1.1, we obtain the required result.
The results are sharp for the functions $h_{i}(z), i=1,2,3,4$, such that

$$
\begin{gathered}
\frac{(s-t) z h_{1}^{\prime}(z)}{h_{1}(z)}=\sqrt{1+z} \text { if } \lambda<-\frac{3}{4} \text { or } \lambda>\frac{5}{4}, \\
\frac{(s-t) z h_{2}^{\prime}(z)}{h_{2}(z)}=\sqrt{1+z^{2}} \text { if }-\frac{3}{4}<\lambda<\frac{5}{4} \\
\frac{(s-t) z h_{3}^{\prime}(z)}{h_{3}(z)}=\sqrt{1+\phi(z)} \text { if } \lambda=-\frac{3}{4} \\
\frac{(s-t) z h_{4}^{\prime}(z)}{h_{4}(z)}=\sqrt{1-\phi(z)} \text { if } \lambda=\frac{5}{4},
\end{gathered}
$$

where $\phi(z)=\frac{z(z+\mu)}{1+\mu z}, \quad 0 \leq \mu \leq 1$.
Theorem 2.2. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{1}{2\left(3-A_{3}\right)} \max \left(1, \frac{\left|2 \lambda\left(3-A_{3}\right)+3 A_{2}^{2}-8 A_{2}+4\right|}{4\left(2-A_{2}\right)^{2}}\right)
$$

where λ is a complex number.
Proof. Since

$$
\left|a_{3}-\lambda a_{2}^{2}\right|=\frac{1}{4\left(3-A_{3}\right)}\left|p_{2}-\left\{\lambda \frac{\left(3-A_{3}\right)}{4\left(2-A_{2}\right)^{2}}-\frac{7 A_{2}-10}{8\left(2-A_{2}\right)}\right\} p_{1}^{2}\right|
$$

therefore, using Lemma 1.3, we get the required result. This result is sharp for

$$
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}=\sqrt{1+z}
$$

or

$$
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}=\sqrt{1+z^{2}}
$$

For $\lambda=1$, we obtain the following Corollary
Corollary 2.3. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{1}{2\left(3-A_{3}\right)}
$$

Theorem 2.4. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{4\left(3-A_{3}\right)^{2}}
$$

This result is sharp.
Proof. Using (2.2), (2.3) and (2.4), we have

$$
\begin{aligned}
& a_{2} a_{4}-a_{3}^{2}=p_{3}-\frac{1}{16\left(3-A_{3}\right)^{2}}\left\{p_{2}+\frac{7 A_{2}-10}{8\left(2-A_{2}\right)} p_{1}^{2}\right\}^{2}+ \\
& \left\{\frac{p_{1}}{16\left(2-A_{2}\right)\left(4-A_{4}\right)}\right]\left[\left\{\frac{3 A_{2}+2 A_{3}-2 A_{2} A_{3}}{\left(2-A_{2}\right)\left(3-A_{3}\right)}-5\right\} \frac{p_{1} p_{2}}{4}+\right. \\
& \left.\left\{\frac{-2 A_{2}^{2}}{\left(2-A_{2}\right)^{2}}+\frac{\left(7 A_{2}-10\right)\left(3 A_{2}+2 A_{3}-2 A_{2} A_{3}\right)}{\left(2-A_{2}\right)^{2}\left(3-A_{3}\right)}+13\right\} \frac{p_{1}^{3}}{32}\right]
\end{aligned}
$$

or, equivalently

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|A p_{1} p_{3}-B_{1} p_{2}^{2}+C p_{1} p_{2}+D p_{1}^{4}\right|
$$

with

$$
\begin{aligned}
A= & \frac{1}{16\left(2-A_{2}\right)\left(4-A_{4}\right)}, \quad B=\frac{1}{16\left(3-A_{3}\right)^{2}}, \\
C= & \frac{A}{4}\left(\frac{3 A_{2}+2 A_{3}-2 A_{2} A_{3}}{\left(2-A_{2}\right)\left(3-A_{3}\right)}-5\right)-\frac{B\left(7 A_{2}-10\right)}{4\left(2-A_{2}\right)}, \\
D= & 4 A\left(\frac{\left(3 A_{2}+2 A_{3}-2 A_{2} A_{3}\right)\left(7 A_{2}-10\right)}{128\left(2-A_{2}\right)^{2}\left(3-A_{3}\right)}+\frac{\left(A_{2}-2\right)}{64\left(2-A_{2}\right)^{3}} A_{2}^{2}+\frac{13}{128}\right) \\
& -\frac{\left(7 A_{2}-10\right)^{2}}{1024\left(2-A_{2}\right)^{2}\left(3-A_{3}\right)^{2}} .
\end{aligned}
$$

Putting the value of p_{2} and p_{3} from Lemma 1.4 and suppose that $p>0$ with $p_{1}=p \in[0,2]$, we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\begin{array}{l}
(A-B+2 C+4 D) \frac{p^{4}}{4} \\
+\frac{1}{2} A p\left(4-p^{2}\right)\left(1-|x|^{2}\right) z \\
+\frac{1}{2}(A-B+C) p^{2}\left(4-p^{2}\right) x \\
-\frac{1}{4}\left(A p^{2}+B\left(4-p^{2}\right)\right)\left(4-p^{2}\right) x^{2}
\end{array}\right|
$$

Using triangle inequality and taking $|x|=\rho$ and $|z|<1$, we have
$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq|A-B+2 C+4 D| \frac{p^{4}}{4}+|A-B+C| p^{2}\left(4-p^{2}\right) \frac{\rho}{2}$
$\frac{A p}{2}\left(4-p^{2}\right)\left(1-\rho^{2}\right)+\left(A p^{2}+B\left(4-p^{2}\right)\right)\left(4-p^{2}\right) \frac{\rho^{2}}{2}$
$=F(c, \rho)$,
Differentiating with respect to ρ, we get
$\frac{\partial F(p, \rho)}{\partial \rho}=\frac{1}{2}|A-B+C| p^{2}\left(4-p^{2}\right)-A p\left(4-p^{2}\right) \rho+$
$\left(A p^{2}+B\left(4-p^{2}\right)\right)\left(4-p^{2}\right) \frac{\rho}{2}$
It is clear that $\partial F(p, \rho) / \partial \rho>0$, which shows that $F(p, \rho)$ is an increasing function on the interval $[0,1]$. This implies that maximum value occurs at $\rho=1$. Therefore $F(p, \rho)=F(p, 1)$ $=N(p)$ (say).

$$
\begin{aligned}
N(p)=\mid A-B+2 C+ & \left.4 D\left|\frac{p^{4}}{4}+\frac{1}{2}\right| A-B+C \right\rvert\, p^{2}\left(4-p^{2}\right) \\
& +\frac{1}{4}\left(A p^{2}+B\left(4-p^{2}\right)\right)\left(4-p^{2}\right)
\end{aligned}
$$

Differentiating again with respect to ρ, we get

$$
\begin{aligned}
& N^{\prime}(p)=(|A-B+2 C+4 D|-2|A-B+C|-4 A+4 B) p^{3} \\
& \quad+(4|A-B+C|+2 A-4 B) p \\
& \begin{array}{r}
N^{\prime \prime}(p)=3(|A-B+2 C+4 D|-2|A-B+C|-4 A+4 B) p^{2} \\
\\
\quad+(4|A-B+C|+2 A-4 B)
\end{array}
\end{aligned}
$$

Now $N^{\prime \prime}(p)<0$ for $p=0$, so maximum value occurs at $p=0$, and hence

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{4\left(3-A_{3}\right)^{2}} .
$$

This result is sharp for the functions

$$
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}=\sqrt{1+z}
$$

or

$$
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}=\sqrt{1+z^{2}}
$$

Theorem 2.5. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{1}{2\left(4-A_{4}\right)}
$$

Proof. By similar arguments as used in last theorem, we get the required result.

Lemma 2.6. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{1}{2\left(2-A_{2}\right)}, \quad\left|a_{3}\right| \leq \frac{1}{2\left(3-A_{3}\right)}, \\
& \left|a_{4}\right| \leq \frac{1}{2\left(4-A_{4}\right)}, \quad\left|a_{5}\right| \leq \frac{1}{2\left(5-A_{5}\right)}
\end{aligned}
$$

This estimations are sharp.
Proof. From (2.1), we can write

$$
(s-t)^{2}\left(z f^{\prime}(z)\right)^{2}=(1+w(z))(f(z))^{2}
$$

or, equivalently

$$
(s-t)^{2}\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}\right)^{2}=\left(1+\sum_{n=1}^{\infty} d_{n} z^{n}\right)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right)^{2}
$$

Comparing the coefficients of like powers and then simple computation gives the required result.

Theorem 2.7. Let $f(z) \in S L(s, t)$ be the form (1.1). Then

$$
\left|H_{3}(1)\right| \leq \frac{1}{4}\left[\frac{1}{2\left(3-A_{3}\right)^{3}}+\frac{1}{\left(4-A_{4}\right)^{2}}+\frac{1}{\left(3-A_{3}\right)\left(5-A_{5}\right)}\right]
$$

Proof. Since

$$
\left|H_{3}(1)\right| \leq\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{4}\right|\left|a_{2} a_{3}-a_{4}\right|+\left|a_{5}\right|\left|a_{1} a_{3}-a_{2}^{2}\right|
$$

Using Corollary 2.3, Theorem 2.5 and Lemma 2.6, we obtain

$$
\left|H_{3}(1)\right| \leq \frac{1}{8\left(3-A_{3}\right)^{3}}+\frac{1}{4\left(4-A_{4}\right)^{2}}+\frac{1}{4\left(3-A_{3}\right)\left(5-A_{5}\right)}
$$

Then by simple computation we obtain the required result. For $s=1$ and $t=0$, we obtain the result proved in [16].
Corollary 2.8. Let $f(z) \in S L$ be the form (1.1). Then

$$
576\left|H_{3}(1)\right| \leq 43
$$

For $s=1$ and $t=-1$, we obtain the following result
Corollary 2.9. Let $f(z) \in S L(1,-1)$ be the form (1.1). Then

$$
\left|H_{3}(1)\right| \leq \frac{1}{16} .
$$

REFERENCES

[1].J. Sokol, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike function, Zesz. Neuk. Politech. Rzeszowskiej Mat. 19(1996), 101-105.
[2]. J. Sokol, Radius problem in the class $S L^{*}$, Applied Mathematics and Computation, 214(2009), 569-573.
[3]. J. Sokol, Coefficient estimates in the a class of strongly starlike functions, Kyungpook Math Journal, 49(2009), 349-353.
[4]. J. Sokol, On application of certain sufficient for starlikeness, Journal Math. Applicatoin, 30(2008), 40-53.
[5]. S. A. Halim, R. Omar, Applications of certain functions associated with lemniscates Bernoulli, J. Indones. Math. Soc., 18(2)(2012), 93-99.
[6]. R. M. Ali, N. E. Chu, V. Ravichandran, S. S Kumar, First order differential subordination for functions associated with the lemniscates of Bernoulli, Taiwanese Journal of Mathematics, 16(3)(2012), 1017-1026.
[7]. J. W. Noonan, D. K. Thomas, On second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223(1976)(2), 337-346.
[8]. M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequality Aplications, (2012), doi:10.1186/1029-242X-2012-22.
[9]. M. Arif, K. I. Noor, M. Raza, W. Haq, some properties of a generalized class of analytic functions related with Janowski functions, Abstract and Applied Analysis, 2012, article ID 279843.
[10]. M. Arif, M. Raza, S. Khan, M. Ayaz, Upper bound of a third Hankel determinant for a subclass of analytic functions, Science international Lahore, 27(2) (2015), 917-921.
[11]. M. Arif, J. Iqbal, Z. Ullah, M. Ayaz, Coefficient inequalities related with a subclass of univalent functions defined by Ruscheweyh operator, accepted in Science international Lahore.
[12]. R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000)(6), 557-560.
[13]. J. W. Layman, The Hankel transform and some of its properties, J. Integer seq., 4(2001)(1), 1-11.
[14]. A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1(2007)(13), 619-625.
[15]. K. O. Babalola, On H_{3} (1) Hankel determinant for some classes of univalent functions. Inequal. Theory Apl., 6(2007), 1-7.
[16]. M. Raza, S. N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with the lemniscates of Bernoulli, Journal of Inequality and Applications, (2013).
[17]. W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In. Li, Z, Ren, F, Yang, L, Zhang, S (eda) Proceeding of the conference on complex Analysis (Tiajin, 1992), 157-169. Int. Press, Cambridge (1994).
[18]. C. Caratheodory, Uber den variabilitatsbereich der fourier'schen konstanten von positive harmonischen funktionen, Rend. Circ. Mat. Palerme., 32(1911), 193-217.
[19]. U. Grenander, G. Szego, Toeplitz form and their applications, University of California Press, Berkeley (1958).

